ref: d44034bcf699661a11b587c884365a8aa4d6bd39
dir: /cube.c/
/* * cube.c: Cube game. */ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <assert.h> #include <math.h> #include "puzzles.h" #define MAXVERTICES 20 #define MAXFACES 20 #define MAXORDER 4 struct solid { int nvertices; float vertices[MAXVERTICES * 3]; /* 3*npoints coordinates */ int order; int nfaces; int faces[MAXFACES * MAXORDER]; /* order*nfaces point indices */ float normals[MAXFACES * 3]; /* 3*npoints vector components */ float shear; /* isometric shear for nice drawing */ float border; /* border required around arena */ }; static const struct solid tetrahedron = { 4, { 0.0, -0.57735026919, -0.20412414523, -0.5, 0.28867513459, -0.20412414523, 0.0, -0.0, 0.6123724357, 0.5, 0.28867513459, -0.20412414523, }, 3, 4, { 0,2,1, 3,1,2, 2,0,3, 1,3,0 }, { -0.816496580928, -0.471404520791, 0.333333333334, 0.0, 0.942809041583, 0.333333333333, 0.816496580928, -0.471404520791, 0.333333333334, 0.0, 0.0, -1.0, }, 0.0, 0.3 }; static const struct solid cube = { 8, { -0.5,-0.5,-0.5, -0.5,-0.5,+0.5, -0.5,+0.5,-0.5, -0.5,+0.5,+0.5, +0.5,-0.5,-0.5, +0.5,-0.5,+0.5, +0.5,+0.5,-0.5, +0.5,+0.5,+0.5, }, 4, 6, { 0,1,3,2, 1,5,7,3, 5,4,6,7, 4,0,2,6, 0,4,5,1, 3,7,6,2 }, { -1,0,0, 0,0,+1, +1,0,0, 0,0,-1, 0,-1,0, 0,+1,0 }, 0.3, 0.5 }; static const struct solid octahedron = { 6, { -0.5, -0.28867513459472505, 0.4082482904638664, 0.5, 0.28867513459472505, -0.4082482904638664, -0.5, 0.28867513459472505, -0.4082482904638664, 0.5, -0.28867513459472505, 0.4082482904638664, 0.0, -0.57735026918945009, -0.4082482904638664, 0.0, 0.57735026918945009, 0.4082482904638664, }, 3, 8, { 4,0,2, 0,5,2, 0,4,3, 5,0,3, 1,4,2, 5,1,2, 4,1,3, 1,5,3 }, { -0.816496580928, -0.471404520791, -0.333333333334, -0.816496580928, 0.471404520791, 0.333333333334, 0.0, -0.942809041583, 0.333333333333, 0.0, 0.0, 1.0, 0.0, 0.0, -1.0, 0.0, 0.942809041583, -0.333333333333, 0.816496580928, -0.471404520791, -0.333333333334, 0.816496580928, 0.471404520791, 0.333333333334, }, 0.0, 0.5 }; static const struct solid icosahedron = { 12, { 0.0, 0.57735026919, 0.75576131408, 0.0, -0.93417235896, 0.17841104489, 0.0, 0.93417235896, -0.17841104489, 0.0, -0.57735026919, -0.75576131408, -0.5, -0.28867513459, 0.75576131408, -0.5, 0.28867513459, -0.75576131408, 0.5, -0.28867513459, 0.75576131408, 0.5, 0.28867513459, -0.75576131408, -0.80901699437, 0.46708617948, 0.17841104489, 0.80901699437, 0.46708617948, 0.17841104489, -0.80901699437, -0.46708617948, -0.17841104489, 0.80901699437, -0.46708617948, -0.17841104489, }, 3, 20, { 8,0,2, 0,9,2, 1,10,3, 11,1,3, 0,4,6, 4,1,6, 5,2,7, 3,5,7, 4,8,10, 8,5,10, 9,6,11, 7,9,11, 0,8,4, 9,0,6, 10,1,4, 1,11,6, 8,2,5, 2,9,7, 3,10,5, 11,3,7, }, { -0.356822089773, 0.87267799625, 0.333333333333, 0.356822089773, 0.87267799625, 0.333333333333, -0.356822089773, -0.87267799625, -0.333333333333, 0.356822089773, -0.87267799625, -0.333333333333, -0.0, 0.0, 1.0, 0.0, -0.666666666667, 0.745355992501, 0.0, 0.666666666667, -0.745355992501, 0.0, 0.0, -1.0, -0.934172358963, -0.12732200375, 0.333333333333, -0.934172358963, 0.12732200375, -0.333333333333, 0.934172358963, -0.12732200375, 0.333333333333, 0.934172358963, 0.12732200375, -0.333333333333, -0.57735026919, 0.333333333334, 0.745355992501, 0.57735026919, 0.333333333334, 0.745355992501, -0.57735026919, -0.745355992501, 0.333333333334, 0.57735026919, -0.745355992501, 0.333333333334, -0.57735026919, 0.745355992501, -0.333333333334, 0.57735026919, 0.745355992501, -0.333333333334, -0.57735026919, -0.333333333334, -0.745355992501, 0.57735026919, -0.333333333334, -0.745355992501, }, 0.0, 0.8 }; enum { TETRAHEDRON, CUBE, OCTAHEDRON, ICOSAHEDRON }; static const struct solid *solids[] = { &tetrahedron, &cube, &octahedron, &icosahedron }; enum { COL_BACKGROUND, COL_BORDER, COL_BLUE, NCOLOURS }; enum { LEFT, RIGHT, UP, DOWN }; #define GRID_SCALE 48 #define ROLLTIME 0.1 #define SQ(x) ( (x) * (x) ) #define MATMUL(ra,m,a) do { \ float rx, ry, rz, xx = (a)[0], yy = (a)[1], zz = (a)[2], *mat = (m); \ rx = mat[0] * xx + mat[3] * yy + mat[6] * zz; \ ry = mat[1] * xx + mat[4] * yy + mat[7] * zz; \ rz = mat[2] * xx + mat[5] * yy + mat[8] * zz; \ (ra)[0] = rx; (ra)[1] = ry; (ra)[2] = rz; \ } while (0) #define APPROXEQ(x,y) ( SQ(x-y) < 0.1 ) struct grid_square { float x, y; int npoints; float points[8]; /* maximum */ int directions[4]; /* bit masks showing point pairs */ int flip; int blue; int tetra_class; }; struct game_params { int solid; /* * Grid dimensions. For a square grid these are width and * height respectively; otherwise the grid is a hexagon, with * the top side and the two lower diagonals having length d1 * and the remaining three sides having length d2 (so that * d1==d2 gives a regular hexagon, and d2==0 gives a triangle). */ int d1, d2; }; struct game_state { struct game_params params; const struct solid *solid; int *facecolours; struct grid_square *squares; int nsquares; int current; /* index of current grid square */ int sgkey[2]; /* key-point indices into grid sq */ int dgkey[2]; /* key-point indices into grid sq */ int spkey[2]; /* key-point indices into polyhedron */ int dpkey[2]; /* key-point indices into polyhedron */ int previous; float angle; int completed; int movecount; }; game_params *default_params(void) { game_params *ret = snew(game_params); ret->solid = CUBE; ret->d1 = 4; ret->d2 = 4; return ret; } int game_fetch_preset(int i, char **name, game_params **params) { game_params *ret = snew(game_params); char *str; switch (i) { case 0: str = "Cube"; ret->solid = CUBE; ret->d1 = 4; ret->d2 = 4; break; case 1: str = "Tetrahedron"; ret->solid = TETRAHEDRON; ret->d1 = 2; ret->d2 = 1; break; case 2: str = "Octahedron"; ret->solid = OCTAHEDRON; ret->d1 = 2; ret->d2 = 2; break; case 3: str = "Icosahedron"; ret->solid = ICOSAHEDRON; ret->d1 = 3; ret->d2 = 3; break; default: sfree(ret); return FALSE; } *name = dupstr(str); *params = ret; return TRUE; } void free_params(game_params *params) { sfree(params); } game_params *dup_params(game_params *params) { game_params *ret = snew(game_params); *ret = *params; /* structure copy */ return ret; } static void enum_grid_squares(game_params *params, void (*callback)(void *, struct grid_square *), void *ctx) { const struct solid *solid = solids[params->solid]; if (solid->order == 4) { int x, y; for (x = 0; x < params->d1; x++) for (y = 0; y < params->d2; y++) { struct grid_square sq; sq.x = x; sq.y = y; sq.points[0] = x - 0.5; sq.points[1] = y - 0.5; sq.points[2] = x - 0.5; sq.points[3] = y + 0.5; sq.points[4] = x + 0.5; sq.points[5] = y + 0.5; sq.points[6] = x + 0.5; sq.points[7] = y - 0.5; sq.npoints = 4; sq.directions[LEFT] = 0x03; /* 0,1 */ sq.directions[RIGHT] = 0x0C; /* 2,3 */ sq.directions[UP] = 0x09; /* 0,3 */ sq.directions[DOWN] = 0x06; /* 1,2 */ sq.flip = FALSE; /* * This is supremely irrelevant, but just to avoid * having any uninitialised structure members... */ sq.tetra_class = 0; callback(ctx, &sq); } } else { int row, rowlen, other, i, firstix = -1; float theight = sqrt(3) / 2.0; for (row = 0; row < params->d1 + params->d2; row++) { if (row < params->d1) { other = +1; rowlen = row + params->d2; } else { other = -1; rowlen = 2*params->d1 + params->d2 - row; } /* * There are `rowlen' down-pointing triangles. */ for (i = 0; i < rowlen; i++) { struct grid_square sq; int ix; float x, y; ix = (2 * i - (rowlen-1)); x = ix * 0.5; y = theight * row; sq.x = x; sq.y = y + theight / 3; sq.points[0] = x - 0.5; sq.points[1] = y; sq.points[2] = x; sq.points[3] = y + theight; sq.points[4] = x + 0.5; sq.points[5] = y; sq.npoints = 3; sq.directions[LEFT] = 0x03; /* 0,1 */ sq.directions[RIGHT] = 0x06; /* 1,2 */ sq.directions[UP] = 0x05; /* 0,2 */ sq.directions[DOWN] = 0; /* invalid move */ sq.flip = TRUE; if (firstix < 0) firstix = ix & 3; ix -= firstix; sq.tetra_class = ((row+(ix&1)) & 2) ^ (ix & 3); callback(ctx, &sq); } /* * There are `rowlen+other' up-pointing triangles. */ for (i = 0; i < rowlen+other; i++) { struct grid_square sq; int ix; float x, y; ix = (2 * i - (rowlen+other-1)); x = ix * 0.5; y = theight * row; sq.x = x; sq.y = y + 2*theight / 3; sq.points[0] = x + 0.5; sq.points[1] = y + theight; sq.points[2] = x; sq.points[3] = y; sq.points[4] = x - 0.5; sq.points[5] = y + theight; sq.npoints = 3; sq.directions[LEFT] = 0x06; /* 1,2 */ sq.directions[RIGHT] = 0x03; /* 0,1 */ sq.directions[DOWN] = 0x05; /* 0,2 */ sq.directions[UP] = 0; /* invalid move */ sq.flip = FALSE; if (firstix < 0) firstix = ix; ix -= firstix; sq.tetra_class = ((row+(ix&1)) & 2) ^ (ix & 3); callback(ctx, &sq); } } } } static int grid_area(int d1, int d2, int order) { /* * An NxM grid of squares has NM squares in it. * * A grid of triangles with dimensions A and B has a total of * A^2 + B^2 + 4AB triangles in it. (You can divide it up into * a side-A triangle containing A^2 subtriangles, a side-B * triangle containing B^2, and two congruent parallelograms, * each with side lengths A and B, each therefore containing AB * two-triangle rhombuses.) */ if (order == 4) return d1 * d2; else return d1*d1 + d2*d2 + 4*d1*d2; } struct grid_data { int *gridptrs[4]; int nsquares[4]; int nclasses; int squareindex; }; static void classify_grid_square_callback(void *ctx, struct grid_square *sq) { struct grid_data *data = (struct grid_data *)ctx; int thisclass; if (data->nclasses == 4) thisclass = sq->tetra_class; else if (data->nclasses == 2) thisclass = sq->flip; else thisclass = 0; data->gridptrs[thisclass][data->nsquares[thisclass]++] = data->squareindex++; } char *new_game_seed(game_params *params) { struct grid_data data; int i, j, k, m, area, facesperclass; int *flags; char *seed, *p; /* * Enumerate the grid squares, dividing them into equivalence * classes as appropriate. (For the tetrahedron, there is one * equivalence class for each face; for the octahedron there * are two classes; for the other two solids there's only one.) */ area = grid_area(params->d1, params->d2, solids[params->solid]->order); if (params->solid == TETRAHEDRON) data.nclasses = 4; else if (params->solid == OCTAHEDRON) data.nclasses = 2; else data.nclasses = 1; data.gridptrs[0] = snewn(data.nclasses * area, int); for (i = 0; i < data.nclasses; i++) { data.gridptrs[i] = data.gridptrs[0] + i * area; data.nsquares[i] = 0; } data.squareindex = 0; enum_grid_squares(params, classify_grid_square_callback, &data); facesperclass = solids[params->solid]->nfaces / data.nclasses; for (i = 0; i < data.nclasses; i++) assert(data.nsquares[i] >= facesperclass); assert(data.squareindex == area); /* * So now we know how many faces to allocate in each class. Get * on with it. */ flags = snewn(area, int); for (i = 0; i < area; i++) flags[i] = FALSE; for (i = 0; i < data.nclasses; i++) { for (j = 0; j < facesperclass; j++) { unsigned long divisor = RAND_MAX / data.nsquares[i]; unsigned long max = divisor * data.nsquares[i]; int n; do { n = rand(); } while (n >= max); n /= divisor; assert(!flags[data.gridptrs[i][n]]); flags[data.gridptrs[i][n]] = TRUE; /* * Move everything else up the array. I ought to use a * better data structure for this, but for such small * numbers it hardly seems worth the effort. */ while (n < data.nsquares[i]-1) { data.gridptrs[i][n] = data.gridptrs[i][n+1]; n++; } data.nsquares[i]--; } } /* * Now we know precisely which squares are blue. Encode this * information in hex. While we're looping over this, collect * the non-blue squares into a list in the now-unused gridptrs * array. */ seed = snewn(area / 4 + 40, char); p = seed; j = 0; k = 8; m = 0; for (i = 0; i < area; i++) { if (flags[i]) { j |= k; } else { data.gridptrs[0][m++] = i; } k >>= 1; if (!k) { *p++ = "0123456789ABCDEF"[j]; k = 8; j = 0; } } if (k != 8) *p++ = "0123456789ABCDEF"[j]; /* * Choose a non-blue square for the polyhedron. */ { unsigned long divisor = RAND_MAX / m; unsigned long max = divisor * m; int n; do { n = rand(); } while (n >= max); n /= divisor; sprintf(p, ":%d", data.gridptrs[0][n]); } sfree(data.gridptrs[0]); sfree(flags); return seed; } static void add_grid_square_callback(void *ctx, struct grid_square *sq) { game_state *state = (game_state *)ctx; state->squares[state->nsquares] = *sq; /* structure copy */ state->squares[state->nsquares].blue = FALSE; state->nsquares++; } static int lowest_face(const struct solid *solid) { int i, j, best; float zmin; best = 0; zmin = 0.0; for (i = 0; i < solid->nfaces; i++) { float z = 0; for (j = 0; j < solid->order; j++) { int f = solid->faces[i*solid->order + j]; z += solid->vertices[f*3+2]; } if (i == 0 || zmin > z) { zmin = z; best = i; } } return best; } static int align_poly(const struct solid *solid, struct grid_square *sq, int *pkey) { float zmin; int i, j; int flip = (sq->flip ? -1 : +1); /* * First, find the lowest z-coordinate present in the solid. */ zmin = 0.0; for (i = 0; i < solid->nvertices; i++) if (zmin > solid->vertices[i*3+2]) zmin = solid->vertices[i*3+2]; /* * Now go round the grid square. For each point in the grid * square, we're looking for a point of the polyhedron with the * same x- and y-coordinates (relative to the square's centre), * and z-coordinate equal to zmin (near enough). */ for (j = 0; j < sq->npoints; j++) { int matches, index; matches = 0; index = -1; for (i = 0; i < solid->nvertices; i++) { float dist = 0; dist += SQ(solid->vertices[i*3+0] * flip - sq->points[j*2+0] + sq->x); dist += SQ(solid->vertices[i*3+1] * flip - sq->points[j*2+1] + sq->y); dist += SQ(solid->vertices[i*3+2] - zmin); if (dist < 0.1) { matches++; index = i; } } if (matches != 1 || index < 0) return FALSE; pkey[j] = index; } return TRUE; } static void flip_poly(struct solid *solid, int flip) { int i; if (flip) { for (i = 0; i < solid->nvertices; i++) { solid->vertices[i*3+0] *= -1; solid->vertices[i*3+1] *= -1; } for (i = 0; i < solid->nfaces; i++) { solid->normals[i*3+0] *= -1; solid->normals[i*3+1] *= -1; } } } static struct solid *transform_poly(const struct solid *solid, int flip, int key0, int key1, float angle) { struct solid *ret = snew(struct solid); float vx, vy, ax, ay; float vmatrix[9], amatrix[9], vmatrix2[9]; int i; *ret = *solid; /* structure copy */ flip_poly(ret, flip); /* * Now rotate the polyhedron through the given angle. We must * rotate about the Z-axis to bring the two vertices key0 and * key1 into horizontal alignment, then rotate about the * X-axis, then rotate back again. */ vx = ret->vertices[key1*3+0] - ret->vertices[key0*3+0]; vy = ret->vertices[key1*3+1] - ret->vertices[key0*3+1]; assert(APPROXEQ(vx*vx + vy*vy, 1.0)); vmatrix[0] = vx; vmatrix[3] = vy; vmatrix[6] = 0; vmatrix[1] = -vy; vmatrix[4] = vx; vmatrix[7] = 0; vmatrix[2] = 0; vmatrix[5] = 0; vmatrix[8] = 1; ax = cos(angle); ay = sin(angle); amatrix[0] = 1; amatrix[3] = 0; amatrix[6] = 0; amatrix[1] = 0; amatrix[4] = ax; amatrix[7] = ay; amatrix[2] = 0; amatrix[5] = -ay; amatrix[8] = ax; memcpy(vmatrix2, vmatrix, sizeof(vmatrix)); vmatrix2[1] = vy; vmatrix2[3] = -vy; for (i = 0; i < ret->nvertices; i++) { MATMUL(ret->vertices + 3*i, vmatrix, ret->vertices + 3*i); MATMUL(ret->vertices + 3*i, amatrix, ret->vertices + 3*i); MATMUL(ret->vertices + 3*i, vmatrix2, ret->vertices + 3*i); } for (i = 0; i < ret->nfaces; i++) { MATMUL(ret->normals + 3*i, vmatrix, ret->normals + 3*i); MATMUL(ret->normals + 3*i, amatrix, ret->normals + 3*i); MATMUL(ret->normals + 3*i, vmatrix2, ret->normals + 3*i); } return ret; } game_state *new_game(game_params *params, char *seed) { game_state *state = snew(game_state); int area; state->params = *params; /* structure copy */ state->solid = solids[params->solid]; area = grid_area(params->d1, params->d2, state->solid->order); state->squares = snewn(area, struct grid_square); state->nsquares = 0; enum_grid_squares(params, add_grid_square_callback, state); assert(state->nsquares == area); state->facecolours = snewn(state->solid->nfaces, int); memset(state->facecolours, 0, state->solid->nfaces * sizeof(int)); /* * Set up the blue squares and polyhedron position according to * the game seed. */ { char *p = seed; int i, j, v; j = 8; v = 0; for (i = 0; i < state->nsquares; i++) { if (j == 8) { v = *p++; if (v >= '0' && v <= '9') v -= '0'; else if (v >= 'A' && v <= 'F') v -= 'A' - 10; else if (v >= 'a' && v <= 'f') v -= 'a' - 10; else break; } if (v & j) state->squares[i].blue = TRUE; j >>= 1; if (j == 0) j = 8; } if (*p == ':') p++; state->current = atoi(p); if (state->current < 0 || state->current >= state->nsquares) state->current = 0; /* got to do _something_ */ } /* * Align the polyhedron with its grid square and determine * initial key points. */ { int pkey[4]; int ret; ret = align_poly(state->solid, &state->squares[state->current], pkey); assert(ret); state->dpkey[0] = state->spkey[0] = pkey[0]; state->dpkey[1] = state->spkey[0] = pkey[1]; state->dgkey[0] = state->sgkey[0] = 0; state->dgkey[1] = state->sgkey[0] = 1; } state->previous = state->current; state->angle = 0.0; state->completed = FALSE; state->movecount = 0; return state; } game_state *dup_game(game_state *state) { game_state *ret = snew(game_state); ret->params = state->params; /* structure copy */ ret->solid = state->solid; ret->facecolours = snewn(ret->solid->nfaces, int); memcpy(ret->facecolours, state->facecolours, ret->solid->nfaces * sizeof(int)); ret->nsquares = state->nsquares; ret->squares = snewn(ret->nsquares, struct grid_square); memcpy(ret->squares, state->squares, ret->nsquares * sizeof(struct grid_square)); ret->dpkey[0] = state->dpkey[0]; ret->dpkey[1] = state->dpkey[1]; ret->dgkey[0] = state->dgkey[0]; ret->dgkey[1] = state->dgkey[1]; ret->spkey[0] = state->spkey[0]; ret->spkey[1] = state->spkey[1]; ret->sgkey[0] = state->sgkey[0]; ret->sgkey[1] = state->sgkey[1]; ret->previous = state->previous; ret->angle = state->angle; ret->completed = state->completed; ret->movecount = state->movecount; return ret; } void free_game(game_state *state) { sfree(state); } game_state *make_move(game_state *from, int x, int y, int button) { int direction; int pkey[2], skey[2], dkey[2]; float points[4]; game_state *ret; float angle; int i, j, dest, mask; struct solid *poly; /* * All moves are made with the cursor keys. */ if (button == CURSOR_UP) direction = UP; else if (button == CURSOR_DOWN) direction = DOWN; else if (button == CURSOR_LEFT) direction = LEFT; else if (button == CURSOR_RIGHT) direction = RIGHT; else return NULL; /* * Find the two points in the current grid square which * correspond to this move. */ mask = from->squares[from->current].directions[direction]; if (mask == 0) return NULL; for (i = j = 0; i < from->squares[from->current].npoints; i++) if (mask & (1 << i)) { points[j*2] = from->squares[from->current].points[i*2]; points[j*2+1] = from->squares[from->current].points[i*2+1]; skey[j] = i; j++; } assert(j == 2); /* * Now find the other grid square which shares those points. * This is our move destination. */ dest = -1; for (i = 0; i < from->nsquares; i++) if (i != from->current) { int match = 0; float dist; for (j = 0; j < from->squares[i].npoints; j++) { dist = (SQ(from->squares[i].points[j*2] - points[0]) + SQ(from->squares[i].points[j*2+1] - points[1])); if (dist < 0.1) dkey[match++] = j; dist = (SQ(from->squares[i].points[j*2] - points[2]) + SQ(from->squares[i].points[j*2+1] - points[3])); if (dist < 0.1) dkey[match++] = j; } if (match == 2) { dest = i; break; } } if (dest < 0) return NULL; ret = dup_game(from); ret->current = i; /* * So we know what grid square we're aiming for, and we also * know the two key points (as indices in both the source and * destination grid squares) which are invariant between source * and destination. * * Next we must roll the polyhedron on to that square. So we * find the indices of the key points within the polyhedron's * vertex array, then use those in a call to transform_poly, * and align the result on the new grid square. */ { int all_pkey[4]; align_poly(from->solid, &from->squares[from->current], all_pkey); pkey[0] = all_pkey[skey[0]]; pkey[1] = all_pkey[skey[1]]; /* * Now pkey[0] corresponds to skey[0] and dkey[0], and * likewise [1]. */ } /* * Now find the angle through which to rotate the polyhedron. * Do this by finding the two faces that share the two vertices * we've found, and taking the dot product of their normals. */ { int f[2], nf = 0; float dp; for (i = 0; i < from->solid->nfaces; i++) { int match = 0; for (j = 0; j < from->solid->order; j++) if (from->solid->faces[i*from->solid->order + j] == pkey[0] || from->solid->faces[i*from->solid->order + j] == pkey[1]) match++; if (match == 2) { assert(nf < 2); f[nf++] = i; } } assert(nf == 2); dp = 0; for (i = 0; i < 3; i++) dp += (from->solid->normals[f[0]*3+i] * from->solid->normals[f[1]*3+i]); angle = acos(dp); } /* * Now transform the polyhedron. We aren't entirely sure * whether we need to rotate through angle or -angle, and the * simplest way round this is to try both and see which one * aligns successfully! * * Unfortunately, _both_ will align successfully if this is a * cube, which won't tell us anything much. So for that * particular case, I resort to gross hackery: I simply negate * the angle before trying the alignment, depending on the * direction. Which directions work which way is determined by * pure trial and error. I said it was gross :-/ */ { int all_pkey[4]; int success; if (from->solid->order == 4 && direction == UP) angle = -angle; /* HACK */ poly = transform_poly(from->solid, from->squares[from->current].flip, pkey[0], pkey[1], angle); flip_poly(poly, from->squares[ret->current].flip); success = align_poly(poly, &from->squares[ret->current], all_pkey); if (!success) { angle = -angle; poly = transform_poly(from->solid, from->squares[from->current].flip, pkey[0], pkey[1], angle); flip_poly(poly, from->squares[ret->current].flip); success = align_poly(poly, &from->squares[ret->current], all_pkey); } assert(success); } /* * Now we have our rotated polyhedron, which we expect to be * exactly congruent to the one we started with - but with the * faces permuted. So we map that congruence and thereby figure * out how to permute the faces as a result of the polyhedron * having rolled. */ { int *newcolours = snewn(from->solid->nfaces, int); for (i = 0; i < from->solid->nfaces; i++) newcolours[i] = -1; for (i = 0; i < from->solid->nfaces; i++) { int nmatch = 0; /* * Now go through the transformed polyhedron's faces * and figure out which one's normal is approximately * equal to this one. */ for (j = 0; j < poly->nfaces; j++) { float dist; int k; dist = 0; for (k = 0; k < 3; k++) dist += SQ(poly->normals[j*3+k] - from->solid->normals[i*3+k]); if (APPROXEQ(dist, 0)) { nmatch++; newcolours[i] = ret->facecolours[j]; } } assert(nmatch == 1); } for (i = 0; i < from->solid->nfaces; i++) assert(newcolours[i] != -1); sfree(ret->facecolours); ret->facecolours = newcolours; } /* * And finally, swap the colour between the bottom face of the * polyhedron and the face we've just landed on. * * We don't do this if the game is already complete, since we * allow the user to roll the fully blue polyhedron around the * grid as a feeble reward. */ if (!ret->completed) { i = lowest_face(from->solid); j = ret->facecolours[i]; ret->facecolours[i] = ret->squares[ret->current].blue; ret->squares[ret->current].blue = j; /* * Detect game completion. */ j = 0; for (i = 0; i < ret->solid->nfaces; i++) if (ret->facecolours[i]) j++; if (j == ret->solid->nfaces) ret->completed = TRUE; } sfree(poly); /* * Align the normal polyhedron with its grid square, to get key * points for non-animated display. */ { int pkey[4]; int success; success = align_poly(ret->solid, &ret->squares[ret->current], pkey); assert(success); ret->dpkey[0] = pkey[0]; ret->dpkey[1] = pkey[1]; ret->dgkey[0] = 0; ret->dgkey[1] = 1; } ret->spkey[0] = pkey[0]; ret->spkey[1] = pkey[1]; ret->sgkey[0] = skey[0]; ret->sgkey[1] = skey[1]; ret->previous = from->current; ret->angle = angle; ret->movecount++; return ret; } /* ---------------------------------------------------------------------- * Drawing routines. */ struct bbox { float l, r, u, d; }; struct game_drawstate { int ox, oy; /* pixel position of float origin */ }; static void find_bbox_callback(void *ctx, struct grid_square *sq) { struct bbox *bb = (struct bbox *)ctx; int i; for (i = 0; i < sq->npoints; i++) { if (bb->l > sq->points[i*2]) bb->l = sq->points[i*2]; if (bb->r < sq->points[i*2]) bb->r = sq->points[i*2]; if (bb->u > sq->points[i*2+1]) bb->u = sq->points[i*2+1]; if (bb->d < sq->points[i*2+1]) bb->d = sq->points[i*2+1]; } } static struct bbox find_bbox(game_params *params) { struct bbox bb; /* * These should be hugely more than the real bounding box will * be. */ bb.l = 2 * (params->d1 + params->d2); bb.r = -2 * (params->d1 + params->d2); bb.u = 2 * (params->d1 + params->d2); bb.d = -2 * (params->d1 + params->d2); enum_grid_squares(params, find_bbox_callback, &bb); return bb; } void game_size(game_params *params, int *x, int *y) { struct bbox bb = find_bbox(params); *x = (bb.r - bb.l + 2*solids[params->solid]->border) * GRID_SCALE; *y = (bb.d - bb.u + 2*solids[params->solid]->border) * GRID_SCALE; } float *game_colours(frontend *fe, game_state *state, int *ncolours) { float *ret = snewn(3 * NCOLOURS, float); frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]); ret[COL_BORDER * 3 + 0] = 0.0; ret[COL_BORDER * 3 + 1] = 0.0; ret[COL_BORDER * 3 + 2] = 0.0; ret[COL_BLUE * 3 + 0] = 0.0; ret[COL_BLUE * 3 + 1] = 0.0; ret[COL_BLUE * 3 + 2] = 1.0; *ncolours = NCOLOURS; return ret; } game_drawstate *game_new_drawstate(game_state *state) { struct game_drawstate *ds = snew(struct game_drawstate); struct bbox bb = find_bbox(&state->params); ds->ox = -(bb.l - state->solid->border) * GRID_SCALE; ds->oy = -(bb.u - state->solid->border) * GRID_SCALE; return ds; } void game_free_drawstate(game_drawstate *ds) { sfree(ds); } void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate, game_state *state, float animtime) { int i, j; struct bbox bb = find_bbox(&state->params); struct solid *poly; int *pkey, *gkey; float t[3]; float angle; game_state *newstate; int square; draw_rect(fe, 0, 0, (bb.r-bb.l+2) * GRID_SCALE, (bb.d-bb.u+2) * GRID_SCALE, COL_BACKGROUND); if (oldstate && oldstate->movecount > state->movecount) { game_state *t; /* * This is an Undo. So reverse the order of the states, and * run the roll timer backwards. */ t = oldstate; oldstate = state; state = t; animtime = ROLLTIME - animtime; } if (!oldstate) { oldstate = state; angle = 0.0; square = state->current; pkey = state->dpkey; gkey = state->dgkey; } else { angle = state->angle * animtime / ROLLTIME; square = state->previous; pkey = state->spkey; gkey = state->sgkey; } newstate = state; state = oldstate; for (i = 0; i < state->nsquares; i++) { int coords[8]; for (j = 0; j < state->squares[i].npoints; j++) { coords[2*j] = state->squares[i].points[2*j] * GRID_SCALE + ds->ox; coords[2*j+1] = state->squares[i].points[2*j+1] * GRID_SCALE + ds->oy; } draw_polygon(fe, coords, state->squares[i].npoints, TRUE, state->squares[i].blue ? COL_BLUE : COL_BACKGROUND); draw_polygon(fe, coords, state->squares[i].npoints, FALSE, COL_BORDER); } /* * Now compute and draw the polyhedron. */ poly = transform_poly(state->solid, state->squares[square].flip, pkey[0], pkey[1], angle); /* * Compute the translation required to align the two key points * on the polyhedron with the same key points on the current * face. */ for (i = 0; i < 3; i++) { float tc = 0.0; for (j = 0; j < 2; j++) { float grid_coord; if (i < 2) { grid_coord = state->squares[square].points[gkey[j]*2+i]; } else { grid_coord = 0.0; } tc += (grid_coord - poly->vertices[pkey[j]*3+i]); } t[i] = tc / 2; } for (i = 0; i < poly->nvertices; i++) for (j = 0; j < 3; j++) poly->vertices[i*3+j] += t[j]; /* * Now actually draw each face. */ for (i = 0; i < poly->nfaces; i++) { float points[8]; int coords[8]; for (j = 0; j < poly->order; j++) { int f = poly->faces[i*poly->order + j]; points[j*2] = (poly->vertices[f*3+0] - poly->vertices[f*3+2] * poly->shear); points[j*2+1] = (poly->vertices[f*3+1] - poly->vertices[f*3+2] * poly->shear); } for (j = 0; j < poly->order; j++) { coords[j*2] = points[j*2] * GRID_SCALE + ds->ox; coords[j*2+1] = points[j*2+1] * GRID_SCALE + ds->oy; } /* * Find out whether these points are in a clockwise or * anticlockwise arrangement. If the latter, discard the * face because it's facing away from the viewer. * * This would involve fiddly winding-number stuff for a * general polygon, but for the simple parallelograms we'll * be seeing here, all we have to do is check whether the * corners turn right or left. So we'll take the vector * from point 0 to point 1, turn it right 90 degrees, * and check the sign of the dot product with that and the * next vector (point 1 to point 2). */ { float v1x = points[2]-points[0]; float v1y = points[3]-points[1]; float v2x = points[4]-points[2]; float v2y = points[5]-points[3]; float dp = v1x * v2y - v1y * v2x; if (dp <= 0) continue; } draw_polygon(fe, coords, poly->order, TRUE, state->facecolours[i] ? COL_BLUE : COL_BACKGROUND); draw_polygon(fe, coords, poly->order, FALSE, COL_BORDER); } sfree(poly); draw_update(fe, 0, 0, (bb.r-bb.l+2) * GRID_SCALE, (bb.d-bb.u+2) * GRID_SCALE); } float game_anim_length(game_state *oldstate, game_state *newstate) { return ROLLTIME; }