ref: d58d5c11d5e98afe8623e2cb4a6188f45c01f6ed
dir: /sixteen.c/
/* * sixteen.c: `16-puzzle', a sliding-tiles jigsaw which differs * from the 15-puzzle in that you toroidally rotate a row or column * at a time. */ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <assert.h> #include <ctype.h> #include <math.h> #include "puzzles.h" const char *const game_name = "Sixteen"; const char *const game_winhelp_topic = "games.sixteen"; const int game_can_configure = TRUE; #define TILE_SIZE 48 #define BORDER TILE_SIZE /* big border to fill with arrows */ #define HIGHLIGHT_WIDTH (TILE_SIZE / 20) #define COORD(x) ( (x) * TILE_SIZE + BORDER ) #define FROMCOORD(x) ( ((x) - BORDER + 2*TILE_SIZE) / TILE_SIZE - 2 ) #define ANIM_TIME 0.13F #define FLASH_FRAME 0.13F #define X(state, i) ( (i) % (state)->w ) #define Y(state, i) ( (i) / (state)->w ) #define C(state, x, y) ( (y) * (state)->w + (x) ) enum { COL_BACKGROUND, COL_TEXT, COL_HIGHLIGHT, COL_LOWLIGHT, NCOLOURS }; struct game_params { int w, h; }; struct game_state { int w, h, n; int *tiles; int completed; int movecount; int last_movement_sense; }; game_params *default_params(void) { game_params *ret = snew(game_params); ret->w = ret->h = 4; return ret; } int game_fetch_preset(int i, char **name, game_params **params) { game_params *ret; int w, h; char buf[80]; switch (i) { case 0: w = 3, h = 3; break; case 1: w = 4, h = 3; break; case 2: w = 4, h = 4; break; case 3: w = 5, h = 4; break; case 4: w = 5, h = 5; break; default: return FALSE; } sprintf(buf, "%dx%d", w, h); *name = dupstr(buf); *params = ret = snew(game_params); ret->w = w; ret->h = h; return TRUE; } void free_params(game_params *params) { sfree(params); } game_params *dup_params(game_params *params) { game_params *ret = snew(game_params); *ret = *params; /* structure copy */ return ret; } game_params *decode_params(char const *string) { game_params *ret = default_params(); ret->w = ret->h = atoi(string); while (*string && isdigit(*string)) string++; if (*string == 'x') { string++; ret->h = atoi(string); } return ret; } char *encode_params(game_params *params) { char data[256]; sprintf(data, "%dx%d", params->w, params->h); return dupstr(data); } config_item *game_configure(game_params *params) { config_item *ret; char buf[80]; ret = snewn(3, config_item); ret[0].name = "Width"; ret[0].type = C_STRING; sprintf(buf, "%d", params->w); ret[0].sval = dupstr(buf); ret[0].ival = 0; ret[1].name = "Height"; ret[1].type = C_STRING; sprintf(buf, "%d", params->h); ret[1].sval = dupstr(buf); ret[1].ival = 0; ret[2].name = NULL; ret[2].type = C_END; ret[2].sval = NULL; ret[2].ival = 0; return ret; } game_params *custom_params(config_item *cfg) { game_params *ret = snew(game_params); ret->w = atoi(cfg[0].sval); ret->h = atoi(cfg[1].sval); return ret; } char *validate_params(game_params *params) { if (params->w < 2 && params->h < 2) return "Width and height must both be at least two"; return NULL; } int perm_parity(int *perm, int n) { int i, j, ret; ret = 0; for (i = 0; i < n-1; i++) for (j = i+1; j < n; j++) if (perm[i] > perm[j]) ret = !ret; return ret; } char *new_game_seed(game_params *params, random_state *rs) { int stop, n, i, x; int x1, x2, p1, p2; int *tiles, *used; char *ret; int retlen; n = params->w * params->h; tiles = snewn(n, int); used = snewn(n, int); for (i = 0; i < n; i++) { tiles[i] = -1; used[i] = FALSE; } /* * If both dimensions are odd, there is a parity constraint. */ if (params->w & params->h & 1) stop = 2; else stop = 0; /* * Place everything except (possibly) the last two tiles. */ for (x = 0, i = n; i > stop; i--) { int k = i > 1 ? random_upto(rs, i) : 0; int j; for (j = 0; j < n; j++) if (!used[j] && (k-- == 0)) break; assert(j < n && !used[j]); used[j] = TRUE; while (tiles[x] >= 0) x++; assert(x < n); tiles[x] = j; } if (stop) { /* * Find the last two locations, and the last two pieces. */ while (tiles[x] >= 0) x++; assert(x < n); x1 = x; x++; while (tiles[x] >= 0) x++; assert(x < n); x2 = x; for (i = 0; i < n; i++) if (!used[i]) break; p1 = i; for (i = p1+1; i < n; i++) if (!used[i]) break; p2 = i; /* * Try the last two tiles one way round. If that fails, swap * them. */ tiles[x1] = p1; tiles[x2] = p2; if (perm_parity(tiles, n) != 0) { tiles[x1] = p2; tiles[x2] = p1; assert(perm_parity(tiles, n) == 0); } } /* * Now construct the game seed, by describing the tile array as * a simple sequence of comma-separated integers. */ ret = NULL; retlen = 0; for (i = 0; i < n; i++) { char buf[80]; int k; k = sprintf(buf, "%d,", tiles[i]+1); ret = sresize(ret, retlen + k + 1, char); strcpy(ret + retlen, buf); retlen += k; } ret[retlen-1] = '\0'; /* delete last comma */ sfree(tiles); sfree(used); return ret; } char *validate_seed(game_params *params, char *seed) { char *p, *err; int i, area; int *used; area = params->w * params->h; p = seed; err = NULL; used = snewn(area, int); for (i = 0; i < area; i++) used[i] = FALSE; for (i = 0; i < area; i++) { char *q = p; int n; if (*p < '0' || *p > '9') { err = "Not enough numbers in string"; goto leave; } while (*p >= '0' && *p <= '9') p++; if (i < area-1 && *p != ',') { err = "Expected comma after number"; goto leave; } else if (i == area-1 && *p) { err = "Excess junk at end of string"; goto leave; } n = atoi(q); if (n < 1 || n > area) { err = "Number out of range"; goto leave; } if (used[n-1]) { err = "Number used twice"; goto leave; } used[n-1] = TRUE; if (*p) p++; /* eat comma */ } leave: sfree(used); return err; } game_state *new_game(game_params *params, char *seed) { game_state *state = snew(game_state); int i; char *p; state->w = params->w; state->h = params->h; state->n = params->w * params->h; state->tiles = snewn(state->n, int); p = seed; i = 0; for (i = 0; i < state->n; i++) { assert(*p); state->tiles[i] = atoi(p); while (*p && *p != ',') p++; if (*p) p++; /* eat comma */ } assert(!*p); state->completed = state->movecount = 0; state->last_movement_sense = 0; return state; } game_state *dup_game(game_state *state) { game_state *ret = snew(game_state); ret->w = state->w; ret->h = state->h; ret->n = state->n; ret->tiles = snewn(state->w * state->h, int); memcpy(ret->tiles, state->tiles, state->w * state->h * sizeof(int)); ret->completed = state->completed; ret->movecount = state->movecount; ret->last_movement_sense = state->last_movement_sense; return ret; } void free_game(game_state *state) { sfree(state); } game_ui *new_ui(game_state *state) { return NULL; } void free_ui(game_ui *ui) { } game_state *make_move(game_state *from, game_ui *ui, int x, int y, int button) { int cx, cy; int dx, dy, tx, ty, n; game_state *ret; if (button != LEFT_BUTTON && button != RIGHT_BUTTON) return NULL; cx = FROMCOORD(x); cy = FROMCOORD(y); if (cx == -1 && cy >= 0 && cy < from->h) n = from->w, dx = +1, dy = 0; else if (cx == from->w && cy >= 0 && cy < from->h) n = from->w, dx = -1, dy = 0; else if (cy == -1 && cx >= 0 && cx < from->w) n = from->h, dy = +1, dx = 0; else if (cy == from->h && cx >= 0 && cx < from->w) n = from->h, dy = -1, dx = 0; else return NULL; /* invalid click location */ /* reverse direction if right hand button is pressed */ if (button == RIGHT_BUTTON) { dx = -dx; if (dx) cx = from->w - 1 - cx; dy = -dy; if (dy) cy = from->h - 1 - cy; } ret = dup_game(from); do { cx += dx; cy += dy; tx = (cx + dx + from->w) % from->w; ty = (cy + dy + from->h) % from->h; ret->tiles[C(ret, cx, cy)] = from->tiles[C(from, tx, ty)]; } while (--n > 0); ret->movecount++; ret->last_movement_sense = -(dx+dy); /* * See if the game has been completed. */ if (!ret->completed) { ret->completed = ret->movecount; for (n = 0; n < ret->n; n++) if (ret->tiles[n] != n+1) ret->completed = FALSE; } return ret; } /* ---------------------------------------------------------------------- * Drawing routines. */ struct game_drawstate { int started; int w, h, bgcolour; int *tiles; }; void game_size(game_params *params, int *x, int *y) { *x = TILE_SIZE * params->w + 2 * BORDER; *y = TILE_SIZE * params->h + 2 * BORDER; } float *game_colours(frontend *fe, game_state *state, int *ncolours) { float *ret = snewn(3 * NCOLOURS, float); int i; float max; frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]); /* * Drop the background colour so that the highlight is * noticeably brighter than it while still being under 1. */ max = ret[COL_BACKGROUND*3]; for (i = 1; i < 3; i++) if (ret[COL_BACKGROUND*3+i] > max) max = ret[COL_BACKGROUND*3+i]; if (max * 1.2F > 1.0F) { for (i = 0; i < 3; i++) ret[COL_BACKGROUND*3+i] /= (max * 1.2F); } for (i = 0; i < 3; i++) { ret[COL_HIGHLIGHT * 3 + i] = ret[COL_BACKGROUND * 3 + i] * 1.2F; ret[COL_LOWLIGHT * 3 + i] = ret[COL_BACKGROUND * 3 + i] * 0.8F; ret[COL_TEXT * 3 + i] = 0.0; } *ncolours = NCOLOURS; return ret; } game_drawstate *game_new_drawstate(game_state *state) { struct game_drawstate *ds = snew(struct game_drawstate); int i; ds->started = FALSE; ds->w = state->w; ds->h = state->h; ds->bgcolour = COL_BACKGROUND; ds->tiles = snewn(ds->w*ds->h, int); for (i = 0; i < ds->w*ds->h; i++) ds->tiles[i] = -1; return ds; } void game_free_drawstate(game_drawstate *ds) { sfree(ds->tiles); sfree(ds); } static void draw_tile(frontend *fe, game_state *state, int x, int y, int tile, int flash_colour) { if (tile == 0) { draw_rect(fe, x, y, TILE_SIZE, TILE_SIZE, flash_colour); } else { int coords[6]; char str[40]; coords[0] = x + TILE_SIZE - 1; coords[1] = y + TILE_SIZE - 1; coords[2] = x + TILE_SIZE - 1; coords[3] = y; coords[4] = x; coords[5] = y + TILE_SIZE - 1; draw_polygon(fe, coords, 3, TRUE, COL_LOWLIGHT); draw_polygon(fe, coords, 3, FALSE, COL_LOWLIGHT); coords[0] = x; coords[1] = y; draw_polygon(fe, coords, 3, TRUE, COL_HIGHLIGHT); draw_polygon(fe, coords, 3, FALSE, COL_HIGHLIGHT); draw_rect(fe, x + HIGHLIGHT_WIDTH, y + HIGHLIGHT_WIDTH, TILE_SIZE - 2*HIGHLIGHT_WIDTH, TILE_SIZE - 2*HIGHLIGHT_WIDTH, flash_colour); sprintf(str, "%d", tile); draw_text(fe, x + TILE_SIZE/2, y + TILE_SIZE/2, FONT_VARIABLE, TILE_SIZE/3, ALIGN_VCENTRE | ALIGN_HCENTRE, COL_TEXT, str); } draw_update(fe, x, y, TILE_SIZE, TILE_SIZE); } static void draw_arrow(frontend *fe, int x, int y, int xdx, int xdy) { int coords[14]; int ydy = -xdx, ydx = xdy; #define POINT(n, xx, yy) ( \ coords[2*(n)+0] = x + (xx)*xdx + (yy)*ydx, \ coords[2*(n)+1] = y + (xx)*xdy + (yy)*ydy) POINT(0, TILE_SIZE / 2, 3 * TILE_SIZE / 4); /* top of arrow */ POINT(1, 3 * TILE_SIZE / 4, TILE_SIZE / 2); /* right corner */ POINT(2, 5 * TILE_SIZE / 8, TILE_SIZE / 2); /* right concave */ POINT(3, 5 * TILE_SIZE / 8, TILE_SIZE / 4); /* bottom right */ POINT(4, 3 * TILE_SIZE / 8, TILE_SIZE / 4); /* bottom left */ POINT(5, 3 * TILE_SIZE / 8, TILE_SIZE / 2); /* left concave */ POINT(6, TILE_SIZE / 4, TILE_SIZE / 2); /* left corner */ draw_polygon(fe, coords, 7, TRUE, COL_LOWLIGHT); draw_polygon(fe, coords, 7, FALSE, COL_TEXT); } void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate, game_state *state, game_ui *ui, float animtime, float flashtime) { int i, bgcolour; if (flashtime > 0) { int frame = (int)(flashtime / FLASH_FRAME); bgcolour = (frame % 2 ? COL_LOWLIGHT : COL_HIGHLIGHT); } else bgcolour = COL_BACKGROUND; if (!ds->started) { int coords[6]; draw_rect(fe, 0, 0, TILE_SIZE * state->w + 2 * BORDER, TILE_SIZE * state->h + 2 * BORDER, COL_BACKGROUND); draw_update(fe, 0, 0, TILE_SIZE * state->w + 2 * BORDER, TILE_SIZE * state->h + 2 * BORDER); /* * Recessed area containing the whole puzzle. */ coords[0] = COORD(state->w) + HIGHLIGHT_WIDTH - 1; coords[1] = COORD(state->h) + HIGHLIGHT_WIDTH - 1; coords[2] = COORD(state->w) + HIGHLIGHT_WIDTH - 1; coords[3] = COORD(0) - HIGHLIGHT_WIDTH; coords[4] = COORD(0) - HIGHLIGHT_WIDTH; coords[5] = COORD(state->h) + HIGHLIGHT_WIDTH - 1; draw_polygon(fe, coords, 3, TRUE, COL_HIGHLIGHT); draw_polygon(fe, coords, 3, FALSE, COL_HIGHLIGHT); coords[1] = COORD(0) - HIGHLIGHT_WIDTH; coords[0] = COORD(0) - HIGHLIGHT_WIDTH; draw_polygon(fe, coords, 3, TRUE, COL_LOWLIGHT); draw_polygon(fe, coords, 3, FALSE, COL_LOWLIGHT); /* * Arrows for making moves. */ for (i = 0; i < state->w; i++) { draw_arrow(fe, COORD(i), COORD(0), +1, 0); draw_arrow(fe, COORD(i+1), COORD(state->h), -1, 0); } for (i = 0; i < state->h; i++) { draw_arrow(fe, COORD(state->w), COORD(i), 0, +1); draw_arrow(fe, COORD(0), COORD(i+1), 0, -1); } ds->started = TRUE; } /* * Now draw each tile. */ clip(fe, COORD(0), COORD(0), TILE_SIZE*state->w, TILE_SIZE*state->h); for (i = 0; i < state->n; i++) { int t, t0; /* * Figure out what should be displayed at this * location. It's either a simple tile, or it's a * transition between two tiles (in which case we say * -1 because it must always be drawn). */ if (oldstate && oldstate->tiles[i] != state->tiles[i]) t = -1; else t = state->tiles[i]; t0 = t; if (ds->bgcolour != bgcolour || /* always redraw when flashing */ ds->tiles[i] != t || ds->tiles[i] == -1 || t == -1) { int x, y, x2, y2; /* * Figure out what to _actually_ draw, and where to * draw it. */ if (t == -1) { int x0, y0, x1, y1, dx, dy; int j; float c; int sense; if (oldstate && state->movecount < oldstate->movecount) sense = -oldstate->last_movement_sense; else sense = state->last_movement_sense; t = state->tiles[i]; /* * FIXME: must be prepared to draw a double * tile in some situations. */ /* * Find the coordinates of this tile in the old and * new states. */ x1 = COORD(X(state, i)); y1 = COORD(Y(state, i)); for (j = 0; j < oldstate->n; j++) if (oldstate->tiles[j] == state->tiles[i]) break; assert(j < oldstate->n); x0 = COORD(X(state, j)); y0 = COORD(Y(state, j)); dx = (x1 - x0); if (dx != 0 && dx != TILE_SIZE * sense) { dx = (dx < 0 ? dx + TILE_SIZE * state->w : dx - TILE_SIZE * state->w); assert(abs(dx) == TILE_SIZE); } dy = (y1 - y0); if (dy != 0 && dy != TILE_SIZE * sense) { dy = (dy < 0 ? dy + TILE_SIZE * state->h : dy - TILE_SIZE * state->h); assert(abs(dy) == TILE_SIZE); } c = (animtime / ANIM_TIME); if (c < 0.0F) c = 0.0F; if (c > 1.0F) c = 1.0F; x = x0 + (int)(c * dx); y = y0 + (int)(c * dy); x2 = x1 - dx + (int)(c * dx); y2 = y1 - dy + (int)(c * dy); } else { x = COORD(X(state, i)); y = COORD(Y(state, i)); x2 = y2 = -1; } draw_tile(fe, state, x, y, t, bgcolour); if (x2 != -1 || y2 != -1) draw_tile(fe, state, x2, y2, t, bgcolour); } ds->tiles[i] = t0; } unclip(fe); ds->bgcolour = bgcolour; /* * Update the status bar. */ { char statusbuf[256]; /* * Don't show the new status until we're also showing the * new _state_ - after the game animation is complete. */ if (oldstate) state = oldstate; sprintf(statusbuf, "%sMoves: %d", (state->completed ? "COMPLETED! " : ""), (state->completed ? state->completed : state->movecount)); status_bar(fe, statusbuf); } } float game_anim_length(game_state *oldstate, game_state *newstate) { return ANIM_TIME; } float game_flash_length(game_state *oldstate, game_state *newstate) { if (!oldstate->completed && newstate->completed) return 2 * FLASH_FRAME; else return 0.0F; } int game_wants_statusbar(void) { return TRUE; }