ref: cf3e0cb65c03955ef18624a50b9e33c3f6e8c6e5
dir: /render.c/
#include <u.h> #include <libc.h> #include <thread.h> #include <draw.h> #include <memdraw.h> #include <geometry.h> #include "libobj/obj.h" #include "graphics.h" #include "internal.h" Rectangle UR = {0,0,1,1}; static ulong col2ul(Color c) { uchar cbuf[4]; cbuf[0] = c.a*0xFF; cbuf[1] = c.b*0xFF; cbuf[2] = c.g*0xFF; cbuf[3] = c.r*0xFF; return cbuf[3]<<24 | cbuf[2]<<16 | cbuf[1]<<8 | cbuf[0]; } static void pixel(Memimage *dst, Point p, Memimage *src) { if(dst == nil || src == nil) return; memimagedraw(dst, rectaddpt(UR, p), src, ZP, nil, ZP, SoverD); } static int isvisible(Point3 p) { if(p.x < -p.w || p.x > p.w || p.y < -p.w || p.y > p.w || p.z < -p.w || p.z > p.w) return 0; return 1; } static int isfacingback(Primitive p) { double sa; /* signed area */ sa = p.v[0].p.x * p.v[1].p.y - p.v[0].p.y * p.v[1].p.x + p.v[1].p.x * p.v[2].p.y - p.v[1].p.y * p.v[2].p.x + p.v[2].p.x * p.v[0].p.y - p.v[2].p.y * p.v[0].p.x; return sa <= 0; } static void mulsdm(double r[6], double m[6][4], Point3 p) { int i; for(i = 0; i < 6; i++) r[i] = m[i][0]*p.x + m[i][1]*p.y + m[i][2]*p.z + m[i][3]*p.w; } typedef struct { Vertex *v; ulong n; ulong cap; } Polygon; static int addvert(Polygon *p, Vertex v) { if(++p->n > p->cap) p->v = erealloc(p->v, (p->cap = p->n)*sizeof(*p->v)); p->v[p->n-1] = v; return p->n; } static void swappoly(Polygon *a, Polygon *b) { Polygon tmp; tmp = *a; *a = *b; *b = tmp; } static void cleanpoly(Polygon *p) { int i; for(i = 0; i < p->n; i++) delvattrs(&p->v[i]); p->n = 0; } /* * references: * - James F. Blinn, Martin E. Newell, “Clipping Using Homogeneous Coordinates”, * SIGGRAPH '78, pp. 245-251 * - https://cs418.cs.illinois.edu/website/text/clipping.html * - https://github.com/aap/librw/blob/14dab85dcae6f3762fb2b1eda4d58d8e67541330/tools/playground/tl_tests.cpp#L522 */ static int cliptriangle(Primitive *p) { /* signed distance from each clipping plane */ static double sdm[6][4] = { 1, 0, 0, 1, /* l */ -1, 0, 0, 1, /* r */ 0, 1, 0, 1, /* b */ 0, -1, 0, 1, /* t */ 0, 0, 1, 1, /* f */ 0, 0, -1, 1, /* n */ }; double sd0[6], sd1[6]; double d0, d1, perc; Polygon Vin, Vout; Vertex *v0, *v1, v; /* edge verts and new vertex (line-plane intersection) */ int i, j, nt; nt = 0; memset(&Vin, 0, sizeof Vin); memset(&Vout, 0, sizeof Vout); for(i = 0; i < 3; i++) addvert(&Vin, p[0].v[i]); for(j = 0; j < 6 && Vin.n > 0; j++){ for(i = 0; i < Vin.n; i++){ v0 = &Vin.v[i]; v1 = &Vin.v[(i+1) % Vin.n]; mulsdm(sd0, sdm, v0->p); mulsdm(sd1, sdm, v1->p); if(sd0[j] < 0 && sd1[j] < 0) continue; if(sd0[j] >= 0 && sd1[j] >= 0) goto allin; d0 = (j&1) == 0? sd0[j]: -sd0[j]; d1 = (j&1) == 0? sd1[j]: -sd1[j]; perc = d0/(d0 - d1); lerpvertex(&v, v0, v1, perc); addvert(&Vout, v); if(sd1[j] >= 0){ allin: addvert(&Vout, dupvertex(v1)); } } cleanpoly(&Vin); if(j < 6-1) swappoly(&Vin, &Vout); } /* triangulate */ if(Vout.n < 3) cleanpoly(&Vout); else for(i = 0; i < Vout.n-2; i++, nt++){ /* * when performing fan triangulation, indices 0 and 2 * are referenced on every triangle, so duplicate them * to avoid complications during rasterization. */ p[nt].v[0] = i < Vout.n-2-1? dupvertex(&Vout.v[0]): Vout.v[0]; p[nt].v[1] = Vout.v[i+1]; p[nt].v[2] = i < Vout.n-2-1? dupvertex(&Vout.v[i+2]): Vout.v[i+2]; } free(Vout.v); free(Vin.v); return nt; } /* * transforms p from e's reference frame into * the world. */ Point3 model2world(Entity *e, Point3 p) { return invrframexform3(p, *e); } /* * transforms p from the world reference frame * to c's one (aka Viewing Coordinate System). */ Point3 world2vcs(Camera *c, Point3 p) { return rframexform3(p, *c); } /* * projects p from the VCS to clip space, placing * p.[xyz] ∈ (-∞,-w)∪[-w,w]∪(w,∞) where [-w,w] * represents the visibility volume. * * the clipping planes are: * * | -w | w | * +----------------+ * | left | right | * | bottom | top | * | far | near | */ Point3 vcs2clip(Camera *c, Point3 p) { return xform3(p, c->proj); } Point3 world2clip(Camera *c, Point3 p) { return vcs2clip(c, world2vcs(c, p)); } /* * performs the perspective division, placing * p.[xyz] ∈ [-1,1] and p.w = 1/z * (aka Normalized Device Coordinates). * * p.w is kept as z⁻¹ so we can later do * perspective-correct attribute interpolation. */ static Point3 clip2ndc(Point3 p) { p.w = p.w == 0? 1: 1.0/p.w; p.x *= p.w; p.y *= p.w; p.z *= p.w; return p; } /* * scales p to fit the destination viewport, * placing p.x ∈ [0,width], p.y ∈ [0,height], * p.z ∈ [0,1] and leaving p.w intact. */ static Point3 ndc2viewport(Framebuf *fb, Point3 p) { Matrix3 view = { Dx(fb->r)/2.0, 0, 0, Dx(fb->r)/2.0, 0, -Dy(fb->r)/2.0, 0, Dy(fb->r)/2.0, 0, 0, 1.0/2.0, 1.0/2.0, 0, 0, 0, 1, }; double w; w = p.w; p.w = 1; p = xform3(p, view); p.w = w; return p; } void perspective(Matrix3 m, double fov, double a, double n, double f) { double cotan; cotan = 1/tan(fov/2); identity3(m); m[0][0] = cotan/a; m[1][1] = cotan; m[2][2] = (f+n)/(f-n); m[2][3] = -2*f*n/(f-n); m[3][2] = -1; } void orthographic(Matrix3 m, double l, double r, double b, double t, double n, double f) { identity3(m); m[0][0] = 2/(r - l); m[1][1] = 2/(t - b); m[2][2] = -2/(f - n); m[0][3] = -(r + l)/(r - l); m[1][3] = -(t + b)/(t - b); m[2][3] = -(f + n)/(f - n); } static void rasterize(Rastertask *task) { SUparams *params; Primitive prim; FSparams fsp; Triangle2 t₂; Rectangle bbox; Point p; Point3 bc; Color c; double z, depth; params = task->params; prim = task->p; memmove(prim.v, task->p.v, sizeof prim.v); t₂.p0 = Pt2(prim.v[0].p.x, prim.v[0].p.y, 1); t₂.p1 = Pt2(prim.v[1].p.x, prim.v[1].p.y, 1); t₂.p2 = Pt2(prim.v[2].p.x, prim.v[2].p.y, 1); /* find the triangle's bbox and clip it against our wr */ bbox.min.x = min(min(t₂.p0.x, t₂.p1.x), t₂.p2.x); bbox.min.y = min(min(t₂.p0.y, t₂.p1.y), t₂.p2.y); bbox.max.x = max(max(t₂.p0.x, t₂.p1.x), t₂.p2.x)+1; bbox.max.y = max(max(t₂.p0.y, t₂.p1.y), t₂.p2.y)+1; bbox.min.x = max(bbox.min.x, task->wr.min.x); bbox.min.y = max(bbox.min.y, task->wr.min.y); bbox.max.x = min(bbox.max.x, task->wr.max.x); bbox.max.y = min(bbox.max.y, task->wr.max.y); fsp.su = params; memset(&fsp.v, 0, sizeof fsp.v); for(p.y = bbox.min.y; p.y < bbox.max.y; p.y++) for(p.x = bbox.min.x; p.x < bbox.max.x; p.x++){ bc = barycoords(t₂, Pt2(p.x,p.y,1)); if(bc.x < 0 || bc.y < 0 || bc.z < 0) continue; z = fberp(prim.v[0].p.z, prim.v[1].p.z, prim.v[2].p.z, bc); depth = fclamp(z, 0, 1); if(depth <= params->fb->zb[p.x + p.y*Dx(params->fb->r)]) continue; params->fb->zb[p.x + p.y*Dx(params->fb->r)] = depth; /* interpolate z⁻¹ and get actual z */ z = fberp(prim.v[0].p.w, prim.v[1].p.w, prim.v[2].p.w, bc); z = 1.0/(z < 1e-5? 1e-5: z); /* perspective-correct attribute interpolation */ bc.x *= prim.v[0].p.w; bc.y *= prim.v[1].p.w; bc.z *= prim.v[2].p.w; bc = mulpt3(bc, z); berpvertex(&fsp.v, &prim.v[0], &prim.v[1], &prim.v[2], bc); fsp.p = p; c = params->fshader(&fsp); memfillcolor(params->frag, col2ul(c)); pixel(params->fb->cb, p, params->frag); delvattrs(&fsp.v); } } static void rasterizer(void *arg) { Rasterparam *rp; Rastertask *task; SUparams *params; Memimage *frag; uvlong t0; rp = arg; frag = rgb(DBlack); threadsetname("rasterizer %d", rp->id); while((task = recvp(rp->taskc)) != nil){ t0 = nanosec(); params = task->params; /* end of job */ if(params->entity == nil){ if(decref(params->job) < 1){ nbsend(params->job->donec, nil); free(params); } free(task); continue; } if(params->job->times.Rn.t0 == 0) params->job->times.Rn.t0 = t0; params->frag = frag; rasterize(task); delvattrs(&task->p.v[0]); delvattrs(&task->p.v[1]); delvattrs(&task->p.v[2]); params->job->times.Rn.t1 = nanosec(); free(params); free(task); } } static void tilerdurden(void *arg) { Tilerparam *tp; SUparams *params, *newparams; Rastertask *task; VSparams vsp; OBJVertex *verts, *tverts, *nverts; /* geometric, texture and normals vertices */ OBJIndexArray *idxtab; OBJElem **ep; Point3 n; /* surface normal */ Primitive *p; /* primitives to raster */ Rectangle *wr, bbox; Channel **taskchans; ulong Δy, nproc; int i, np; uvlong t0; tp = arg; p = emalloc(sizeof(*p)*16); taskchans = tp->taskchans; nproc = tp->nproc; wr = emalloc(nproc*sizeof(Rectangle)); threadsetname("tilerdurden %d", tp->id); while((params = recvp(tp->paramsc)) != nil){ t0 = nanosec(); if(params->job->times.Tn.t0 == 0) params->job->times.Tn.t0 = t0; /* end of job */ if(params->entity == nil){ if(decref(params->job) < 1){ params->job->ref = nproc; for(i = 0; i < nproc; i++){ task = emalloc(sizeof *task); memset(task, 0, sizeof *task); task->params = params; sendp(taskchans[i], task); } } continue; } vsp.su = params; wr[0] = params->fb->r; Δy = Dy(wr[0])/nproc; wr[0].max.y = wr[0].min.y + Δy; for(i = 1; i < nproc; i++) wr[i] = rectaddpt(wr[i-1], Pt(0,Δy)); if(wr[nproc-1].max.y < params->fb->r.max.y) wr[nproc-1].max.y = params->fb->r.max.y; verts = params->entity->mdl->obj->vertdata[OBJVGeometric].verts; tverts = params->entity->mdl->obj->vertdata[OBJVTexture].verts; nverts = params->entity->mdl->obj->vertdata[OBJVNormal].verts; for(ep = params->eb; ep != params->ee; ep++){ np = 1; /* start with one. after clipping it might change */ /* TODO handle all the primitive types */ idxtab = &(*ep)->indextab[OBJVGeometric]; p[0].v[0].p = Pt3(verts[idxtab->indices[0]].x, verts[idxtab->indices[0]].y, verts[idxtab->indices[0]].z, verts[idxtab->indices[0]].w); p[0].v[1].p = Pt3(verts[idxtab->indices[1]].x, verts[idxtab->indices[1]].y, verts[idxtab->indices[1]].z, verts[idxtab->indices[1]].w); p[0].v[2].p = Pt3(verts[idxtab->indices[2]].x, verts[idxtab->indices[2]].y, verts[idxtab->indices[2]].z, verts[idxtab->indices[2]].w); idxtab = &(*ep)->indextab[OBJVNormal]; if(idxtab->nindex == 3){ p[0].v[0].n = Vec3(nverts[idxtab->indices[0]].i, nverts[idxtab->indices[0]].j, nverts[idxtab->indices[0]].k); p[0].v[0].n = normvec3(p[0].v[0].n); p[0].v[1].n = Vec3(nverts[idxtab->indices[1]].i, nverts[idxtab->indices[1]].j, nverts[idxtab->indices[1]].k); p[0].v[1].n = normvec3(p[0].v[1].n); p[0].v[2].n = Vec3(nverts[idxtab->indices[2]].i, nverts[idxtab->indices[2]].j, nverts[idxtab->indices[2]].k); p[0].v[2].n = normvec3(p[0].v[2].n); }else{ /* TODO build a list of per-vertex normals earlier */ n = normvec3(crossvec3(subpt3(p[0].v[1].p, p[0].v[0].p), subpt3(p[0].v[2].p, p[0].v[0].p))); p[0].v[0].n = p[0].v[1].n = p[0].v[2].n = n; } idxtab = &(*ep)->indextab[OBJVTexture]; if(idxtab->nindex == 3){ p[0].v[0].uv = Pt2(tverts[idxtab->indices[0]].u, tverts[idxtab->indices[0]].v, 1); p[0].v[1].uv = Pt2(tverts[idxtab->indices[1]].u, tverts[idxtab->indices[1]].v, 1); p[0].v[2].uv = Pt2(tverts[idxtab->indices[2]].u, tverts[idxtab->indices[2]].v, 1); }else{ p[0].v[0].uv = p[0].v[1].uv = p[0].v[2].uv = Vec2(0,0); } for(i = 0; i < 3; i++){ p[0].v[i].c = Pt3(1,1,1,1); p[0].v[i].mtl = (*ep)->mtl; p[0].v[i].attrs = nil; p[0].v[i].nattrs = 0; } vsp.v = &p[0].v[0]; vsp.idx = 0; p[0].v[0].p = params->vshader(&vsp); vsp.v = &p[0].v[1]; vsp.idx = 1; p[0].v[1].p = params->vshader(&vsp); vsp.v = &p[0].v[2]; vsp.idx = 2; p[0].v[2].p = params->vshader(&vsp); if(!isvisible(p[0].v[0].p) || !isvisible(p[0].v[1].p) || !isvisible(p[0].v[2].p)) np = cliptriangle(p); while(np--){ p[np].v[0].p = clip2ndc(p[np].v[0].p); p[np].v[1].p = clip2ndc(p[np].v[1].p); p[np].v[2].p = clip2ndc(p[np].v[2].p); /* culling */ // if(isfacingback(p[np])) // goto skiptri; p[np].v[0].p = ndc2viewport(params->fb, p[np].v[0].p); p[np].v[1].p = ndc2viewport(params->fb, p[np].v[1].p); p[np].v[2].p = ndc2viewport(params->fb, p[np].v[2].p); bbox.min.x = min(min(p[np].v[0].p.x, p[np].v[1].p.x), p[np].v[2].p.x); bbox.min.y = min(min(p[np].v[0].p.y, p[np].v[1].p.y), p[np].v[2].p.y); bbox.max.x = max(max(p[np].v[0].p.x, p[np].v[1].p.x), p[np].v[2].p.x)+1; bbox.max.y = max(max(p[np].v[0].p.y, p[np].v[1].p.y), p[np].v[2].p.y)+1; for(i = 0; i < nproc; i++) if(rectXrect(bbox,wr[i])){ newparams = emalloc(sizeof *newparams); *newparams = *params; task = emalloc(sizeof *task); task->params = newparams; task->wr = wr[i]; task->p.v[0] = dupvertex(&p[np].v[0]); task->p.v[1] = dupvertex(&p[np].v[1]); task->p.v[2] = dupvertex(&p[np].v[2]); sendp(taskchans[i], task); } //skiptri: delvattrs(&p[np].v[0]); delvattrs(&p[np].v[1]); delvattrs(&p[np].v[2]); } } params->job->times.Tn.t1 = nanosec(); free(params); } } static void entityproc(void *arg) { Channel *paramsin, **paramsout, **taskchans; Tilerparam *tp; Rasterparam *rp; SUparams *params, *newparams; OBJElem **eb, **ee; char *nprocs; ulong stride, nelems, nproc, nworkers; int i; uvlong t0; threadsetname("entityproc"); paramsin = arg; nprocs = getenv("NPROC"); if(nprocs == nil || (nproc = strtoul(nprocs, nil, 10)) < 2) nproc = 1; else nproc /= 2; free(nprocs); paramsout = emalloc(nproc*sizeof(*paramsout)); taskchans = emalloc(nproc*sizeof(*taskchans)); for(i = 0; i < nproc; i++){ paramsout[i] = chancreate(sizeof(SUparams*), 8); tp = emalloc(sizeof *tp); tp->id = i; tp->paramsc = paramsout[i]; tp->taskchans = taskchans; tp->nproc = nproc; proccreate(tilerdurden, tp, mainstacksize); } for(i = 0; i < nproc; i++){ rp = emalloc(sizeof *rp); rp->id = i; rp->taskc = taskchans[i] = chancreate(sizeof(Rastertask*), 32); proccreate(rasterizer, rp, mainstacksize); } while((params = recvp(paramsin)) != nil){ t0 = nanosec(); if(params->job->times.E.t0 == 0) params->job->times.E.t0 = t0; /* end of job */ if(params->entity == nil){ params->job->ref = nproc; for(i = 0; i < nproc; i++) sendp(paramsout[i], params); continue; } eb = params->entity->mdl->elems; nelems = params->entity->mdl->nelems; ee = eb + nelems; if(nelems <= nproc){ nworkers = nelems; stride = 1; }else{ nworkers = nproc; stride = nelems/nproc; } for(i = 0; i < nworkers; i++){ newparams = emalloc(sizeof *newparams); *newparams = *params; newparams->eb = eb + i*stride; newparams->ee = i == nworkers-1? ee: newparams->eb + stride; sendp(paramsout[i], newparams); } params->job->times.E.t1 = nanosec(); free(params); } } static void renderer(void *arg) { Channel *jobc; Renderjob *job; Scene *sc; Entity *ent; SUparams *params; Channel *paramsc; uvlong time; threadsetname("renderer"); jobc = arg; paramsc = chancreate(sizeof(SUparams*), 8); proccreate(entityproc, paramsc, mainstacksize); while((job = recvp(jobc)) != nil){ time = nanosec(); job->times.R.t0 = time; sc = job->scene; if(sc->nents < 1){ nbsend(job->donec, nil); continue; } for(ent = sc->ents.next; ent != &sc->ents; ent = ent->next){ params = emalloc(sizeof *params); memset(params, 0, sizeof *params); params->fb = job->fb; params->job = job; params->entity = ent; params->uni_time = time; params->vshader = job->shaders->vshader; params->fshader = job->shaders->fshader; sendp(paramsc, params); } /* mark end of job */ params = emalloc(sizeof *params); memset(params, 0, sizeof *params); params->job = job; sendp(paramsc, params); job->times.R.t1 = nanosec(); } } Renderer * initgraphics(void) { Renderer *r; r = emalloc(sizeof *r); r->c = chancreate(sizeof(Renderjob*), 8); proccreate(renderer, r->c, mainstacksize); return r; }