ref: e4306a6036f8a02b8714b5934c358f9dcc8a0eec
dir: /pattern.c/
/* * pattern.c: the pattern-reconstruction game known as `nonograms'. * * TODO before checkin: * * - make some sort of stab at number-of-numbers judgment */ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <assert.h> #include <ctype.h> #include <math.h> #include "puzzles.h" #define max(x,y) ( (x)>(y) ? (x):(y) ) #define min(x,y) ( (x)<(y) ? (x):(y) ) enum { COL_BACKGROUND, COL_EMPTY, COL_FULL, COL_UNKNOWN, COL_GRID, NCOLOURS }; #define BORDER 18 #define TLBORDER(d) ( (d) / 5 + 2 ) #define GUTTER 12 #define TILE_SIZE 24 #define FROMCOORD(d, x) \ ( ((x) - (BORDER + GUTTER + TILE_SIZE * TLBORDER(d))) / TILE_SIZE ) #define SIZE(d) (2*BORDER + GUTTER + TILE_SIZE * (TLBORDER(d) + (d))) #define TOCOORD(d, x) (BORDER + GUTTER + TILE_SIZE * (TLBORDER(d) + (x))) struct game_params { int w, h; }; #define GRID_UNKNOWN 2 #define GRID_FULL 1 #define GRID_EMPTY 0 struct game_state { int w, h; unsigned char *grid; int rowsize; int *rowdata, *rowlen; int completed; }; #define FLASH_TIME 0.13F static game_params *default_params(void) { game_params *ret = snew(game_params); ret->w = ret->h = 15; return ret; } static int game_fetch_preset(int i, char **name, game_params **params) { game_params *ret; char str[80]; static const struct { int x, y; } values[] = { {10, 10}, {15, 15}, {20, 20}, {25, 25}, {30, 30}, }; if (i < 0 || i >= lenof(values)) return FALSE; ret = snew(game_params); ret->w = values[i].x; ret->h = values[i].y; sprintf(str, "%dx%d", ret->w, ret->h); *name = dupstr(str); *params = ret; return TRUE; } static void free_params(game_params *params) { sfree(params); } static game_params *dup_params(game_params *params) { game_params *ret = snew(game_params); *ret = *params; /* structure copy */ return ret; } static game_params *decode_params(char const *string) { game_params *ret = default_params(); char const *p = string; ret->w = atoi(p); while (*p && isdigit(*p)) p++; if (*p == 'x') { p++; ret->h = atoi(p); while (*p && isdigit(*p)) p++; } else { ret->h = ret->w; } return ret; } static char *encode_params(game_params *params) { char ret[400]; int len; len = sprintf(ret, "%dx%d", params->w, params->h); assert(len < lenof(ret)); ret[len] = '\0'; return dupstr(ret); } static config_item *game_configure(game_params *params) { config_item *ret; char buf[80]; ret = snewn(3, config_item); ret[0].name = "Width"; ret[0].type = C_STRING; sprintf(buf, "%d", params->w); ret[0].sval = dupstr(buf); ret[0].ival = 0; ret[1].name = "Height"; ret[1].type = C_STRING; sprintf(buf, "%d", params->h); ret[1].sval = dupstr(buf); ret[1].ival = 0; ret[2].name = NULL; ret[2].type = C_END; ret[2].sval = NULL; ret[2].ival = 0; return ret; } static game_params *custom_params(config_item *cfg) { game_params *ret = snew(game_params); ret->w = atoi(cfg[0].sval); ret->h = atoi(cfg[1].sval); return ret; } static char *validate_params(game_params *params) { if (params->w <= 0 && params->h <= 0) return "Width and height must both be greater than zero"; if (params->w <= 0) return "Width must be greater than zero"; if (params->h <= 0) return "Height must be greater than zero"; return NULL; } /* ---------------------------------------------------------------------- * Puzzle generation code. * * For this particular puzzle, it seemed important to me to ensure * a unique solution. I do this the brute-force way, by having a * solver algorithm alongside the generator, and repeatedly * generating a random grid until I find one whose solution is * unique. It turns out that this isn't too onerous on a modern PC * provided you keep grid size below around 30. Any offers of * better algorithms, however, will be very gratefully received. * * Another annoyance of this approach is that it limits the * available puzzles to those solvable by the algorithm I've used. * My algorithm only ever considers a single row or column at any * one time, which means it's incapable of solving the following * difficult example (found by Bella Image around 1995/6, when she * and I were both doing maths degrees): * * 2 1 2 1 * * +--+--+--+--+ * 1 1 | | | | | * +--+--+--+--+ * 2 | | | | | * +--+--+--+--+ * 1 | | | | | * +--+--+--+--+ * 1 | | | | | * +--+--+--+--+ * * Obviously this cannot be solved by a one-row-or-column-at-a-time * algorithm (it would require at least one row or column reading * `2 1', `1 2', `3' or `4' to get started). However, it can be * proved to have a unique solution: if the top left square were * empty, then the only option for the top row would be to fill the * two squares in the 1 columns, which would imply the squares * below those were empty, leaving no place for the 2 in the second * row. Contradiction. Hence the top left square is full, and the * unique solution follows easily from that starting point. * * (The game ID for this puzzle is 4x4:2/1/2/1/1.1/2/1/1 , in case * it's useful to anyone.) */ static int float_compare(const void *av, const void *bv) { const float *a = (const float *)av; const float *b = (const float *)bv; if (*a < *b) return -1; else if (*a > *b) return +1; else return 0; } static void generate(random_state *rs, int w, int h, unsigned char *retgrid) { float *fgrid; float *fgrid2; int step, i, j; float threshold; fgrid = snewn(w*h, float); for (i = 0; i < h; i++) { for (j = 0; j < w; j++) { fgrid[i*w+j] = random_upto(rs, 100000000UL) / 100000000.F; } } /* * The above gives a completely random splattering of black and * white cells. We want to gently bias this in favour of _some_ * reasonably thick areas of white and black, while retaining * some randomness and fine detail. * * So we evolve the starting grid using a cellular automaton. * Currently, I'm doing something very simple indeed, which is * to set each square to the average of the surrounding nine * cells (or the average of fewer, if we're on a corner). */ for (step = 0; step < 1; step++) { fgrid2 = snewn(w*h, float); for (i = 0; i < h; i++) { for (j = 0; j < w; j++) { float sx, xbar; int n, p, q; /* * Compute the average of the surrounding cells. */ n = 0; sx = 0.F; for (p = -1; p <= +1; p++) { for (q = -1; q <= +1; q++) { if (i+p < 0 || i+p >= h || j+q < 0 || j+q >= w) continue; n++; sx += fgrid[(i+p)*w+(j+q)]; } } xbar = sx / n; fgrid2[i*w+j] = xbar; } } sfree(fgrid); fgrid = fgrid2; } fgrid2 = snewn(w*h, float); memcpy(fgrid2, fgrid, w*h*sizeof(float)); qsort(fgrid2, w*h, sizeof(float), float_compare); threshold = fgrid2[w*h/2]; sfree(fgrid2); for (i = 0; i < h; i++) { for (j = 0; j < w; j++) { retgrid[i*w+j] = (fgrid[i*w+j] > threshold ? GRID_FULL : GRID_EMPTY); } } sfree(fgrid); } static int compute_rowdata(int *ret, unsigned char *start, int len, int step) { int i, n; n = 0; for (i = 0; i < len; i++) { if (start[i*step] == GRID_FULL) { int runlen = 1; while (i+runlen < len && start[(i+runlen)*step] == GRID_FULL) runlen++; ret[n++] = runlen; i += runlen; } if (i < len && start[i*step] == GRID_UNKNOWN) return -1; } return n; } #define UNKNOWN 0 #define BLOCK 1 #define DOT 2 #define STILL_UNKNOWN 3 static void do_recurse(unsigned char *known, unsigned char *deduced, unsigned char *row, int *data, int len, int freespace, int ndone, int lowest) { int i, j, k; if (data[ndone]) { for (i=0; i<=freespace; i++) { j = lowest; for (k=0; k<i; k++) row[j++] = DOT; for (k=0; k<data[ndone]; k++) row[j++] = BLOCK; if (j < len) row[j++] = DOT; do_recurse(known, deduced, row, data, len, freespace-i, ndone+1, j); } } else { for (i=lowest; i<len; i++) row[i] = DOT; for (i=0; i<len; i++) if (known[i] && known[i] != row[i]) return; for (i=0; i<len; i++) deduced[i] |= row[i]; } } static int do_row(unsigned char *known, unsigned char *deduced, unsigned char *row, unsigned char *start, int len, int step, int *data) { int rowlen, i, freespace, done_any; freespace = len+1; for (rowlen = 0; data[rowlen]; rowlen++) freespace -= data[rowlen]+1; for (i = 0; i < len; i++) { known[i] = start[i*step]; deduced[i] = 0; } do_recurse(known, deduced, row, data, len, freespace, 0, 0); done_any = FALSE; for (i=0; i<len; i++) if (deduced[i] && deduced[i] != STILL_UNKNOWN && !known[i]) { start[i*step] = deduced[i]; done_any = TRUE; } return done_any; } static unsigned char *generate_soluble(random_state *rs, int w, int h) { int i, j, done_any, ok, ntries, max; unsigned char *grid, *matrix, *workspace; int *rowdata; grid = snewn(w*h, unsigned char); matrix = snewn(w*h, unsigned char); max = max(w, h); workspace = snewn(max*3, unsigned char); rowdata = snewn(max+1, int); ntries = 0; do { ntries++; generate(rs, w, h, grid); memset(matrix, 0, w*h); do { done_any = 0; for (i=0; i<h; i++) { rowdata[compute_rowdata(rowdata, grid+i*w, w, 1)] = 0; done_any |= do_row(workspace, workspace+max, workspace+2*max, matrix+i*w, w, 1, rowdata); } for (i=0; i<w; i++) { rowdata[compute_rowdata(rowdata, grid+i, h, w)] = 0; done_any |= do_row(workspace, workspace+max, workspace+2*max, matrix+i, h, w, rowdata); } } while (done_any); ok = TRUE; for (i=0; i<h; i++) { for (j=0; j<w; j++) { if (matrix[i*w+j] == UNKNOWN) ok = FALSE; } } } while (!ok); sfree(matrix); sfree(workspace); sfree(rowdata); return grid; } static char *new_game_seed(game_params *params, random_state *rs) { unsigned char *grid; int i, j, max, rowlen, *rowdata; char intbuf[80], *seed; int seedlen, seedpos; grid = generate_soluble(rs, params->w, params->h); max = max(params->w, params->h); rowdata = snewn(max, int); /* * Seed is a slash-separated list of row contents; each row * contents section is a dot-separated list of integers. Row * contents are listed in the order (columns left to right, * then rows top to bottom). * * Simplest way to handle memory allocation is to make two * passes, first computing the seed size and then writing it * out. */ seedlen = 0; for (i = 0; i < params->w + params->h; i++) { if (i < params->w) rowlen = compute_rowdata(rowdata, grid+i, params->h, params->w); else rowlen = compute_rowdata(rowdata, grid+(i-params->w)*params->w, params->w, 1); if (rowlen > 0) { for (j = 0; j < rowlen; j++) { seedlen += 1 + sprintf(intbuf, "%d", rowdata[j]); } } else { seedlen++; } } seed = snewn(seedlen, char); seedpos = 0; for (i = 0; i < params->w + params->h; i++) { if (i < params->w) rowlen = compute_rowdata(rowdata, grid+i, params->h, params->w); else rowlen = compute_rowdata(rowdata, grid+(i-params->w)*params->w, params->w, 1); if (rowlen > 0) { for (j = 0; j < rowlen; j++) { int len = sprintf(seed+seedpos, "%d", rowdata[j]); if (j+1 < rowlen) seed[seedpos + len] = '.'; else seed[seedpos + len] = '/'; seedpos += len+1; } } else { seed[seedpos++] = '/'; } } assert(seedpos == seedlen); assert(seed[seedlen-1] == '/'); seed[seedlen-1] = '\0'; sfree(rowdata); return seed; } static char *validate_seed(game_params *params, char *seed) { int i, n, rowspace; char *p; for (i = 0; i < params->w + params->h; i++) { if (i < params->w) rowspace = params->h + 1; else rowspace = params->w + 1; if (*seed && isdigit((unsigned char)*seed)) { do { p = seed; while (seed && isdigit((unsigned char)*seed)) seed++; n = atoi(p); rowspace -= n+1; if (rowspace < 0) { if (i < params->w) return "at least one column contains more numbers than will fit"; else return "at least one row contains more numbers than will fit"; } } while (*seed++ == '.'); } else { seed++; /* expect a slash immediately */ } if (seed[-1] == '/') { if (i+1 == params->w + params->h) return "too many row/column specifications"; } else if (seed[-1] == '\0') { if (i+1 < params->w + params->h) return "too few row/column specifications"; } else return "unrecognised character in game specification"; } return NULL; } static game_state *new_game(game_params *params, char *seed) { int i; char *p; game_state *state = snew(game_state); state->w = params->w; state->h = params->h; state->grid = snewn(state->w * state->h, unsigned char); memset(state->grid, GRID_UNKNOWN, state->w * state->h); state->rowsize = max(state->w, state->h); state->rowdata = snewn(state->rowsize * (state->w + state->h), int); state->rowlen = snewn(state->w + state->h, int); state->completed = FALSE; for (i = 0; i < params->w + params->h; i++) { state->rowlen[i] = 0; if (*seed && isdigit((unsigned char)*seed)) { do { p = seed; while (seed && isdigit((unsigned char)*seed)) seed++; state->rowdata[state->rowsize * i + state->rowlen[i]++] = atoi(p); } while (*seed++ == '.'); } else { seed++; /* expect a slash immediately */ } } return state; } static game_state *dup_game(game_state *state) { game_state *ret = snew(game_state); ret->w = state->w; ret->h = state->h; ret->grid = snewn(ret->w * ret->h, unsigned char); memcpy(ret->grid, state->grid, ret->w * ret->h); ret->rowsize = state->rowsize; ret->rowdata = snewn(ret->rowsize * (ret->w + ret->h), int); ret->rowlen = snewn(ret->w + ret->h, int); memcpy(ret->rowdata, state->rowdata, ret->rowsize * (ret->w + ret->h) * sizeof(int)); memcpy(ret->rowlen, state->rowlen, (ret->w + ret->h) * sizeof(int)); ret->completed = state->completed; return ret; } static void free_game(game_state *state) { sfree(state->rowdata); sfree(state->rowlen); sfree(state->grid); sfree(state); } struct game_ui { int dragging; int drag_start_x; int drag_start_y; int drag_end_x; int drag_end_y; int drag, release, state; }; static game_ui *new_ui(game_state *state) { game_ui *ret; ret = snew(game_ui); ret->dragging = FALSE; return ret; } static void free_ui(game_ui *ui) { sfree(ui); } static game_state *make_move(game_state *from, game_ui *ui, int x, int y, int button) { game_state *ret; x = FROMCOORD(from->w, x); y = FROMCOORD(from->h, y); if (x >= 0 && x < from->w && y >= 0 && y < from->h && (button == LEFT_BUTTON || button == RIGHT_BUTTON || button == MIDDLE_BUTTON)) { ui->dragging = TRUE; if (button == LEFT_BUTTON) { ui->drag = LEFT_DRAG; ui->release = LEFT_RELEASE; ui->state = GRID_FULL; } else if (button == RIGHT_BUTTON) { ui->drag = RIGHT_DRAG; ui->release = RIGHT_RELEASE; ui->state = GRID_EMPTY; } else /* if (button == MIDDLE_BUTTON) */ { ui->drag = MIDDLE_DRAG; ui->release = MIDDLE_RELEASE; ui->state = GRID_UNKNOWN; } ui->drag_start_x = ui->drag_end_x = x; ui->drag_start_y = ui->drag_end_y = y; return from; /* UI activity occurred */ } if (ui->dragging && button == ui->drag) { /* * There doesn't seem much point in allowing a rectangle * drag; people will generally only want to drag a single * horizontal or vertical line, so we make that easy by * snapping to it. * * Exception: if we're _middle_-button dragging to tag * things as UNKNOWN, we may well want to trash an entire * area and start over! */ if (ui->state != GRID_UNKNOWN) { if (abs(x - ui->drag_start_x) > abs(y - ui->drag_start_y)) y = ui->drag_start_y; else x = ui->drag_start_x; } if (x < 0) x = 0; if (y < 0) y = 0; if (x >= from->w) x = from->w - 1; if (y >= from->h) y = from->h - 1; ui->drag_end_x = x; ui->drag_end_y = y; return from; /* UI activity occurred */ } if (ui->dragging && button == ui->release) { int x1, x2, y1, y2, xx, yy; int move_needed = FALSE; x1 = min(ui->drag_start_x, ui->drag_end_x); x2 = max(ui->drag_start_x, ui->drag_end_x); y1 = min(ui->drag_start_y, ui->drag_end_y); y2 = max(ui->drag_start_y, ui->drag_end_y); for (yy = y1; yy <= y2; yy++) for (xx = x1; xx <= x2; xx++) if (from->grid[yy * from->w + xx] != ui->state) move_needed = TRUE; ui->dragging = FALSE; if (move_needed) { ret = dup_game(from); for (yy = y1; yy <= y2; yy++) for (xx = x1; xx <= x2; xx++) ret->grid[yy * ret->w + xx] = ui->state; /* * An actual change, so check to see if we've completed * the game. */ if (!ret->completed) { int *rowdata = snewn(ret->rowsize, int); int i, len; ret->completed = TRUE; for (i=0; i<ret->w; i++) { len = compute_rowdata(rowdata, ret->grid+i, ret->h, ret->w); if (len != ret->rowlen[i] || memcmp(ret->rowdata+i*ret->rowsize, rowdata, len * sizeof(int))) { ret->completed = FALSE; break; } } for (i=0; i<ret->h; i++) { len = compute_rowdata(rowdata, ret->grid+i*ret->w, ret->w, 1); if (len != ret->rowlen[i+ret->w] || memcmp(ret->rowdata+(i+ret->w)*ret->rowsize, rowdata, len * sizeof(int))) { ret->completed = FALSE; break; } } sfree(rowdata); } return ret; } else return from; /* UI activity occurred */ } return NULL; } /* ---------------------------------------------------------------------- * Drawing routines. */ struct game_drawstate { int started; int w, h; unsigned char *visible; }; static void game_size(game_params *params, int *x, int *y) { *x = SIZE(params->w); *y = SIZE(params->h); } static float *game_colours(frontend *fe, game_state *state, int *ncolours) { float *ret = snewn(3 * NCOLOURS, float); frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]); ret[COL_GRID * 3 + 0] = 0.3F; ret[COL_GRID * 3 + 1] = 0.3F; ret[COL_GRID * 3 + 2] = 0.3F; ret[COL_UNKNOWN * 3 + 0] = 0.5F; ret[COL_UNKNOWN * 3 + 1] = 0.5F; ret[COL_UNKNOWN * 3 + 2] = 0.5F; ret[COL_FULL * 3 + 0] = 0.0F; ret[COL_FULL * 3 + 1] = 0.0F; ret[COL_FULL * 3 + 2] = 0.0F; ret[COL_EMPTY * 3 + 0] = 1.0F; ret[COL_EMPTY * 3 + 1] = 1.0F; ret[COL_EMPTY * 3 + 2] = 1.0F; *ncolours = NCOLOURS; return ret; } static game_drawstate *game_new_drawstate(game_state *state) { struct game_drawstate *ds = snew(struct game_drawstate); ds->started = FALSE; ds->w = state->w; ds->h = state->h; ds->visible = snewn(ds->w * ds->h, unsigned char); memset(ds->visible, 255, ds->w * ds->h); return ds; } static void game_free_drawstate(game_drawstate *ds) { sfree(ds->visible); sfree(ds); } static void grid_square(frontend *fe, game_drawstate *ds, int y, int x, int state) { int xl, xr, yt, yb; draw_rect(fe, TOCOORD(ds->w, x), TOCOORD(ds->h, y), TILE_SIZE, TILE_SIZE, COL_GRID); xl = (x % 5 == 0 ? 1 : 0); yt = (y % 5 == 0 ? 1 : 0); xr = (x % 5 == 4 || x == ds->w-1 ? 1 : 0); yb = (y % 5 == 4 || y == ds->h-1 ? 1 : 0); draw_rect(fe, TOCOORD(ds->w, x) + 1 + xl, TOCOORD(ds->h, y) + 1 + yt, TILE_SIZE - xl - xr - 1, TILE_SIZE - yt - yb - 1, (state == GRID_FULL ? COL_FULL : state == GRID_EMPTY ? COL_EMPTY : COL_UNKNOWN)); draw_update(fe, TOCOORD(ds->w, x), TOCOORD(ds->h, y), TILE_SIZE, TILE_SIZE); } static void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate, game_state *state, int dir, game_ui *ui, float animtime, float flashtime) { int i, j; int x1, x2, y1, y2; if (!ds->started) { /* * The initial contents of the window are not guaranteed * and can vary with front ends. To be on the safe side, * all games should start by drawing a big background- * colour rectangle covering the whole window. */ draw_rect(fe, 0, 0, SIZE(ds->w), SIZE(ds->h), COL_BACKGROUND); /* * Draw the numbers. */ for (i = 0; i < ds->w + ds->h; i++) { int rowlen = state->rowlen[i]; int *rowdata = state->rowdata + state->rowsize * i; int nfit; /* * Normally I space the numbers out by the same * distance as the tile size. However, if there are * more numbers than available spaces, I have to squash * them up a bit. */ nfit = max(rowlen, TLBORDER(ds->h))-1; assert(nfit > 0); for (j = 0; j < rowlen; j++) { int x, y; char str[80]; if (i < ds->w) { x = TOCOORD(ds->w, i); y = BORDER + TILE_SIZE * (TLBORDER(ds->h)-1); y -= ((rowlen-j-1)*TILE_SIZE) * (TLBORDER(ds->h)-1) / nfit; } else { y = TOCOORD(ds->h, i - ds->w); x = BORDER + TILE_SIZE * (TLBORDER(ds->w)-1); x -= ((rowlen-j-1)*TILE_SIZE) * (TLBORDER(ds->h)-1) / nfit; } sprintf(str, "%d", rowdata[j]); draw_text(fe, x+TILE_SIZE/2, y+TILE_SIZE/2, FONT_VARIABLE, TILE_SIZE/2, ALIGN_HCENTRE | ALIGN_VCENTRE, COL_FULL, str); /* FIXME: COL_TEXT */ } } /* * Draw the grid outline. */ draw_rect(fe, TOCOORD(ds->w, 0) - 1, TOCOORD(ds->h, 0) - 1, ds->w * TILE_SIZE + 3, ds->h * TILE_SIZE + 3, COL_GRID); ds->started = TRUE; draw_update(fe, 0, 0, SIZE(ds->w), SIZE(ds->h)); } if (ui->dragging) { x1 = min(ui->drag_start_x, ui->drag_end_x); x2 = max(ui->drag_start_x, ui->drag_end_x); y1 = min(ui->drag_start_y, ui->drag_end_y); y2 = max(ui->drag_start_y, ui->drag_end_y); } else { x1 = x2 = y1 = y2 = -1; /* placate gcc warnings */ } /* * Now draw any grid squares which have changed since last * redraw. */ for (i = 0; i < ds->h; i++) { for (j = 0; j < ds->w; j++) { int val; /* * Work out what state this square should be drawn in, * taking any current drag operation into account. */ if (ui->dragging && x1 <= j && j <= x2 && y1 <= i && i <= y2) val = ui->state; else val = state->grid[i * state->w + j]; /* * Briefly invert everything twice during a completion * flash. */ if (flashtime > 0 && (flashtime <= FLASH_TIME/3 || flashtime >= FLASH_TIME*2/3) && val != GRID_UNKNOWN) val = (GRID_FULL ^ GRID_EMPTY) ^ val; if (ds->visible[i * ds->w + j] != val) { grid_square(fe, ds, i, j, val); ds->visible[i * ds->w + j] = val; } } } } static float game_anim_length(game_state *oldstate, game_state *newstate, int dir) { return 0.0F; } static float game_flash_length(game_state *oldstate, game_state *newstate, int dir) { if (!oldstate->completed && newstate->completed) return FLASH_TIME; return 0.0F; } static int game_wants_statusbar(void) { return FALSE; } #ifdef COMBINED #define thegame pattern #endif const struct game thegame = { "Pattern", "games.pattern", TRUE, default_params, game_fetch_preset, decode_params, encode_params, free_params, dup_params, game_configure, custom_params, validate_params, new_game_seed, validate_seed, new_game, dup_game, free_game, new_ui, free_ui, make_move, game_size, game_colours, game_new_drawstate, game_free_drawstate, game_redraw, game_anim_length, game_flash_length, game_wants_statusbar, };