ref: de13ca2874e673b426efcf04f734ae6625635396
dir: /penrose.c/
/* penrose.c * * Penrose tile generator. * * Works by choosing a small patch from a recursively expanded large * region of tiling, using one of the two algorithms described at * * https://www.chiark.greenend.org.uk/~sgtatham/quasiblog/aperiodic-tilings/ */ #include <assert.h> #include <string.h> #ifdef NO_TGMATH_H # include <math.h> #else # include <tgmath.h> #endif #include <stdio.h> #include "puzzles.h" /* for malloc routines, and PI */ #include "penrose.h" /* ------------------------------------------------------- * 36-degree basis vector arithmetic routines. */ /* Imagine drawing a * ten-point 'clock face' like this: * * -E * -D | A * \ | / * -C. \ | / ,B * `-._\|/_,-' * ,-' /|\ `-. * -B' / | \ `C * / | \ * -A | D * E * * In case the ASCII art isn't clear, those are supposed to be ten * vectors of length 1, all sticking out from the origin at equal * angular spacing (hence 36 degrees). Our basis vectors are A,B,C,D (I * choose them to be symmetric about the x-axis so that the final * translation into 2d coordinates will also be symmetric, which I * think will avoid minor rounding uglinesses), so our vector * representation sets * * A = (1,0,0,0) * B = (0,1,0,0) * C = (0,0,1,0) * D = (0,0,0,1) * * The fifth vector E looks at first glance as if it needs to be * another basis vector, but in fact it doesn't, because it can be * represented in terms of the other four. Imagine starting from the * origin and following the path -A, +B, -C, +D: you'll find you've * traced four sides of a pentagram, and ended up one E-vector away * from the origin. So we have * * E = (-1,1,-1,1) * * This tells us that we can rotate any vector in this system by 36 * degrees: if we start with a*A + b*B + c*C + d*D, we want to end up * with a*B + b*C + c*D + d*E, and we substitute our identity for E to * turn that into a*B + b*C + c*D + d*(-A+B-C+D). In other words, * * rotate_one_notch_clockwise(a,b,c,d) = (-d, d+a, -d+b, d+c) * * and you can verify for yourself that applying that operation * repeatedly starting with (1,0,0,0) cycles round ten vectors and * comes back to where it started. * * The other operation that may be required is to construct vectors * with lengths that are multiples of phi. That can be done by * observing that the vector C-B is parallel to E and has length 1/phi, * and the vector D-A is parallel to E and has length phi. So this * tells us that given any vector, we can construct one which points in * the same direction and is 1/phi or phi times its length, like this: * * divide_by_phi(vector) = rotate(vector, 2) - rotate(vector, 3) * multiply_by_phi(vector) = rotate(vector, 1) - rotate(vector, 4) * * where rotate(vector, n) means applying the above * rotate_one_notch_clockwise primitive n times. Expanding out the * applications of rotate gives the following direct representation in * terms of the vector coordinates: * * divide_by_phi(a,b,c,d) = (b-d, c+d-b, a+b-c, c-a) * multiply_by_phi(a,b,c,d) = (a+b-d, c+d, a+b, c+d-a) * * and you can verify for yourself that those two operations are * inverses of each other (as you'd hope!). * * Having done all of this, testing for equality between two vectors is * a trivial matter of comparing the four integer coordinates. (Which * it _wouldn't_ have been if we'd kept E as a fifth basis vector, * because then (-1,1,-1,1,0) and (0,0,0,0,1) would have had to be * considered identical. So leaving E out is vital.) */ struct vector { int a, b, c, d; }; static vector v_origin(void) { vector v; v.a = v.b = v.c = v.d = 0; return v; } /* We start with a unit vector of B: this means we can easily * draw an isoceles triangle centred on the X axis. */ #ifdef TEST_VECTORS static vector v_unit(void) { vector v; v.b = 1; v.a = v.c = v.d = 0; return v; } #endif #define COS54 0.5877852 #define SIN54 0.8090169 #define COS18 0.9510565 #define SIN18 0.3090169 /* These two are a bit rough-and-ready for now. Note that B/C are * 18 degrees from the x-axis, and A/D are 54 degrees. */ double v_x(vector *vs, int i) { return (vs[i].a + vs[i].d) * COS54 + (vs[i].b + vs[i].c) * COS18; } double v_y(vector *vs, int i) { return (vs[i].a - vs[i].d) * SIN54 + (vs[i].b - vs[i].c) * SIN18; } static vector v_trans(vector v, vector trans) { v.a += trans.a; v.b += trans.b; v.c += trans.c; v.d += trans.d; return v; } static vector v_rotate_36(vector v) { vector vv; vv.a = -v.d; vv.b = v.d + v.a; vv.c = -v.d + v.b; vv.d = v.d + v.c; return vv; } static vector v_rotate(vector v, int ang) { int i; assert((ang % 36) == 0); while (ang < 0) ang += 360; ang = 360-ang; for (i = 0; i < (ang/36); i++) v = v_rotate_36(v); return v; } #ifdef TEST_VECTORS static vector v_scale(vector v, int sc) { v.a *= sc; v.b *= sc; v.c *= sc; v.d *= sc; return v; } #endif static vector v_growphi(vector v) { vector vv; vv.a = v.a + v.b - v.d; vv.b = v.c + v.d; vv.c = v.a + v.b; vv.d = v.c + v.d - v.a; return vv; } static vector v_shrinkphi(vector v) { vector vv; vv.a = v.b - v.d; vv.b = v.c + v.d - v.b; vv.c = v.a + v.b - v.c; vv.d = v.c - v.a; return vv; } #ifdef TEST_VECTORS static const char *v_debug(vector v) { static char buf[255]; sprintf(buf, "(%d,%d,%d,%d)[%2.2f,%2.2f]", v.a, v.b, v.c, v.d, v_x(&v,0), v_y(&v,0)); return buf; } #endif /* ------------------------------------------------------- * Tiling routines. */ static vector xform_coord(vector vo, int shrink, vector vtrans, int ang) { if (shrink < 0) vo = v_shrinkphi(vo); else if (shrink > 0) vo = v_growphi(vo); vo = v_rotate(vo, ang); vo = v_trans(vo, vtrans); return vo; } #define XFORM(n,o,s,a) vs[(n)] = xform_coord(v_edge, (s), vs[(o)], (a)) static int penrose_p2_small(penrose_state *state, int depth, int flip, vector v_orig, vector v_edge); static int penrose_p2_large(penrose_state *state, int depth, int flip, vector v_orig, vector v_edge) { vector vv_orig, vv_edge; #ifdef DEBUG_PENROSE { vector vs[3]; vs[0] = v_orig; XFORM(1, 0, 0, 0); XFORM(2, 0, 0, -36*flip); state->new_tile(state, vs, 3, depth); } #endif if (flip > 0) { vector vs[4]; vs[0] = v_orig; XFORM(1, 0, 0, -36); XFORM(2, 0, 0, 0); XFORM(3, 0, 0, 36); state->new_tile(state, vs, 4, depth); } if (depth >= state->max_depth) return 0; vv_orig = v_trans(v_orig, v_rotate(v_edge, -36*flip)); vv_edge = v_rotate(v_edge, 108*flip); penrose_p2_small(state, depth+1, flip, v_orig, v_shrinkphi(v_edge)); penrose_p2_large(state, depth+1, flip, vv_orig, v_shrinkphi(vv_edge)); penrose_p2_large(state, depth+1, -flip, vv_orig, v_shrinkphi(vv_edge)); return 0; } static int penrose_p2_small(penrose_state *state, int depth, int flip, vector v_orig, vector v_edge) { vector vv_orig; #ifdef DEBUG_PENROSE { vector vs[3]; vs[0] = v_orig; XFORM(1, 0, 0, 0); XFORM(2, 0, -1, -36*flip); state->new_tile(state, vs, 3, depth); } #endif if (flip > 0) { vector vs[4]; vs[0] = v_orig; XFORM(1, 0, 0, -72); XFORM(2, 0, -1, -36); XFORM(3, 0, 0, 0); state->new_tile(state, vs, 4, depth); } if (depth >= state->max_depth) return 0; vv_orig = v_trans(v_orig, v_edge); penrose_p2_large(state, depth+1, -flip, v_orig, v_shrinkphi(v_rotate(v_edge, -36*flip))); penrose_p2_small(state, depth+1, flip, vv_orig, v_shrinkphi(v_rotate(v_edge, -144*flip))); return 0; } static int penrose_p3_small(penrose_state *state, int depth, int flip, vector v_orig, vector v_edge); static int penrose_p3_large(penrose_state *state, int depth, int flip, vector v_orig, vector v_edge) { vector vv_orig; #ifdef DEBUG_PENROSE { vector vs[3]; vs[0] = v_orig; XFORM(1, 0, 1, 0); XFORM(2, 0, 0, -36*flip); state->new_tile(state, vs, 3, depth); } #endif if (flip > 0) { vector vs[4]; vs[0] = v_orig; XFORM(1, 0, 0, -36); XFORM(2, 0, 1, 0); XFORM(3, 0, 0, 36); state->new_tile(state, vs, 4, depth); } if (depth >= state->max_depth) return 0; vv_orig = v_trans(v_orig, v_edge); penrose_p3_large(state, depth+1, -flip, vv_orig, v_shrinkphi(v_rotate(v_edge, 180))); penrose_p3_small(state, depth+1, flip, vv_orig, v_shrinkphi(v_rotate(v_edge, -108*flip))); vv_orig = v_trans(v_orig, v_growphi(v_edge)); penrose_p3_large(state, depth+1, flip, vv_orig, v_shrinkphi(v_rotate(v_edge, -144*flip))); return 0; } static int penrose_p3_small(penrose_state *state, int depth, int flip, vector v_orig, vector v_edge) { vector vv_orig; #ifdef DEBUG_PENROSE { vector vs[3]; vs[0] = v_orig; XFORM(1, 0, 0, 0); XFORM(2, 0, 0, -36*flip); state->new_tile(state, vs, 3, depth); } #endif if (flip > 0) { vector vs[4]; vs[0] = v_orig; XFORM(1, 0, 0, -36); XFORM(3, 0, 0, 0); XFORM(2, 3, 0, -36); state->new_tile(state, vs, 4, depth); } if (depth >= state->max_depth) return 0; /* NB these two are identical to the first two of p3_large. */ vv_orig = v_trans(v_orig, v_edge); penrose_p3_large(state, depth+1, -flip, vv_orig, v_shrinkphi(v_rotate(v_edge, 180))); penrose_p3_small(state, depth+1, flip, vv_orig, v_shrinkphi(v_rotate(v_edge, -108*flip))); return 0; } /* ------------------------------------------------------- * Utility routines. */ double penrose_side_length(double start_size, int depth) { return start_size / pow(PHI, depth); } /* * It turns out that an acute isosceles triangle with sides in ratio 1:phi:phi * has an incentre which is conveniently 2*phi^-2 of the way from the apex to * the base. Why's that convenient? Because: if we situate the incentre of the * triangle at the origin, then we can place the apex at phi^-2 * (B+C), and * the other two vertices at apex-B and apex-C respectively. So that's an acute * triangle with its long sides of unit length, covering a circle about the * origin of radius 1-(2*phi^-2), which is conveniently enough phi^-3. * * (later mail: this is an overestimate by about 5%) */ int penrose(penrose_state *state, int which, int angle) { vector vo = v_origin(); vector vb = v_origin(); vo.b = vo.c = -state->start_size; vo = v_shrinkphi(v_shrinkphi(vo)); vb.b = state->start_size; vo = v_rotate(vo, angle); vb = v_rotate(vb, angle); if (which == PENROSE_P2) return penrose_p2_large(state, 0, 1, vo, vb); else return penrose_p3_small(state, 0, 1, vo, vb); } /* * We're asked for a MxN grid, which just means a tiling fitting into roughly * an MxN space in some kind of reasonable unit - say, the side length of the * two-arrow edges of the tiles. By some reasoning in a previous email, that * means we want to pick some subarea of a circle of radius 3.11*sqrt(M^2+N^2). * To cover that circle, we need to subdivide a triangle large enough that it * contains a circle of that radius. * * Hence: start with those three vectors marking triangle vertices, scale them * all up by phi repeatedly until the radius of the inscribed circle gets * bigger than the target, and then recurse into that triangle with the same * recursion depth as the number of times you scaled up. That will give you * tiles of unit side length, covering a circle big enough that if you randomly * choose an orientation and coordinates within the circle, you'll be able to * get any valid piece of Penrose tiling of size MxN. */ #define INCIRCLE_RADIUS 0.22426 /* phi^-3 less 5%: see above */ void penrose_calculate_size(int which, int tilesize, int w, int h, double *required_radius, int *start_size, int *depth) { double rradius, size; int n = 0; /* * Fudge factor to scale P2 and P3 tilings differently. This * doesn't seem to have much relevance to questions like the * average number of tiles per unit area; it's just aesthetic. */ if (which == PENROSE_P2) tilesize = tilesize * 3 / 2; else tilesize = tilesize * 5 / 4; rradius = tilesize * 3.11 * sqrt((double)(w*w + h*h)); size = tilesize; while ((size * INCIRCLE_RADIUS) < rradius) { n++; size = size * PHI; } *start_size = (int)size; *depth = n; *required_radius = rradius; }