ref: f46086ab6dbd5a6240257eea6b0b9629e28cb82e
dir: /mines.c/
/* * mines.c: Minesweeper clone with sophisticated grid generation. * * Still TODO: * * - think about configurably supporting question marks. Once, * that is, we've thought about configurability in general! */ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <assert.h> #include <ctype.h> #include <math.h> #include "tree234.h" #include "puzzles.h" enum { COL_BACKGROUND, COL_BACKGROUND2, COL_1, COL_2, COL_3, COL_4, COL_5, COL_6, COL_7, COL_8, COL_MINE, COL_BANG, COL_CROSS, COL_FLAG, COL_FLAGBASE, COL_QUERY, COL_HIGHLIGHT, COL_LOWLIGHT, NCOLOURS }; #define TILE_SIZE 20 #define BORDER (TILE_SIZE * 3 / 2) #define HIGHLIGHT_WIDTH 2 #define OUTER_HIGHLIGHT_WIDTH 3 #define COORD(x) ( (x) * TILE_SIZE + BORDER ) #define FROMCOORD(x) ( ((x) - BORDER + TILE_SIZE) / TILE_SIZE - 1 ) #define FLASH_FRAME 0.13F struct game_params { int w, h, n; int unique; }; struct mine_layout { /* * This structure is shared between all the game_states for a * given instance of the puzzle, so we reference-count it. */ int refcount; char *mines; /* * If we haven't yet actually generated the mine layout, here's * all the data we will need to do so. */ int n, unique; random_state *rs; midend_data *me; /* to give back the new game desc */ }; struct game_state { int w, h, n, dead, won; int used_solve, just_used_solve; struct mine_layout *layout; /* real mine positions */ signed char *grid; /* player knowledge */ /* * Each item in the `grid' array is one of the following values: * * - 0 to 8 mean the square is open and has a surrounding mine * count. * * - -1 means the square is marked as a mine. * * - -2 means the square is unknown. * * - -3 means the square is marked with a question mark * (FIXME: do we even want to bother with this?). * * - 64 means the square has had a mine revealed when the game * was lost. * * - 65 means the square had a mine revealed and this was the * one the player hits. * * - 66 means the square has a crossed-out mine because the * player had incorrectly marked it. */ }; static game_params *default_params(void) { game_params *ret = snew(game_params); ret->w = ret->h = 9; ret->n = 10; ret->unique = TRUE; return ret; } static const struct game_params mines_presets[] = { {9, 9, 10, TRUE}, {16, 16, 40, TRUE}, {30, 16, 99, TRUE}, }; static int game_fetch_preset(int i, char **name, game_params **params) { game_params *ret; char str[80]; if (i < 0 || i >= lenof(mines_presets)) return FALSE; ret = snew(game_params); *ret = mines_presets[i]; sprintf(str, "%dx%d, %d mines", ret->w, ret->h, ret->n); *name = dupstr(str); *params = ret; return TRUE; } static void free_params(game_params *params) { sfree(params); } static game_params *dup_params(game_params *params) { game_params *ret = snew(game_params); *ret = *params; /* structure copy */ return ret; } static void decode_params(game_params *params, char const *string) { char const *p = string; params->w = atoi(p); while (*p && isdigit((unsigned char)*p)) p++; if (*p == 'x') { p++; params->h = atoi(p); while (*p && isdigit((unsigned char)*p)) p++; } else { params->h = params->w; } if (*p == 'n') { p++; params->n = atoi(p); while (*p && (*p == '.' || isdigit((unsigned char)*p))) p++; } else { params->n = params->w * params->h / 10; } while (*p) { if (*p == 'a') { p++; params->unique = FALSE; } else p++; /* skip any other gunk */ } } static char *encode_params(game_params *params, int full) { char ret[400]; int len; len = sprintf(ret, "%dx%d", params->w, params->h); /* * Mine count is a generation-time parameter, since it can be * deduced from the mine bitmap! */ if (full) len += sprintf(ret+len, "n%d", params->n); if (full && !params->unique) ret[len++] = 'a'; assert(len < lenof(ret)); ret[len] = '\0'; return dupstr(ret); } static config_item *game_configure(game_params *params) { config_item *ret; char buf[80]; ret = snewn(5, config_item); ret[0].name = "Width"; ret[0].type = C_STRING; sprintf(buf, "%d", params->w); ret[0].sval = dupstr(buf); ret[0].ival = 0; ret[1].name = "Height"; ret[1].type = C_STRING; sprintf(buf, "%d", params->h); ret[1].sval = dupstr(buf); ret[1].ival = 0; ret[2].name = "Mines"; ret[2].type = C_STRING; sprintf(buf, "%d", params->n); ret[2].sval = dupstr(buf); ret[2].ival = 0; ret[3].name = "Ensure solubility"; ret[3].type = C_BOOLEAN; ret[3].sval = NULL; ret[3].ival = params->unique; ret[4].name = NULL; ret[4].type = C_END; ret[4].sval = NULL; ret[4].ival = 0; return ret; } static game_params *custom_params(config_item *cfg) { game_params *ret = snew(game_params); ret->w = atoi(cfg[0].sval); ret->h = atoi(cfg[1].sval); ret->n = atoi(cfg[2].sval); if (strchr(cfg[2].sval, '%')) ret->n = ret->n * (ret->w * ret->h) / 100; ret->unique = cfg[3].ival; return ret; } static char *validate_params(game_params *params) { /* * Lower limit on grid size: each dimension must be at least 3. * 1 is theoretically workable if rather boring, but 2 is a * real problem: there is often _no_ way to generate a uniquely * solvable 2xn Mines grid. You either run into two mines * blocking the way and no idea what's behind them, or one mine * and no way to know which of the two rows it's in. If the * mine count is even you can create a soluble grid by packing * all the mines at one end (so what when you hit a two-mine * wall there are only as many covered squares left as there * are mines); but if it's odd, you are doomed, because you * _have_ to have a gap somewhere which you can't determine the * position of. */ if (params->w <= 2 || params->h <= 2) return "Width and height must both be greater than two"; if (params->n > params->w * params->h - 9) return "Too many mines for grid size"; /* * FIXME: Need more constraints here. Not sure what the * sensible limits for Minesweeper actually are. The limits * probably ought to change, however, depending on uniqueness. */ return NULL; } /* ---------------------------------------------------------------------- * Minesweeper solver, used to ensure the generated grids are * solvable without having to take risks. */ /* * Count the bits in a word. Only needs to cope with 16 bits. */ static int bitcount16(int word) { word = ((word & 0xAAAA) >> 1) + (word & 0x5555); word = ((word & 0xCCCC) >> 2) + (word & 0x3333); word = ((word & 0xF0F0) >> 4) + (word & 0x0F0F); word = ((word & 0xFF00) >> 8) + (word & 0x00FF); return word; } /* * We use a tree234 to store a large number of small localised * sets, each with a mine count. We also keep some of those sets * linked together into a to-do list. */ struct set { short x, y, mask, mines; int todo; struct set *prev, *next; }; static int setcmp(void *av, void *bv) { struct set *a = (struct set *)av; struct set *b = (struct set *)bv; if (a->y < b->y) return -1; else if (a->y > b->y) return +1; else if (a->x < b->x) return -1; else if (a->x > b->x) return +1; else if (a->mask < b->mask) return -1; else if (a->mask > b->mask) return +1; else return 0; } struct setstore { tree234 *sets; struct set *todo_head, *todo_tail; }; static struct setstore *ss_new(void) { struct setstore *ss = snew(struct setstore); ss->sets = newtree234(setcmp); ss->todo_head = ss->todo_tail = NULL; return ss; } /* * Take two input sets, in the form (x,y,mask). Munge the first by * taking either its intersection with the second or its difference * with the second. Return the new mask part of the first set. */ static int setmunge(int x1, int y1, int mask1, int x2, int y2, int mask2, int diff) { /* * Adjust the second set so that it has the same x,y * coordinates as the first. */ if (abs(x2-x1) >= 3 || abs(y2-y1) >= 3) { mask2 = 0; } else { while (x2 > x1) { mask2 &= ~(4|32|256); mask2 <<= 1; x2--; } while (x2 < x1) { mask2 &= ~(1|8|64); mask2 >>= 1; x2++; } while (y2 > y1) { mask2 &= ~(64|128|256); mask2 <<= 3; y2--; } while (y2 < y1) { mask2 &= ~(1|2|4); mask2 >>= 3; y2++; } } /* * Invert the second set if `diff' is set (we're after A &~ B * rather than A & B). */ if (diff) mask2 ^= 511; /* * Now all that's left is a logical AND. */ return mask1 & mask2; } static void ss_add_todo(struct setstore *ss, struct set *s) { if (s->todo) return; /* already on it */ #ifdef SOLVER_DIAGNOSTICS printf("adding set on todo list: %d,%d %03x %d\n", s->x, s->y, s->mask, s->mines); #endif s->prev = ss->todo_tail; if (s->prev) s->prev->next = s; else ss->todo_head = s; ss->todo_tail = s; s->next = NULL; s->todo = TRUE; } static void ss_add(struct setstore *ss, int x, int y, int mask, int mines) { struct set *s; assert(mask != 0); /* * Normalise so that x and y are genuinely the bounding * rectangle. */ while (!(mask & (1|8|64))) mask >>= 1, x++; while (!(mask & (1|2|4))) mask >>= 3, y++; /* * Create a set structure and add it to the tree. */ s = snew(struct set); s->x = x; s->y = y; s->mask = mask; s->mines = mines; s->todo = FALSE; if (add234(ss->sets, s) != s) { /* * This set already existed! Free it and return. */ sfree(s); return; } /* * We've added a new set to the tree, so put it on the todo * list. */ ss_add_todo(ss, s); } static void ss_remove(struct setstore *ss, struct set *s) { struct set *next = s->next, *prev = s->prev; #ifdef SOLVER_DIAGNOSTICS printf("removing set %d,%d %03x\n", s->x, s->y, s->mask); #endif /* * Remove s from the todo list. */ if (prev) prev->next = next; else if (s == ss->todo_head) ss->todo_head = next; if (next) next->prev = prev; else if (s == ss->todo_tail) ss->todo_tail = prev; s->todo = FALSE; /* * Remove s from the tree. */ del234(ss->sets, s); /* * Destroy the actual set structure. */ sfree(s); } /* * Return a dynamically allocated list of all the sets which * overlap a provided input set. */ static struct set **ss_overlap(struct setstore *ss, int x, int y, int mask) { struct set **ret = NULL; int nret = 0, retsize = 0; int xx, yy; for (xx = x-3; xx < x+3; xx++) for (yy = y-3; yy < y+3; yy++) { struct set stmp, *s; int pos; /* * Find the first set with these top left coordinates. */ stmp.x = xx; stmp.y = yy; stmp.mask = 0; if (findrelpos234(ss->sets, &stmp, NULL, REL234_GE, &pos)) { while ((s = index234(ss->sets, pos)) != NULL && s->x == xx && s->y == yy) { /* * This set potentially overlaps the input one. * Compute the intersection to see if they * really overlap, and add it to the list if * so. */ if (setmunge(x, y, mask, s->x, s->y, s->mask, FALSE)) { /* * There's an overlap. */ if (nret >= retsize) { retsize = nret + 32; ret = sresize(ret, retsize, struct set *); } ret[nret++] = s; } pos++; } } } ret = sresize(ret, nret+1, struct set *); ret[nret] = NULL; return ret; } /* * Get an element from the head of the set todo list. */ static struct set *ss_todo(struct setstore *ss) { if (ss->todo_head) { struct set *ret = ss->todo_head; ss->todo_head = ret->next; if (ss->todo_head) ss->todo_head->prev = NULL; else ss->todo_tail = NULL; ret->next = ret->prev = NULL; ret->todo = FALSE; return ret; } else { return NULL; } } struct squaretodo { int *next; int head, tail; }; static void std_add(struct squaretodo *std, int i) { if (std->tail >= 0) std->next[std->tail] = i; else std->head = i; std->tail = i; std->next[i] = -1; } typedef int (*open_cb)(void *, int, int); static void known_squares(int w, int h, struct squaretodo *std, signed char *grid, open_cb open, void *openctx, int x, int y, int mask, int mine) { int xx, yy, bit; bit = 1; for (yy = 0; yy < 3; yy++) for (xx = 0; xx < 3; xx++) { if (mask & bit) { int i = (y + yy) * w + (x + xx); /* * It's possible that this square is _already_ * known, in which case we don't try to add it to * the list twice. */ if (grid[i] == -2) { if (mine) { grid[i] = -1; /* and don't open it! */ } else { grid[i] = open(openctx, x + xx, y + yy); assert(grid[i] != -1); /* *bang* */ } std_add(std, i); } } bit <<= 1; } } /* * This is data returned from the `perturb' function. It details * which squares have become mines and which have become clear. The * solver is (of course) expected to honourably not use that * knowledge directly, but to efficently adjust its internal data * structures and proceed based on only the information it * legitimately has. */ struct perturbation { int x, y; int delta; /* +1 == become a mine; -1 == cleared */ }; struct perturbations { int n; struct perturbation *changes; }; /* * Main solver entry point. You give it a grid of existing * knowledge (-1 for a square known to be a mine, 0-8 for empty * squares with a given number of neighbours, -2 for completely * unknown), plus a function which you can call to open new squares * once you're confident of them. It fills in as much more of the * grid as it can. * * Return value is: * * - -1 means deduction stalled and nothing could be done * - 0 means deduction succeeded fully * - >0 means deduction succeeded but some number of perturbation * steps were required; the exact return value is the number of * perturb calls. */ typedef struct perturbations *(*perturb_cb) (void *, signed char *, int, int, int); static int minesolve(int w, int h, int n, signed char *grid, open_cb open, perturb_cb perturb, void *ctx, random_state *rs) { struct setstore *ss = ss_new(); struct set **list; struct squaretodo astd, *std = &astd; int x, y, i, j; int nperturbs = 0; /* * Set up a linked list of squares with known contents, so that * we can process them one by one. */ std->next = snewn(w*h, int); std->head = std->tail = -1; /* * Initialise that list with all known squares in the input * grid. */ for (y = 0; y < h; y++) { for (x = 0; x < w; x++) { i = y*w+x; if (grid[i] != -2) std_add(std, i); } } /* * Main deductive loop. */ while (1) { int done_something = FALSE; struct set *s; /* * If there are any known squares on the todo list, process * them and construct a set for each. */ while (std->head != -1) { i = std->head; #ifdef SOLVER_DIAGNOSTICS printf("known square at %d,%d [%d]\n", i%w, i/w, grid[i]); #endif std->head = std->next[i]; if (std->head == -1) std->tail = -1; x = i % w; y = i / w; if (grid[i] >= 0) { int dx, dy, mines, bit, val; #ifdef SOLVER_DIAGNOSTICS printf("creating set around this square\n"); #endif /* * Empty square. Construct the set of non-known squares * around this one, and determine its mine count. */ mines = grid[i]; bit = 1; val = 0; for (dy = -1; dy <= +1; dy++) { for (dx = -1; dx <= +1; dx++) { #ifdef SOLVER_DIAGNOSTICS printf("grid %d,%d = %d\n", x+dx, y+dy, grid[i+dy*w+dx]); #endif if (x+dx < 0 || x+dx >= w || y+dy < 0 || y+dy >= h) /* ignore this one */; else if (grid[i+dy*w+dx] == -1) mines--; else if (grid[i+dy*w+dx] == -2) val |= bit; bit <<= 1; } } if (val) ss_add(ss, x-1, y-1, val, mines); } /* * Now, whether the square is empty or full, we must * find any set which contains it and replace it with * one which does not. */ { #ifdef SOLVER_DIAGNOSTICS printf("finding sets containing known square %d,%d\n", x, y); #endif list = ss_overlap(ss, x, y, 1); for (j = 0; list[j]; j++) { int newmask, newmines; s = list[j]; /* * Compute the mask for this set minus the * newly known square. */ newmask = setmunge(s->x, s->y, s->mask, x, y, 1, TRUE); /* * Compute the new mine count. */ newmines = s->mines - (grid[i] == -1); /* * Insert the new set into the collection, * unless it's been whittled right down to * nothing. */ if (newmask) ss_add(ss, s->x, s->y, newmask, newmines); /* * Destroy the old one; it is actually obsolete. */ ss_remove(ss, s); } sfree(list); } /* * Marking a fresh square as known certainly counts as * doing something. */ done_something = TRUE; } /* * Now pick a set off the to-do list and attempt deductions * based on it. */ if ((s = ss_todo(ss)) != NULL) { #ifdef SOLVER_DIAGNOSTICS printf("set to do: %d,%d %03x %d\n", s->x, s->y, s->mask, s->mines); #endif /* * Firstly, see if this set has a mine count of zero or * of its own cardinality. */ if (s->mines == 0 || s->mines == bitcount16(s->mask)) { /* * If so, we can immediately mark all the squares * in the set as known. */ #ifdef SOLVER_DIAGNOSTICS printf("easy\n"); #endif known_squares(w, h, std, grid, open, ctx, s->x, s->y, s->mask, (s->mines != 0)); /* * Having done that, we need do nothing further * with this set; marking all the squares in it as * known will eventually eliminate it, and will * also permit further deductions about anything * that overlaps it. */ continue; } /* * Failing that, we now search through all the sets * which overlap this one. */ list = ss_overlap(ss, s->x, s->y, s->mask); for (j = 0; list[j]; j++) { struct set *s2 = list[j]; int swing, s2wing, swc, s2wc; /* * Find the non-overlapping parts s2-s and s-s2, * and their cardinalities. * * I'm going to refer to these parts as `wings' * surrounding the central part common to both * sets. The `s wing' is s-s2; the `s2 wing' is * s2-s. */ swing = setmunge(s->x, s->y, s->mask, s2->x, s2->y, s2->mask, TRUE); s2wing = setmunge(s2->x, s2->y, s2->mask, s->x, s->y, s->mask, TRUE); swc = bitcount16(swing); s2wc = bitcount16(s2wing); /* * If one set has more mines than the other, and * the number of extra mines is equal to the * cardinality of that set's wing, then we can mark * every square in the wing as a known mine, and * every square in the other wing as known clear. */ if (swc == s->mines - s2->mines || s2wc == s2->mines - s->mines) { known_squares(w, h, std, grid, open, ctx, s->x, s->y, swing, (swc == s->mines - s2->mines)); known_squares(w, h, std, grid, open, ctx, s2->x, s2->y, s2wing, (s2wc == s2->mines - s->mines)); continue; } /* * Failing that, see if one set is a subset of the * other. If so, we can divide up the mine count of * the larger set between the smaller set and its * complement, even if neither smaller set ends up * being immediately clearable. */ if (swc == 0 && s2wc != 0) { /* s is a subset of s2. */ assert(s2->mines > s->mines); ss_add(ss, s2->x, s2->y, s2wing, s2->mines - s->mines); } else if (s2wc == 0 && swc != 0) { /* s2 is a subset of s. */ assert(s->mines > s2->mines); ss_add(ss, s->x, s->y, swing, s->mines - s2->mines); } } sfree(list); /* * In this situation we have definitely done * _something_, even if it's only reducing the size of * our to-do list. */ done_something = TRUE; } else if (n >= 0) { /* * We have nothing left on our todo list, which means * all localised deductions have failed. Our next step * is to resort to global deduction based on the total * mine count. This is computationally expensive * compared to any of the above deductions, which is * why we only ever do it when all else fails, so that * hopefully it won't have to happen too often. * * If you pass n<0 into this solver, that informs it * that you do not know the total mine count, so it * won't even attempt these deductions. */ int minesleft, squaresleft; int nsets, setused[10], cursor; /* * Start by scanning the current grid state to work out * how many unknown squares we still have, and how many * mines are to be placed in them. */ squaresleft = 0; minesleft = n; for (i = 0; i < w*h; i++) { if (grid[i] == -1) minesleft--; else if (grid[i] == -2) squaresleft++; } #ifdef SOLVER_DIAGNOSTICS printf("global deduction time: squaresleft=%d minesleft=%d\n", squaresleft, minesleft); for (y = 0; y < h; y++) { for (x = 0; x < w; x++) { int v = grid[y*w+x]; if (v == -1) putchar('*'); else if (v == -2) putchar('?'); else if (v == 0) putchar('-'); else putchar('0' + v); } putchar('\n'); } #endif /* * If there _are_ no unknown squares, we have actually * finished. */ if (squaresleft == 0) { assert(minesleft == 0); break; } /* * First really simple case: if there are no more mines * left, or if there are exactly as many mines left as * squares to play them in, then it's all easy. */ if (minesleft == 0 || minesleft == squaresleft) { for (i = 0; i < w*h; i++) if (grid[i] == -2) known_squares(w, h, std, grid, open, ctx, i % w, i / w, 1, minesleft != 0); continue; /* now go back to main deductive loop */ } /* * Failing that, we have to do some _real_ work. * Ideally what we do here is to try every single * combination of the currently available sets, in an * attempt to find a disjoint union (i.e. a set of * squares with a known mine count between them) such * that the remaining unknown squares _not_ contained * in that union either contain no mines or are all * mines. * * Actually enumerating all 2^n possibilities will get * a bit slow for large n, so I artificially cap this * recursion at n=10 to avoid too much pain. */ nsets = count234(ss->sets); if (nsets <= lenof(setused)) { /* * Doing this with actual recursive function calls * would get fiddly because a load of local * variables from this function would have to be * passed down through the recursion. So instead * I'm going to use a virtual recursion within this * function. The way this works is: * * - we have an array `setused', such that * setused[n] is 0 or 1 depending on whether set * n is currently in the union we are * considering. * * - we have a value `cursor' which indicates how * much of `setused' we have so far filled in. * It's conceptually the recursion depth. * * We begin by setting `cursor' to zero. Then: * * - if cursor can advance, we advance it by one. * We set the value in `setused' that it went * past to 1 if that set is disjoint from * anything else currently in `setused', or to 0 * otherwise. * * - If cursor cannot advance because it has * reached the end of the setused list, then we * have a maximal disjoint union. Check to see * whether its mine count has any useful * properties. If so, mark all the squares not * in the union as known and terminate. * * - If cursor has reached the end of setused and * the algorithm _hasn't_ terminated, back * cursor up to the nearest 1, turn it into a 0 * and advance cursor just past it. * * - If we attempt to back up to the nearest 1 and * there isn't one at all, then we have gone * through all disjoint unions of sets in the * list and none of them has been helpful, so we * give up. */ struct set *sets[lenof(setused)]; for (i = 0; i < nsets; i++) sets[i] = index234(ss->sets, i); cursor = 0; while (1) { if (cursor < nsets) { int ok = TRUE; /* See if any existing set overlaps this one. */ for (i = 0; i < cursor; i++) if (setused[i] && setmunge(sets[cursor]->x, sets[cursor]->y, sets[cursor]->mask, sets[i]->x, sets[i]->y, sets[i]->mask, FALSE)) { ok = FALSE; break; } if (ok) { /* * We're adding this set to our union, * so adjust minesleft and squaresleft * appropriately. */ minesleft -= sets[cursor]->mines; squaresleft -= bitcount16(sets[cursor]->mask); } setused[cursor++] = ok; } else { #ifdef SOLVER_DIAGNOSTICS printf("trying a set combination with %d %d\n", squaresleft, minesleft); #endif /* SOLVER_DIAGNOSTICS */ /* * We've reached the end. See if we've got * anything interesting. */ if (squaresleft > 0 && (minesleft == 0 || minesleft == squaresleft)) { /* * We have! There is at least one * square not contained within the set * union we've just found, and we can * deduce that either all such squares * are mines or all are not (depending * on whether minesleft==0). So now all * we have to do is actually go through * the grid, find those squares, and * mark them. */ for (i = 0; i < w*h; i++) if (grid[i] == -2) { int outside = TRUE; y = i / w; x = i % w; for (j = 0; j < nsets; j++) if (setused[j] && setmunge(sets[j]->x, sets[j]->y, sets[j]->mask, x, y, 1, FALSE)) { outside = FALSE; break; } if (outside) known_squares(w, h, std, grid, open, ctx, x, y, 1, minesleft != 0); } done_something = TRUE; break; /* return to main deductive loop */ } /* * If we reach here, then this union hasn't * done us any good, so move on to the * next. Backtrack cursor to the nearest 1, * change it to a 0 and continue. */ while (--cursor >= 0 && !setused[cursor]); if (cursor >= 0) { assert(setused[cursor]); /* * We're removing this set from our * union, so re-increment minesleft and * squaresleft. */ minesleft += sets[cursor]->mines; squaresleft += bitcount16(sets[cursor]->mask); setused[cursor++] = 0; } else { /* * We've backtracked all the way to the * start without finding a single 1, * which means that our virtual * recursion is complete and nothing * helped. */ break; } } } } } if (done_something) continue; #ifdef SOLVER_DIAGNOSTICS /* * Dump the current known state of the grid. */ printf("solver ran out of steam, ret=%d, grid:\n", nperturbs); for (y = 0; y < h; y++) { for (x = 0; x < w; x++) { int v = grid[y*w+x]; if (v == -1) putchar('*'); else if (v == -2) putchar('?'); else if (v == 0) putchar('-'); else putchar('0' + v); } putchar('\n'); } { struct set *s; for (i = 0; (s = index234(ss->sets, i)) != NULL; i++) printf("remaining set: %d,%d %03x %d\n", s->x, s->y, s->mask, s->mines); } #endif /* * Now we really are at our wits' end as far as solving * this grid goes. Our only remaining option is to call * a perturb function and ask it to modify the grid to * make it easier. */ if (perturb) { struct perturbations *ret; struct set *s; nperturbs++; /* * Choose a set at random from the current selection, * and ask the perturb function to either fill or empty * it. * * If we have no sets at all, we must give up. */ if (count234(ss->sets) == 0) { #ifdef SOLVER_DIAGNOSTICS printf("perturbing on entire unknown set\n"); #endif ret = perturb(ctx, grid, 0, 0, 0); } else { s = index234(ss->sets, random_upto(rs, count234(ss->sets))); #ifdef SOLVER_DIAGNOSTICS printf("perturbing on set %d,%d %03x\n", s->x, s->y, s->mask); #endif ret = perturb(ctx, grid, s->x, s->y, s->mask); } if (ret) { assert(ret->n > 0); /* otherwise should have been NULL */ /* * A number of squares have been fiddled with, and * the returned structure tells us which. Adjust * the mine count in any set which overlaps one of * those squares, and put them back on the to-do * list. Also, if the square itself is marked as a * known non-mine, put it back on the squares-to-do * list. */ for (i = 0; i < ret->n; i++) { #ifdef SOLVER_DIAGNOSTICS printf("perturbation %s mine at %d,%d\n", ret->changes[i].delta > 0 ? "added" : "removed", ret->changes[i].x, ret->changes[i].y); #endif if (ret->changes[i].delta < 0 && grid[ret->changes[i].y*w+ret->changes[i].x] != -2) { std_add(std, ret->changes[i].y*w+ret->changes[i].x); } list = ss_overlap(ss, ret->changes[i].x, ret->changes[i].y, 1); for (j = 0; list[j]; j++) { list[j]->mines += ret->changes[i].delta; ss_add_todo(ss, list[j]); } sfree(list); } /* * Now free the returned data. */ sfree(ret->changes); sfree(ret); #ifdef SOLVER_DIAGNOSTICS /* * Dump the current known state of the grid. */ printf("state after perturbation:\n"); for (y = 0; y < h; y++) { for (x = 0; x < w; x++) { int v = grid[y*w+x]; if (v == -1) putchar('*'); else if (v == -2) putchar('?'); else if (v == 0) putchar('-'); else putchar('0' + v); } putchar('\n'); } { struct set *s; for (i = 0; (s = index234(ss->sets, i)) != NULL; i++) printf("remaining set: %d,%d %03x %d\n", s->x, s->y, s->mask, s->mines); } #endif /* * And now we can go back round the deductive loop. */ continue; } } /* * If we get here, even that didn't work (either we didn't * have a perturb function or it returned failure), so we * give up entirely. */ break; } /* * See if we've got any unknown squares left. */ for (y = 0; y < h; y++) for (x = 0; x < w; x++) if (grid[y*w+x] == -2) { nperturbs = -1; /* failed to complete */ break; } /* * Free the set list and square-todo list. */ { struct set *s; while ((s = delpos234(ss->sets, 0)) != NULL) sfree(s); freetree234(ss->sets); sfree(ss); sfree(std->next); } return nperturbs; } /* ---------------------------------------------------------------------- * Grid generator which uses the above solver. */ struct minectx { signed char *grid; int w, h; int sx, sy; int allow_big_perturbs; random_state *rs; }; static int mineopen(void *vctx, int x, int y) { struct minectx *ctx = (struct minectx *)vctx; int i, j, n; assert(x >= 0 && x < ctx->w && y >= 0 && y < ctx->h); if (ctx->grid[y * ctx->w + x]) return -1; /* *bang* */ n = 0; for (i = -1; i <= +1; i++) { if (x + i < 0 || x + i >= ctx->w) continue; for (j = -1; j <= +1; j++) { if (y + j < 0 || y + j >= ctx->h) continue; if (i == 0 && j == 0) continue; if (ctx->grid[(y+j) * ctx->w + (x+i)]) n++; } } return n; } /* Structure used internally to mineperturb(). */ struct square { int x, y, type, random; }; static int squarecmp(const void *av, const void *bv) { const struct square *a = (const struct square *)av; const struct square *b = (const struct square *)bv; if (a->type < b->type) return -1; else if (a->type > b->type) return +1; else if (a->random < b->random) return -1; else if (a->random > b->random) return +1; else if (a->y < b->y) return -1; else if (a->y > b->y) return +1; else if (a->x < b->x) return -1; else if (a->x > b->x) return +1; return 0; } /* * Normally this function is passed an (x,y,mask) set description. * On occasions, though, there is no _localised_ set being used, * and the set being perturbed is supposed to be the entirety of * the unreachable area. This is signified by the special case * mask==0: in this case, anything labelled -2 in the grid is part * of the set. * * Allowing perturbation in this special case appears to make it * guaranteeably possible to generate a workable grid for any mine * density, but they tend to be a bit boring, with mines packed * densely into far corners of the grid and the remainder being * less dense than one might like. Therefore, to improve overall * grid quality I disable this feature for the first few attempts, * and fall back to it after no useful grid has been generated. */ static struct perturbations *mineperturb(void *vctx, signed char *grid, int setx, int sety, int mask) { struct minectx *ctx = (struct minectx *)vctx; struct square *sqlist; int x, y, dx, dy, i, n, nfull, nempty; struct square **tofill, **toempty, **todo; int ntofill, ntoempty, ntodo, dtodo, dset; struct perturbations *ret; int *setlist; if (!mask && !ctx->allow_big_perturbs) return NULL; /* * Make a list of all the squares in the grid which we can * possibly use. This list should be in preference order, which * means * * - first, unknown squares on the boundary of known space * - next, unknown squares beyond that boundary * - as a very last resort, known squares, but not within one * square of the starting position. * * Each of these sections needs to be shuffled independently. * We do this by preparing list of all squares and then sorting * it with a random secondary key. */ sqlist = snewn(ctx->w * ctx->h, struct square); n = 0; for (y = 0; y < ctx->h; y++) for (x = 0; x < ctx->w; x++) { /* * If this square is too near the starting position, * don't put it on the list at all. */ if (abs(y - ctx->sy) <= 1 && abs(x - ctx->sx) <= 1) continue; /* * If this square is in the input set, also don't put * it on the list! */ if ((mask == 0 && grid[y*ctx->w+x] == -2) || (x >= setx && x < setx + 3 && y >= sety && y < sety + 3 && mask & (1 << ((y-sety)*3+(x-setx))))) continue; sqlist[n].x = x; sqlist[n].y = y; if (grid[y*ctx->w+x] != -2) { sqlist[n].type = 3; /* known square */ } else { /* * Unknown square. Examine everything around it and * see if it borders on any known squares. If it * does, it's class 1, otherwise it's 2. */ sqlist[n].type = 2; for (dy = -1; dy <= +1; dy++) for (dx = -1; dx <= +1; dx++) if (x+dx >= 0 && x+dx < ctx->w && y+dy >= 0 && y+dy < ctx->h && grid[(y+dy)*ctx->w+(x+dx)] != -2) { sqlist[n].type = 1; break; } } /* * Finally, a random number to cause qsort to * shuffle within each group. */ sqlist[n].random = random_bits(ctx->rs, 31); n++; } qsort(sqlist, n, sizeof(struct square), squarecmp); /* * Now count up the number of full and empty squares in the set * we've been provided. */ nfull = nempty = 0; if (mask) { for (dy = 0; dy < 3; dy++) for (dx = 0; dx < 3; dx++) if (mask & (1 << (dy*3+dx))) { assert(setx+dx <= ctx->w); assert(sety+dy <= ctx->h); if (ctx->grid[(sety+dy)*ctx->w+(setx+dx)]) nfull++; else nempty++; } } else { for (y = 0; y < ctx->h; y++) for (x = 0; x < ctx->w; x++) if (grid[y*ctx->w+x] == -2) { if (ctx->grid[y*ctx->w+x]) nfull++; else nempty++; } } /* * Now go through our sorted list until we find either `nfull' * empty squares, or `nempty' full squares; these will be * swapped with the appropriate squares in the set to either * fill or empty the set while keeping the same number of mines * overall. */ ntofill = ntoempty = 0; if (mask) { tofill = snewn(9, struct square *); toempty = snewn(9, struct square *); } else { tofill = snewn(ctx->w * ctx->h, struct square *); toempty = snewn(ctx->w * ctx->h, struct square *); } for (i = 0; i < n; i++) { struct square *sq = &sqlist[i]; if (ctx->grid[sq->y * ctx->w + sq->x]) toempty[ntoempty++] = sq; else tofill[ntofill++] = sq; if (ntofill == nfull || ntoempty == nempty) break; } /* * If we haven't found enough empty squares outside the set to * empty it into _or_ enough full squares outside it to fill it * up with, we'll have to settle for doing only a partial job. * In this case we choose to always _fill_ the set (because * this case will tend to crop up when we're working with very * high mine densities and the only way to get a solvable grid * is going to be to pack most of the mines solidly around the * edges). So now our job is to make a list of the empty * squares in the set, and shuffle that list so that we fill a * random selection of them. */ if (ntofill != nfull && ntoempty != nempty) { int k; assert(ntoempty != 0); setlist = snewn(ctx->w * ctx->h, int); i = 0; if (mask) { for (dy = 0; dy < 3; dy++) for (dx = 0; dx < 3; dx++) if (mask & (1 << (dy*3+dx))) { assert(setx+dx <= ctx->w); assert(sety+dy <= ctx->h); if (!ctx->grid[(sety+dy)*ctx->w+(setx+dx)]) setlist[i++] = (sety+dy)*ctx->w+(setx+dx); } } else { for (y = 0; y < ctx->h; y++) for (x = 0; x < ctx->w; x++) if (grid[y*ctx->w+x] == -2) { if (!ctx->grid[y*ctx->w+x]) setlist[i++] = y*ctx->w+x; } } assert(i > ntoempty); /* * Now pick `ntoempty' items at random from the list. */ for (k = 0; k < ntoempty; k++) { int index = k + random_upto(ctx->rs, i - k); int tmp; tmp = setlist[k]; setlist[k] = setlist[index]; setlist[index] = tmp; } } else setlist = NULL; /* * Now we're pretty much there. We need to either * (a) put a mine in each of the empty squares in the set, and * take one out of each square in `toempty' * (b) take a mine out of each of the full squares in the set, * and put one in each square in `tofill' * depending on which one we've found enough squares to do. * * So we start by constructing our list of changes to return to * the solver, so that it can update its data structures * efficiently rather than having to rescan the whole grid. */ ret = snew(struct perturbations); if (ntofill == nfull) { todo = tofill; ntodo = ntofill; dtodo = +1; dset = -1; sfree(toempty); } else { /* * (We also fall into this case if we've constructed a * setlist.) */ todo = toempty; ntodo = ntoempty; dtodo = -1; dset = +1; sfree(tofill); } ret->n = 2 * ntodo; ret->changes = snewn(ret->n, struct perturbation); for (i = 0; i < ntodo; i++) { ret->changes[i].x = todo[i]->x; ret->changes[i].y = todo[i]->y; ret->changes[i].delta = dtodo; } /* now i == ntodo */ if (setlist) { int j; assert(todo == toempty); for (j = 0; j < ntoempty; j++) { ret->changes[i].x = setlist[j] % ctx->w; ret->changes[i].y = setlist[j] / ctx->w; ret->changes[i].delta = dset; i++; } sfree(setlist); } else if (mask) { for (dy = 0; dy < 3; dy++) for (dx = 0; dx < 3; dx++) if (mask & (1 << (dy*3+dx))) { int currval = (ctx->grid[(sety+dy)*ctx->w+(setx+dx)] ? +1 : -1); if (dset == -currval) { ret->changes[i].x = setx + dx; ret->changes[i].y = sety + dy; ret->changes[i].delta = dset; i++; } } } else { for (y = 0; y < ctx->h; y++) for (x = 0; x < ctx->w; x++) if (grid[y*ctx->w+x] == -2) { int currval = (ctx->grid[y*ctx->w+x] ? +1 : -1); if (dset == -currval) { ret->changes[i].x = x; ret->changes[i].y = y; ret->changes[i].delta = dset; i++; } } } assert(i == ret->n); sfree(sqlist); sfree(todo); /* * Having set up the precise list of changes we're going to * make, we now simply make them and return. */ for (i = 0; i < ret->n; i++) { int delta; x = ret->changes[i].x; y = ret->changes[i].y; delta = ret->changes[i].delta; /* * Check we're not trying to add an existing mine or remove * an absent one. */ assert((delta < 0) ^ (ctx->grid[y*ctx->w+x] == 0)); /* * Actually make the change. */ ctx->grid[y*ctx->w+x] = (delta > 0); /* * Update any numbers already present in the grid. */ for (dy = -1; dy <= +1; dy++) for (dx = -1; dx <= +1; dx++) if (x+dx >= 0 && x+dx < ctx->w && y+dy >= 0 && y+dy < ctx->h && grid[(y+dy)*ctx->w+(x+dx)] != -2) { if (dx == 0 && dy == 0) { /* * The square itself is marked as known in * the grid. Mark it as a mine if it's a * mine, or else work out its number. */ if (delta > 0) { grid[y*ctx->w+x] = -1; } else { int dx2, dy2, minecount = 0; for (dy2 = -1; dy2 <= +1; dy2++) for (dx2 = -1; dx2 <= +1; dx2++) if (x+dx2 >= 0 && x+dx2 < ctx->w && y+dy2 >= 0 && y+dy2 < ctx->h && ctx->grid[(y+dy2)*ctx->w+(x+dx2)]) minecount++; grid[y*ctx->w+x] = minecount; } } else { if (grid[(y+dy)*ctx->w+(x+dx)] >= 0) grid[(y+dy)*ctx->w+(x+dx)] += delta; } } } #ifdef GENERATION_DIAGNOSTICS { int yy, xx; printf("grid after perturbing:\n"); for (yy = 0; yy < ctx->h; yy++) { for (xx = 0; xx < ctx->w; xx++) { int v = ctx->grid[yy*ctx->w+xx]; if (yy == ctx->sy && xx == ctx->sx) { assert(!v); putchar('S'); } else if (v) { putchar('*'); } else { putchar('-'); } } putchar('\n'); } printf("\n"); } #endif return ret; } static char *minegen(int w, int h, int n, int x, int y, int unique, random_state *rs) { char *ret = snewn(w*h, char); int success; int ntries = 0; do { success = FALSE; ntries++; memset(ret, 0, w*h); /* * Start by placing n mines, none of which is at x,y or within * one square of it. */ { int *tmp = snewn(w*h, int); int i, j, k, nn; /* * Write down the list of possible mine locations. */ k = 0; for (i = 0; i < h; i++) for (j = 0; j < w; j++) if (abs(i - y) > 1 || abs(j - x) > 1) tmp[k++] = i*w+j; /* * Now pick n off the list at random. */ nn = n; while (nn-- > 0) { i = random_upto(rs, k); ret[tmp[i]] = 1; tmp[i] = tmp[--k]; } sfree(tmp); } #ifdef GENERATION_DIAGNOSTICS { int yy, xx; printf("grid after initial generation:\n"); for (yy = 0; yy < h; yy++) { for (xx = 0; xx < w; xx++) { int v = ret[yy*w+xx]; if (yy == y && xx == x) { assert(!v); putchar('S'); } else if (v) { putchar('*'); } else { putchar('-'); } } putchar('\n'); } printf("\n"); } #endif /* * Now set up a results grid to run the solver in, and a * context for the solver to open squares. Then run the solver * repeatedly; if the number of perturb steps ever goes up or * it ever returns -1, give up completely. * * We bypass this bit if we're not after a unique grid. */ if (unique) { signed char *solvegrid = snewn(w*h, char); struct minectx actx, *ctx = &actx; int solveret, prevret = -2; ctx->grid = ret; ctx->w = w; ctx->h = h; ctx->sx = x; ctx->sy = y; ctx->rs = rs; ctx->allow_big_perturbs = (ntries > 100); while (1) { memset(solvegrid, -2, w*h); solvegrid[y*w+x] = mineopen(ctx, x, y); assert(solvegrid[y*w+x] == 0); /* by deliberate arrangement */ solveret = minesolve(w, h, n, solvegrid, mineopen, mineperturb, ctx, rs); if (solveret < 0 || (prevret >= 0 && solveret >= prevret)) { success = FALSE; break; } else if (solveret == 0) { success = TRUE; break; } } sfree(solvegrid); } else { success = TRUE; } } while (!success); return ret; } /* * The Mines game descriptions contain the location of every mine, * and can therefore be used to cheat. * * It would be pointless to attempt to _prevent_ this form of * cheating by encrypting the description, since Mines is * open-source so anyone can find out the encryption key. However, * I think it is worth doing a bit of gentle obfuscation to prevent * _accidental_ spoilers: if you happened to note that the game ID * starts with an F, for example, you might be unable to put the * knowledge of those mines out of your mind while playing. So, * just as discussions of film endings are rot13ed to avoid * spoiling it for people who don't want to be told, we apply a * keyless, reversible, but visually completely obfuscatory masking * function to the mine bitmap. */ static void obfuscate_bitmap(unsigned char *bmp, int bits, int decode) { int bytes, firsthalf, secondhalf; struct step { unsigned char *seedstart; int seedlen; unsigned char *targetstart; int targetlen; } steps[2]; int i, j; /* * My obfuscation algorithm is similar in concept to the OAEP * encoding used in some forms of RSA. Here's a specification * of it: * * + We have a `masking function' which constructs a stream of * pseudorandom bytes from a seed of some number of input * bytes. * * + We pad out our input bit stream to a whole number of * bytes by adding up to 7 zero bits on the end. (In fact * the bitmap passed as input to this function will already * have had this done in practice.) * * + We divide the _byte_ stream exactly in half, rounding the * half-way position _down_. So an 81-bit input string, for * example, rounds up to 88 bits or 11 bytes, and then * dividing by two gives 5 bytes in the first half and 6 in * the second half. * * + We generate a mask from the second half of the bytes, and * XOR it over the first half. * * + We generate a mask from the (encoded) first half of the * bytes, and XOR it over the second half. Any null bits at * the end which were added as padding are cleared back to * zero even if this operation would have made them nonzero. * * To de-obfuscate, the steps are precisely the same except * that the final two are reversed. * * Finally, our masking function. Given an input seed string of * bytes, the output mask consists of concatenating the SHA-1 * hashes of the seed string and successive decimal integers, * starting from 0. */ bytes = (bits + 7) / 8; firsthalf = bytes / 2; secondhalf = bytes - firsthalf; steps[decode ? 1 : 0].seedstart = bmp + firsthalf; steps[decode ? 1 : 0].seedlen = secondhalf; steps[decode ? 1 : 0].targetstart = bmp; steps[decode ? 1 : 0].targetlen = firsthalf; steps[decode ? 0 : 1].seedstart = bmp; steps[decode ? 0 : 1].seedlen = firsthalf; steps[decode ? 0 : 1].targetstart = bmp + firsthalf; steps[decode ? 0 : 1].targetlen = secondhalf; for (i = 0; i < 2; i++) { SHA_State base, final; unsigned char digest[20]; char numberbuf[80]; int digestpos = 20, counter = 0; SHA_Init(&base); SHA_Bytes(&base, steps[i].seedstart, steps[i].seedlen); for (j = 0; j < steps[i].targetlen; j++) { if (digestpos >= 20) { sprintf(numberbuf, "%d", counter++); final = base; SHA_Bytes(&final, numberbuf, strlen(numberbuf)); SHA_Final(&final, digest); digestpos = 0; } steps[i].targetstart[j] ^= digest[digestpos++]; } /* * Mask off the pad bits in the final byte after both steps. */ if (bits % 8) bmp[bits / 8] &= 0xFF & (0xFF00 >> (bits % 8)); } } static char *new_mine_layout(int w, int h, int n, int x, int y, int unique, random_state *rs, char **game_desc) { signed char *grid, *ret, *p; unsigned char *bmp; int i, area; #ifdef TEST_OBFUSCATION static int tested_obfuscation = FALSE; if (!tested_obfuscation) { /* * A few simple test vectors for the obfuscator. * * First test: the 28-bit stream 1234567. This divides up * into 1234 and 567[0]. The SHA of 56 70 30 (appending * "0") is 15ce8ab946640340bbb99f3f48fd2c45d1a31d30. Thus, * we XOR the 16-bit string 15CE into the input 1234 to get * 07FA. Next, we SHA that with "0": the SHA of 07 FA 30 is * 3370135c5e3da4fed937adc004a79533962b6391. So we XOR the * 12-bit string 337 into the input 567 to get 650. Thus * our output is 07FA650. */ { unsigned char bmp1[] = "\x12\x34\x56\x70"; obfuscate_bitmap(bmp1, 28, FALSE); printf("test 1 encode: %s\n", memcmp(bmp1, "\x07\xfa\x65\x00", 4) ? "failed" : "passed"); obfuscate_bitmap(bmp1, 28, TRUE); printf("test 1 decode: %s\n", memcmp(bmp1, "\x12\x34\x56\x70", 4) ? "failed" : "passed"); } /* * Second test: a long string to make sure we switch from * one SHA to the next correctly. My input string this time * is simply fifty bytes of zeroes. */ { unsigned char bmp2[50]; unsigned char bmp2a[50]; memset(bmp2, 0, 50); memset(bmp2a, 0, 50); obfuscate_bitmap(bmp2, 50 * 8, FALSE); /* * SHA of twenty-five zero bytes plus "0" is * b202c07b990c01f6ff2d544707f60e506019b671. SHA of * twenty-five zero bytes plus "1" is * fcb1d8b5a2f6b592fe6780b36aa9d65dd7aa6db9. Thus our * first half becomes * b202c07b990c01f6ff2d544707f60e506019b671fcb1d8b5a2. * * SHA of that lot plus "0" is * 10b0af913db85d37ca27f52a9f78bba3a80030db. SHA of the * same string plus "1" is * 3d01d8df78e76d382b8106f480135a1bc751d725. So the * second half becomes * 10b0af913db85d37ca27f52a9f78bba3a80030db3d01d8df78. */ printf("test 2 encode: %s\n", memcmp(bmp2, "\xb2\x02\xc0\x7b\x99\x0c\x01\xf6\xff\x2d\x54" "\x47\x07\xf6\x0e\x50\x60\x19\xb6\x71\xfc\xb1\xd8" "\xb5\xa2\x10\xb0\xaf\x91\x3d\xb8\x5d\x37\xca\x27" "\xf5\x2a\x9f\x78\xbb\xa3\xa8\x00\x30\xdb\x3d\x01" "\xd8\xdf\x78", 50) ? "failed" : "passed"); obfuscate_bitmap(bmp2, 50 * 8, TRUE); printf("test 2 decode: %s\n", memcmp(bmp2, bmp2a, 50) ? "failed" : "passed"); } } #endif grid = minegen(w, h, n, x, y, unique, rs); if (game_desc) { /* * Set up the mine bitmap and obfuscate it. */ area = w * h; bmp = snewn((area + 7) / 8, unsigned char); memset(bmp, 0, (area + 7) / 8); for (i = 0; i < area; i++) { if (grid[i]) bmp[i / 8] |= 0x80 >> (i % 8); } obfuscate_bitmap(bmp, area, FALSE); /* * Now encode the resulting bitmap in hex. We can work to * nibble rather than byte granularity, since the obfuscation * function guarantees to return a bit string of the same * length as its input. */ ret = snewn((area+3)/4 + 100, char); p = ret + sprintf(ret, "%d,%d,m", x, y); /* 'm' == masked */ for (i = 0; i < (area+3)/4; i++) { int v = bmp[i/2]; if (i % 2 == 0) v >>= 4; *p++ = "0123456789abcdef"[v & 0xF]; } *p = '\0'; sfree(bmp); *game_desc = ret; } return grid; } static char *new_game_desc(game_params *params, random_state *rs, game_aux_info **aux, int interactive) { /* * We generate the coordinates of an initial click even if they * aren't actually used. This has the effect of harmonising the * random number usage between interactive and batch use: if * you use `mines --generate' with an explicit random seed, you * should get exactly the same results as if you type the same * random seed into the interactive game and click in the same * initial location. (Of course you won't get the same grid if * you click in a _different_ initial location, but there's * nothing to be done about that.) */ int x = random_upto(rs, params->w); int y = random_upto(rs, params->h); if (!interactive) { /* * For batch-generated grids, pre-open one square. */ signed char *grid; char *desc; grid = new_mine_layout(params->w, params->h, params->n, x, y, params->unique, rs, &desc); sfree(grid); return desc; } else { char *rsdesc, *desc; rsdesc = random_state_encode(rs); desc = snewn(strlen(rsdesc) + 100, char); sprintf(desc, "r%d,%c,%s", params->n, (char)(params->unique ? 'u' : 'a'), rsdesc); sfree(rsdesc); return desc; } } static void game_free_aux_info(game_aux_info *aux) { assert(!"Shouldn't happen"); } static char *validate_desc(game_params *params, char *desc) { int wh = params->w * params->h; int x, y; if (*desc == 'r') { if (!*desc || !isdigit((unsigned char)*desc)) return "No initial mine count in game description"; while (*desc && isdigit((unsigned char)*desc)) desc++; /* skip over mine count */ if (*desc != ',') return "No ',' after initial x-coordinate in game description"; desc++; if (*desc != 'u' && *desc != 'a') return "No uniqueness specifier in game description"; desc++; if (*desc != ',') return "No ',' after uniqueness specifier in game description"; /* now ignore the rest */ } else { if (!*desc || !isdigit((unsigned char)*desc)) return "No initial x-coordinate in game description"; x = atoi(desc); if (x < 0 || x >= params->w) return "Initial x-coordinate was out of range"; while (*desc && isdigit((unsigned char)*desc)) desc++; /* skip over x coordinate */ if (*desc != ',') return "No ',' after initial x-coordinate in game description"; desc++; /* eat comma */ if (!*desc || !isdigit((unsigned char)*desc)) return "No initial y-coordinate in game description"; y = atoi(desc); if (y < 0 || y >= params->h) return "Initial y-coordinate was out of range"; while (*desc && isdigit((unsigned char)*desc)) desc++; /* skip over y coordinate */ if (*desc != ',') return "No ',' after initial y-coordinate in game description"; desc++; /* eat comma */ /* eat `m', meaning `masked', if present */ if (*desc == 'm') desc++; /* now just check length of remainder */ if (strlen(desc) != (wh+3)/4) return "Game description is wrong length"; } return NULL; } static int open_square(game_state *state, int x, int y) { int w = state->w, h = state->h; int xx, yy, nmines, ncovered; if (!state->layout->mines) { /* * We have a preliminary game in which the mine layout * hasn't been generated yet. Generate it based on the * initial click location. */ char *desc; state->layout->mines = new_mine_layout(w, h, state->layout->n, x, y, state->layout->unique, state->layout->rs, &desc); midend_supersede_game_desc(state->layout->me, desc); sfree(desc); random_free(state->layout->rs); state->layout->rs = NULL; } if (state->layout->mines[y*w+x]) { /* * The player has landed on a mine. Bad luck. Expose the * mine that killed them, but not the rest (in case they * want to Undo and carry on playing). */ state->dead = TRUE; state->grid[y*w+x] = 65; return -1; } /* * Otherwise, the player has opened a safe square. Mark it to-do. */ state->grid[y*w+x] = -10; /* `todo' value internal to this func */ /* * Now go through the grid finding all `todo' values and * opening them. Every time one of them turns out to have no * neighbouring mines, we add all its unopened neighbours to * the list as well. * * FIXME: We really ought to be able to do this better than * using repeated N^2 scans of the grid. */ while (1) { int done_something = FALSE; for (yy = 0; yy < h; yy++) for (xx = 0; xx < w; xx++) if (state->grid[yy*w+xx] == -10) { int dx, dy, v; assert(!state->layout->mines[yy*w+xx]); v = 0; for (dx = -1; dx <= +1; dx++) for (dy = -1; dy <= +1; dy++) if (xx+dx >= 0 && xx+dx < state->w && yy+dy >= 0 && yy+dy < state->h && state->layout->mines[(yy+dy)*w+(xx+dx)]) v++; state->grid[yy*w+xx] = v; if (v == 0) { for (dx = -1; dx <= +1; dx++) for (dy = -1; dy <= +1; dy++) if (xx+dx >= 0 && xx+dx < state->w && yy+dy >= 0 && yy+dy < state->h && state->grid[(yy+dy)*w+(xx+dx)] == -2) state->grid[(yy+dy)*w+(xx+dx)] = -10; } done_something = TRUE; } if (!done_something) break; } /* * Finally, scan the grid and see if exactly as many squares * are still covered as there are mines. If so, set the `won' * flag and fill in mine markers on all covered squares. */ nmines = ncovered = 0; for (yy = 0; yy < h; yy++) for (xx = 0; xx < w; xx++) { if (state->grid[yy*w+xx] < 0) ncovered++; if (state->layout->mines[yy*w+xx]) nmines++; } assert(ncovered >= nmines); if (ncovered == nmines) { for (yy = 0; yy < h; yy++) for (xx = 0; xx < w; xx++) { if (state->grid[yy*w+xx] < 0) state->grid[yy*w+xx] = -1; } state->won = TRUE; } return 0; } static game_state *new_game(midend_data *me, game_params *params, char *desc) { game_state *state = snew(game_state); int i, wh, x, y, ret, masked; unsigned char *bmp; state->w = params->w; state->h = params->h; state->n = params->n; state->dead = state->won = FALSE; state->used_solve = state->just_used_solve = FALSE; wh = state->w * state->h; state->layout = snew(struct mine_layout); memset(state->layout, 0, sizeof(struct mine_layout)); state->layout->refcount = 1; state->grid = snewn(wh, char); memset(state->grid, -2, wh); if (*desc == 'r') { desc++; state->layout->n = atoi(desc); while (*desc && isdigit((unsigned char)*desc)) desc++; /* skip over mine count */ if (*desc) desc++; /* eat comma */ if (*desc == 'a') state->layout->unique = FALSE; else state->layout->unique = TRUE; desc++; if (*desc) desc++; /* eat comma */ state->layout->mines = NULL; state->layout->rs = random_state_decode(desc); state->layout->me = me; } else { state->layout->rs = NULL; state->layout->me = NULL; state->layout->mines = snewn(wh, char); x = atoi(desc); while (*desc && isdigit((unsigned char)*desc)) desc++; /* skip over x coordinate */ if (*desc) desc++; /* eat comma */ y = atoi(desc); while (*desc && isdigit((unsigned char)*desc)) desc++; /* skip over y coordinate */ if (*desc) desc++; /* eat comma */ if (*desc == 'm') { masked = TRUE; desc++; } else { /* * We permit game IDs to be entered by hand without the * masking transformation. */ masked = FALSE; } bmp = snewn((wh + 7) / 8, unsigned char); memset(bmp, 0, (wh + 7) / 8); for (i = 0; i < (wh+3)/4; i++) { int c = desc[i]; int v; assert(c != 0); /* validate_desc should have caught */ if (c >= '0' && c <= '9') v = c - '0'; else if (c >= 'a' && c <= 'f') v = c - 'a' + 10; else if (c >= 'A' && c <= 'F') v = c - 'A' + 10; else v = 0; bmp[i / 2] |= v << (4 * (1 - (i % 2))); } if (masked) obfuscate_bitmap(bmp, wh, TRUE); memset(state->layout->mines, 0, wh); for (i = 0; i < wh; i++) { if (bmp[i / 8] & (0x80 >> (i % 8))) state->layout->mines[i] = 1; } ret = open_square(state, x, y); sfree(bmp); } return state; } static game_state *dup_game(game_state *state) { game_state *ret = snew(game_state); ret->w = state->w; ret->h = state->h; ret->n = state->n; ret->dead = state->dead; ret->won = state->won; ret->used_solve = state->used_solve; ret->just_used_solve = state->just_used_solve; ret->layout = state->layout; ret->layout->refcount++; ret->grid = snewn(ret->w * ret->h, char); memcpy(ret->grid, state->grid, ret->w * ret->h); return ret; } static void free_game(game_state *state) { if (--state->layout->refcount <= 0) { sfree(state->layout->mines); if (state->layout->rs) random_free(state->layout->rs); sfree(state->layout); } sfree(state->grid); sfree(state); } static game_state *solve_game(game_state *state, game_aux_info *aux, char **error) { /* * Simply expose the entire grid as if it were a completed * solution. */ game_state *ret; int yy, xx; if (!state->layout->mines) { *error = "Game has not been started yet"; return NULL; } ret = dup_game(state); for (yy = 0; yy < ret->h; yy++) for (xx = 0; xx < ret->w; xx++) { if (ret->layout->mines[yy*ret->w+xx]) { ret->grid[yy*ret->w+xx] = -1; } else { int dx, dy, v; v = 0; for (dx = -1; dx <= +1; dx++) for (dy = -1; dy <= +1; dy++) if (xx+dx >= 0 && xx+dx < ret->w && yy+dy >= 0 && yy+dy < ret->h && ret->layout->mines[(yy+dy)*ret->w+(xx+dx)]) v++; ret->grid[yy*ret->w+xx] = v; } } ret->used_solve = ret->just_used_solve = TRUE; ret->won = TRUE; return ret; } static char *game_text_format(game_state *state) { char *ret; int x, y; ret = snewn((state->w + 1) * state->h + 1, char); for (y = 0; y < state->h; y++) { for (x = 0; x < state->w; x++) { int v = state->grid[y*state->w+x]; if (v == 0) v = '-'; else if (v >= 1 && v <= 8) v = '0' + v; else if (v == -1) v = '*'; else if (v == -2 || v == -3) v = '?'; else if (v >= 64) v = '!'; ret[y * (state->w+1) + x] = v; } ret[y * (state->w+1) + state->w] = '\n'; } ret[(state->w + 1) * state->h] = '\0'; return ret; } struct game_ui { int hx, hy, hradius; /* for mouse-down highlights */ int flash_is_death; int deaths; }; static game_ui *new_ui(game_state *state) { game_ui *ui = snew(game_ui); ui->hx = ui->hy = -1; ui->hradius = 0; ui->deaths = 0; ui->flash_is_death = FALSE; /* *shrug* */ return ui; } static void free_ui(game_ui *ui) { sfree(ui); } static game_state *make_move(game_state *from, game_ui *ui, game_drawstate *ds, int x, int y, int button) { game_state *ret; int cx, cy; if (from->dead || from->won) return NULL; /* no further moves permitted */ if (!IS_MOUSE_DOWN(button) && !IS_MOUSE_DRAG(button) && !IS_MOUSE_RELEASE(button)) return NULL; cx = FROMCOORD(x); cy = FROMCOORD(y); if (cx < 0 || cx >= from->w || cy < 0 || cy >= from->h) return NULL; if (button == LEFT_BUTTON || button == LEFT_DRAG || button == MIDDLE_BUTTON || button == MIDDLE_DRAG) { /* * Mouse-downs and mouse-drags just cause highlighting * updates. */ ui->hx = cx; ui->hy = cy; ui->hradius = (from->grid[cy*from->w+cx] >= 0 ? 1 : 0); return from; } if (button == RIGHT_BUTTON) { /* * Right-clicking only works on a covered square, and it * toggles between -1 (marked as mine) and -2 (not marked * as mine). * * FIXME: question marks. */ if (from->grid[cy * from->w + cx] != -2 && from->grid[cy * from->w + cx] != -1) return NULL; ret = dup_game(from); ret->just_used_solve = FALSE; ret->grid[cy * from->w + cx] ^= (-2 ^ -1); return ret; } if (button == LEFT_RELEASE || button == MIDDLE_RELEASE) { ui->hx = ui->hy = -1; ui->hradius = 0; /* * At this stage we must never return NULL: we have adjusted * the ui, so at worst we return `from'. */ /* * Left-clicking on a covered square opens a tile. Not * permitted if the tile is marked as a mine, for safety. * (Unmark it and _then_ open it.) */ if (button == LEFT_RELEASE && (from->grid[cy * from->w + cx] == -2 || from->grid[cy * from->w + cx] == -3)) { ret = dup_game(from); ret->just_used_solve = FALSE; open_square(ret, cx, cy); if (ret->dead) ui->deaths++; return ret; } /* * Left-clicking or middle-clicking on an uncovered tile: * first we check to see if the number of mine markers * surrounding the tile is equal to its mine count, and if * so then we open all other surrounding squares. */ if (from->grid[cy * from->w + cx] > 0) { int dy, dx, n; /* Count mine markers. */ n = 0; for (dy = -1; dy <= +1; dy++) for (dx = -1; dx <= +1; dx++) if (cx+dx >= 0 && cx+dx < from->w && cy+dy >= 0 && cy+dy < from->h) { if (from->grid[(cy+dy)*from->w+(cx+dx)] == -1) n++; } if (n == from->grid[cy * from->w + cx]) { ret = dup_game(from); ret->just_used_solve = FALSE; for (dy = -1; dy <= +1; dy++) for (dx = -1; dx <= +1; dx++) if (cx+dx >= 0 && cx+dx < ret->w && cy+dy >= 0 && cy+dy < ret->h && (ret->grid[(cy+dy)*ret->w+(cx+dx)] == -2 || ret->grid[(cy+dy)*ret->w+(cx+dx)] == -3)) open_square(ret, cx+dx, cy+dy); if (ret->dead) ui->deaths++; return ret; } } return from; } return NULL; } /* ---------------------------------------------------------------------- * Drawing routines. */ struct game_drawstate { int w, h, started; signed char *grid; /* * Items in this `grid' array have all the same values as in * the game_state grid, and in addition: * * - -10 means the tile was drawn `specially' as a result of a * flash, so it will always need redrawing. * * - -22 and -23 mean the tile is highlighted for a possible * click. */ }; static void game_size(game_params *params, int *x, int *y) { *x = BORDER * 2 + TILE_SIZE * params->w; *y = BORDER * 2 + TILE_SIZE * params->h; } static float *game_colours(frontend *fe, game_state *state, int *ncolours) { float *ret = snewn(3 * NCOLOURS, float); frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]); ret[COL_BACKGROUND2 * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] * 19.0 / 20.0; ret[COL_BACKGROUND2 * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] * 19.0 / 20.0; ret[COL_BACKGROUND2 * 3 + 2] = ret[COL_BACKGROUND * 3 + 2] * 19.0 / 20.0; ret[COL_1 * 3 + 0] = 0.0F; ret[COL_1 * 3 + 1] = 0.0F; ret[COL_1 * 3 + 2] = 1.0F; ret[COL_2 * 3 + 0] = 0.0F; ret[COL_2 * 3 + 1] = 0.5F; ret[COL_2 * 3 + 2] = 0.0F; ret[COL_3 * 3 + 0] = 1.0F; ret[COL_3 * 3 + 1] = 0.0F; ret[COL_3 * 3 + 2] = 0.0F; ret[COL_4 * 3 + 0] = 0.0F; ret[COL_4 * 3 + 1] = 0.0F; ret[COL_4 * 3 + 2] = 0.5F; ret[COL_5 * 3 + 0] = 0.5F; ret[COL_5 * 3 + 1] = 0.0F; ret[COL_5 * 3 + 2] = 0.0F; ret[COL_6 * 3 + 0] = 0.0F; ret[COL_6 * 3 + 1] = 0.5F; ret[COL_6 * 3 + 2] = 0.5F; ret[COL_7 * 3 + 0] = 0.0F; ret[COL_7 * 3 + 1] = 0.0F; ret[COL_7 * 3 + 2] = 0.0F; ret[COL_8 * 3 + 0] = 0.5F; ret[COL_8 * 3 + 1] = 0.5F; ret[COL_8 * 3 + 2] = 0.5F; ret[COL_MINE * 3 + 0] = 0.0F; ret[COL_MINE * 3 + 1] = 0.0F; ret[COL_MINE * 3 + 2] = 0.0F; ret[COL_BANG * 3 + 0] = 1.0F; ret[COL_BANG * 3 + 1] = 0.0F; ret[COL_BANG * 3 + 2] = 0.0F; ret[COL_CROSS * 3 + 0] = 1.0F; ret[COL_CROSS * 3 + 1] = 0.0F; ret[COL_CROSS * 3 + 2] = 0.0F; ret[COL_FLAG * 3 + 0] = 1.0F; ret[COL_FLAG * 3 + 1] = 0.0F; ret[COL_FLAG * 3 + 2] = 0.0F; ret[COL_FLAGBASE * 3 + 0] = 0.0F; ret[COL_FLAGBASE * 3 + 1] = 0.0F; ret[COL_FLAGBASE * 3 + 2] = 0.0F; ret[COL_QUERY * 3 + 0] = 0.0F; ret[COL_QUERY * 3 + 1] = 0.0F; ret[COL_QUERY * 3 + 2] = 0.0F; ret[COL_HIGHLIGHT * 3 + 0] = 1.0F; ret[COL_HIGHLIGHT * 3 + 1] = 1.0F; ret[COL_HIGHLIGHT * 3 + 2] = 1.0F; ret[COL_LOWLIGHT * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] * 2.0 / 3.0; ret[COL_LOWLIGHT * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] * 2.0 / 3.0; ret[COL_LOWLIGHT * 3 + 2] = ret[COL_BACKGROUND * 3 + 2] * 2.0 / 3.0; *ncolours = NCOLOURS; return ret; } static game_drawstate *game_new_drawstate(game_state *state) { struct game_drawstate *ds = snew(struct game_drawstate); ds->w = state->w; ds->h = state->h; ds->started = FALSE; ds->grid = snewn(ds->w * ds->h, char); memset(ds->grid, -99, ds->w * ds->h); return ds; } static void game_free_drawstate(game_drawstate *ds) { sfree(ds->grid); sfree(ds); } static void draw_tile(frontend *fe, int x, int y, int v, int bg) { if (v < 0) { int coords[12]; int hl = 0; if (v == -22 || v == -23) { v += 20; /* * Omit the highlights in this case. */ draw_rect(fe, x, y, TILE_SIZE, TILE_SIZE, bg == COL_BACKGROUND ? COL_BACKGROUND2 : bg); draw_line(fe, x, y, x + TILE_SIZE - 1, y, COL_LOWLIGHT); draw_line(fe, x, y, x, y + TILE_SIZE - 1, COL_LOWLIGHT); } else { /* * Draw highlights to indicate the square is covered. */ coords[0] = x + TILE_SIZE - 1; coords[1] = y + TILE_SIZE - 1; coords[2] = x + TILE_SIZE - 1; coords[3] = y; coords[4] = x; coords[5] = y + TILE_SIZE - 1; draw_polygon(fe, coords, 3, TRUE, COL_LOWLIGHT ^ hl); draw_polygon(fe, coords, 3, FALSE, COL_LOWLIGHT ^ hl); coords[0] = x; coords[1] = y; draw_polygon(fe, coords, 3, TRUE, COL_HIGHLIGHT ^ hl); draw_polygon(fe, coords, 3, FALSE, COL_HIGHLIGHT ^ hl); draw_rect(fe, x + HIGHLIGHT_WIDTH, y + HIGHLIGHT_WIDTH, TILE_SIZE - 2*HIGHLIGHT_WIDTH, TILE_SIZE - 2*HIGHLIGHT_WIDTH, bg); } if (v == -1) { /* * Draw a flag. */ #define SETCOORD(n, dx, dy) do { \ coords[(n)*2+0] = x + TILE_SIZE * (dx); \ coords[(n)*2+1] = y + TILE_SIZE * (dy); \ } while (0) SETCOORD(0, 0.6, 0.35); SETCOORD(1, 0.6, 0.7); SETCOORD(2, 0.8, 0.8); SETCOORD(3, 0.25, 0.8); SETCOORD(4, 0.55, 0.7); SETCOORD(5, 0.55, 0.35); draw_polygon(fe, coords, 6, TRUE, COL_FLAGBASE); draw_polygon(fe, coords, 6, FALSE, COL_FLAGBASE); SETCOORD(0, 0.6, 0.2); SETCOORD(1, 0.6, 0.5); SETCOORD(2, 0.2, 0.35); draw_polygon(fe, coords, 3, TRUE, COL_FLAG); draw_polygon(fe, coords, 3, FALSE, COL_FLAG); #undef SETCOORD } else if (v == -3) { /* * Draw a question mark. */ draw_text(fe, x + TILE_SIZE / 2, y + TILE_SIZE / 2, FONT_VARIABLE, TILE_SIZE * 6 / 8, ALIGN_VCENTRE | ALIGN_HCENTRE, COL_QUERY, "?"); } } else { /* * Clear the square to the background colour, and draw thin * grid lines along the top and left. * * Exception is that for value 65 (mine we've just trodden * on), we clear the square to COL_BANG. */ draw_rect(fe, x, y, TILE_SIZE, TILE_SIZE, (v == 65 ? COL_BANG : bg == COL_BACKGROUND ? COL_BACKGROUND2 : bg)); draw_line(fe, x, y, x + TILE_SIZE - 1, y, COL_LOWLIGHT); draw_line(fe, x, y, x, y + TILE_SIZE - 1, COL_LOWLIGHT); if (v > 0 && v <= 8) { /* * Mark a number. */ char str[2]; str[0] = v + '0'; str[1] = '\0'; draw_text(fe, x + TILE_SIZE / 2, y + TILE_SIZE / 2, FONT_VARIABLE, TILE_SIZE * 7 / 8, ALIGN_VCENTRE | ALIGN_HCENTRE, (COL_1 - 1) + v, str); } else if (v >= 64) { /* * Mark a mine. * * FIXME: this could be done better! */ #if 0 draw_text(fe, x + TILE_SIZE / 2, y + TILE_SIZE / 2, FONT_VARIABLE, TILE_SIZE * 7 / 8, ALIGN_VCENTRE | ALIGN_HCENTRE, COL_MINE, "*"); #else { int cx = x + TILE_SIZE / 2; int cy = y + TILE_SIZE / 2; int r = TILE_SIZE / 2 - 3; int coords[4*5*2]; int xdx = 1, xdy = 0, ydx = 0, ydy = 1; int tdx, tdy, i; for (i = 0; i < 4*5*2; i += 5*2) { coords[i+2*0+0] = cx - r/6*xdx + r*4/5*ydx; coords[i+2*0+1] = cy - r/6*xdy + r*4/5*ydy; coords[i+2*1+0] = cx - r/6*xdx + r*ydx; coords[i+2*1+1] = cy - r/6*xdy + r*ydy; coords[i+2*2+0] = cx + r/6*xdx + r*ydx; coords[i+2*2+1] = cy + r/6*xdy + r*ydy; coords[i+2*3+0] = cx + r/6*xdx + r*4/5*ydx; coords[i+2*3+1] = cy + r/6*xdy + r*4/5*ydy; coords[i+2*4+0] = cx + r*3/5*xdx + r*3/5*ydx; coords[i+2*4+1] = cy + r*3/5*xdy + r*3/5*ydy; tdx = ydx; tdy = ydy; ydx = xdx; ydy = xdy; xdx = -tdx; xdy = -tdy; } draw_polygon(fe, coords, 5*4, TRUE, COL_MINE); draw_polygon(fe, coords, 5*4, FALSE, COL_MINE); draw_rect(fe, cx-r/3, cy-r/3, r/3, r/4, COL_HIGHLIGHT); } #endif if (v == 66) { /* * Cross through the mine. */ int dx; for (dx = -1; dx <= +1; dx++) { draw_line(fe, x + 3 + dx, y + 2, x + TILE_SIZE - 3 + dx, y + TILE_SIZE - 2, COL_CROSS); draw_line(fe, x + TILE_SIZE - 3 + dx, y + 2, x + 3 + dx, y + TILE_SIZE - 2, COL_CROSS); } } } } draw_update(fe, x, y, TILE_SIZE, TILE_SIZE); } static void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate, game_state *state, int dir, game_ui *ui, float animtime, float flashtime) { int x, y; int mines, markers, bg; if (flashtime) { int frame = (flashtime / FLASH_FRAME); if (frame % 2) bg = (ui->flash_is_death ? COL_BACKGROUND : COL_LOWLIGHT); else bg = (ui->flash_is_death ? COL_BANG : COL_HIGHLIGHT); } else bg = COL_BACKGROUND; if (!ds->started) { int coords[10]; draw_rect(fe, 0, 0, TILE_SIZE * state->w + 2 * BORDER, TILE_SIZE * state->h + 2 * BORDER, COL_BACKGROUND); draw_update(fe, 0, 0, TILE_SIZE * state->w + 2 * BORDER, TILE_SIZE * state->h + 2 * BORDER); /* * Recessed area containing the whole puzzle. */ coords[0] = COORD(state->w) + OUTER_HIGHLIGHT_WIDTH - 1; coords[1] = COORD(state->h) + OUTER_HIGHLIGHT_WIDTH - 1; coords[2] = COORD(state->w) + OUTER_HIGHLIGHT_WIDTH - 1; coords[3] = COORD(0) - OUTER_HIGHLIGHT_WIDTH; coords[4] = coords[2] - TILE_SIZE; coords[5] = coords[3] + TILE_SIZE; coords[8] = COORD(0) - OUTER_HIGHLIGHT_WIDTH; coords[9] = COORD(state->h) + OUTER_HIGHLIGHT_WIDTH - 1; coords[6] = coords[8] + TILE_SIZE; coords[7] = coords[9] - TILE_SIZE; draw_polygon(fe, coords, 5, TRUE, COL_HIGHLIGHT); draw_polygon(fe, coords, 5, FALSE, COL_HIGHLIGHT); coords[1] = COORD(0) - OUTER_HIGHLIGHT_WIDTH; coords[0] = COORD(0) - OUTER_HIGHLIGHT_WIDTH; draw_polygon(fe, coords, 5, TRUE, COL_LOWLIGHT); draw_polygon(fe, coords, 5, FALSE, COL_LOWLIGHT); ds->started = TRUE; } /* * Now draw the tiles. Also in this loop, count up the number * of mines and mine markers. */ mines = markers = 0; for (y = 0; y < ds->h; y++) for (x = 0; x < ds->w; x++) { int v = state->grid[y*ds->w+x]; if (v == -1) markers++; if (state->layout->mines && state->layout->mines[y*ds->w+x]) mines++; if ((v == -2 || v == -3) && (abs(x-ui->hx) <= ui->hradius && abs(y-ui->hy) <= ui->hradius)) v -= 20; if (ds->grid[y*ds->w+x] != v || bg != COL_BACKGROUND) { draw_tile(fe, COORD(x), COORD(y), v, bg); ds->grid[y*ds->w+x] = (bg == COL_BACKGROUND ? v : -10); } } if (!state->layout->mines) mines = state->layout->n; /* * Update the status bar. */ { char statusbar[512]; if (state->dead) { sprintf(statusbar, "DEAD!"); } else if (state->won) { if (state->used_solve) sprintf(statusbar, "Auto-solved."); else sprintf(statusbar, "COMPLETED!"); } else { sprintf(statusbar, "Marked: %d / %d", markers, mines); } if (ui->deaths) sprintf(statusbar + strlen(statusbar), " Deaths: %d", ui->deaths); status_bar(fe, statusbar); } } static float game_anim_length(game_state *oldstate, game_state *newstate, int dir, game_ui *ui) { return 0.0F; } static float game_flash_length(game_state *oldstate, game_state *newstate, int dir, game_ui *ui) { if (oldstate->used_solve || newstate->used_solve) return 0.0F; if (dir > 0 && !oldstate->dead && !oldstate->won) { if (newstate->dead) { ui->flash_is_death = TRUE; return 3 * FLASH_FRAME; } if (newstate->won) { ui->flash_is_death = FALSE; return 2 * FLASH_FRAME; } } return 0.0F; } static int game_wants_statusbar(void) { return TRUE; } static int game_timing_state(game_state *state) { if (state->dead || state->won || !state->layout->mines) return FALSE; return TRUE; } #ifdef COMBINED #define thegame mines #endif const struct game thegame = { "Mines", "games.mines", default_params, game_fetch_preset, decode_params, encode_params, free_params, dup_params, TRUE, game_configure, custom_params, validate_params, new_game_desc, game_free_aux_info, validate_desc, new_game, dup_game, free_game, TRUE, solve_game, TRUE, game_text_format, new_ui, free_ui, make_move, game_size, game_colours, game_new_drawstate, game_free_drawstate, game_redraw, game_anim_length, game_flash_length, game_wants_statusbar, TRUE, game_timing_state, BUTTON_BEATS(LEFT_BUTTON, RIGHT_BUTTON), };