ref: d422dd6009f3e48e13d5f7f162813537902e125c
dir: /singles.c/
/* * singles.c: implementation of Hitori ('let me alone') from Nikoli. * * Make single-get able to fetch a specific puzzle ID from menneske.no? * * www.menneske.no solving methods: * * Done: * SC: if you circle a cell, any cells in same row/col with same no --> black * -- solver_op_circle * SB: if you make a cell black, any cells around it --> white * -- solver_op_blacken * ST: 3 identical cells in row, centre is white and outer two black. * SP: 2 identical cells with single-cell gap, middle cell is white. * -- solver_singlesep (both ST and SP) * PI: if you have a pair of same number in row/col, any other * cells of same number must be black. * -- solve_doubles * CC: if you have a black on edge one cell away from corner, cell * on edge diag. adjacent must be white. * CE: if you have 2 black cells of triangle on edge, third cell must * be white. * QM: if you have 3 black cells of diagonal square in middle, fourth * cell must be white. * -- solve_allblackbutone (CC, CE, and QM). * QC: a corner with 4 identical numbers (or 2 and 2) must have the * corner cell (and cell diagonal to that) black. * TC: a corner with 3 identical numbers (with the L either way) * must have the apex of L black, and other two white. * DC: a corner with 2 identical numbers in domino can set a white * cell along wall. * -- solve_corners (QC, TC, DC) * IP: pair with one-offset-pair force whites by offset pair * -- solve_offsetpair * MC: any cells diag. adjacent to black cells that would split board * into separate white regions must be white. * -- solve_removesplits * * Still to do: * * TEP: 3 pairs of dominos parallel to side, can mark 4 white cells * alongside. * DEP: 2 pairs of dominos parallel to side, can mark 2 white cells. * FI: if you have two sets of double-cells packed together, singles * in that row/col must be white (qv. PI) * QuM: four identical cells (or 2 and 2) in middle of grid only have * two possible solutions each. * FDE: doubles one row/column away from edge can force a white cell. * FDM: doubles in centre (next to bits of diag. square) can force a white cell. * MP: two pairs with same number between force number to black. * CnC: if circling a cell leads to impossible board, cell is black. * MC: if we have two possiblilities, can we force a white circle? * */ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <assert.h> #include <ctype.h> #include <math.h> #include "puzzles.h" #include "latin.h" #ifdef STANDALONE_SOLVER bool verbose = false; #endif #define PREFERRED_TILE_SIZE 32 #define TILE_SIZE (ds->tilesize) #define BORDER (TILE_SIZE / 2) #define CRAD ((TILE_SIZE / 2) - 1) #define TEXTSZ ((14*CRAD/10) - 1) /* 2 * sqrt(2) of CRAD */ #define COORD(x) ( (x) * TILE_SIZE + BORDER ) #define FROMCOORD(x) ( ((x) - BORDER + TILE_SIZE) / TILE_SIZE - 1 ) #define INGRID(s,x,y) ((x) >= 0 && (x) < (s)->w && (y) >= 0 && (y) < (s)->h) #define FLASH_TIME 0.7F enum { COL_BACKGROUND, COL_UNUSED1, COL_LOWLIGHT, COL_BLACK, COL_WHITE, COL_BLACKNUM, COL_GRID, COL_CURSOR, COL_ERROR, NCOLOURS }; struct game_params { int w, h, diff; }; #define F_BLACK 0x1 #define F_CIRCLE 0x2 #define F_ERROR 0x4 #define F_SCRATCH 0x8 struct game_state { int w, h, n, o; /* n = w*h; o = max(w, h) */ bool completed, used_solve, impossible; int *nums; /* size w*h */ unsigned int *flags; /* size w*h */ }; /* top, right, bottom, left */ static const int dxs[4] = { 0, 1, 0, -1 }; static const int dys[4] = { -1, 0, 1, 0 }; /* --- Game parameters and preset functions --- */ #define DIFFLIST(A) \ A(EASY,Easy,e) \ A(TRICKY,Tricky,k) #define ENUM(upper,title,lower) DIFF_ ## upper, #define TITLE(upper,title,lower) #title, #define ENCODE(upper,title,lower) #lower #define CONFIG(upper,title,lower) ":" #title enum { DIFFLIST(ENUM) DIFF_MAX, DIFF_ANY }; static char const *const singles_diffnames[] = { DIFFLIST(TITLE) }; static char const singles_diffchars[] = DIFFLIST(ENCODE); #define DIFFCOUNT lenof(singles_diffchars) #define DIFFCONFIG DIFFLIST(CONFIG) static game_params *default_params(void) { game_params *ret = snew(game_params); ret->w = ret->h = 5; ret->diff = DIFF_EASY; return ret; } static const struct game_params singles_presets[] = { { 5, 5, DIFF_EASY }, { 5, 5, DIFF_TRICKY }, { 6, 6, DIFF_EASY }, { 6, 6, DIFF_TRICKY }, { 8, 8, DIFF_EASY }, { 8, 8, DIFF_TRICKY }, { 10, 10, DIFF_EASY }, { 10, 10, DIFF_TRICKY }, { 12, 12, DIFF_EASY }, { 12, 12, DIFF_TRICKY } }; static bool game_fetch_preset(int i, char **name, game_params **params) { game_params *ret; char buf[80]; if (i < 0 || i >= lenof(singles_presets)) return false; ret = default_params(); *ret = singles_presets[i]; *params = ret; sprintf(buf, "%dx%d %s", ret->w, ret->h, singles_diffnames[ret->diff]); *name = dupstr(buf); return true; } static void free_params(game_params *params) { sfree(params); } static game_params *dup_params(const game_params *params) { game_params *ret = snew(game_params); *ret = *params; /* structure copy */ return ret; } static void decode_params(game_params *ret, char const *string) { char const *p = string; int i; ret->w = ret->h = atoi(p); while (*p && isdigit((unsigned char)*p)) p++; if (*p == 'x') { p++; ret->h = atoi(p); while (*p && isdigit((unsigned char)*p)) p++; } if (*p == 'd') { ret->diff = DIFF_MAX; /* which is invalid */ p++; for (i = 0; i < DIFFCOUNT; i++) { if (*p == singles_diffchars[i]) ret->diff = i; } p++; } } static char *encode_params(const game_params *params, bool full) { char data[256]; if (full) sprintf(data, "%dx%dd%c", params->w, params->h, singles_diffchars[params->diff]); else sprintf(data, "%dx%d", params->w, params->h); return dupstr(data); } static config_item *game_configure(const game_params *params) { config_item *ret; char buf[80]; ret = snewn(4, config_item); ret[0].name = "Width"; ret[0].type = C_STRING; sprintf(buf, "%d", params->w); ret[0].u.string.sval = dupstr(buf); ret[1].name = "Height"; ret[1].type = C_STRING; sprintf(buf, "%d", params->h); ret[1].u.string.sval = dupstr(buf); ret[2].name = "Difficulty"; ret[2].type = C_CHOICES; ret[2].u.choices.choicenames = DIFFCONFIG; ret[2].u.choices.selected = params->diff; ret[3].name = NULL; ret[3].type = C_END; return ret; } static game_params *custom_params(const config_item *cfg) { game_params *ret = snew(game_params); ret->w = atoi(cfg[0].u.string.sval); ret->h = atoi(cfg[1].u.string.sval); ret->diff = cfg[2].u.choices.selected; return ret; } static const char *validate_params(const game_params *params, bool full) { if (params->w < 2 || params->h < 2) return "Width and neight must be at least two"; if (params->w > 10+26+26 || params->h > 10+26+26) return "Puzzle is too large"; if (full) { if (params->diff < 0 || params->diff >= DIFF_MAX) return "Unknown difficulty rating"; } return NULL; } /* --- Game description string generation and unpicking --- */ static game_state *blank_game(int w, int h) { game_state *state = snew(game_state); memset(state, 0, sizeof(game_state)); state->w = w; state->h = h; state->n = w*h; state->o = max(w,h); state->completed = false; state->used_solve = false; state->impossible = false; state->nums = snewn(state->n, int); state->flags = snewn(state->n, unsigned int); memset(state->nums, 0, state->n*sizeof(int)); memset(state->flags, 0, state->n*sizeof(unsigned int)); return state; } static game_state *dup_game(const game_state *state) { game_state *ret = blank_game(state->w, state->h); ret->completed = state->completed; ret->used_solve = state->used_solve; ret->impossible = state->impossible; memcpy(ret->nums, state->nums, state->n*sizeof(int)); memcpy(ret->flags, state->flags, state->n*sizeof(unsigned int)); return ret; } static void free_game(game_state *state) { sfree(state->nums); sfree(state->flags); sfree(state); } static char n2c(int num) { if (num < 10) return '0' + num; else if (num < 10+26) return 'a' + num - 10; else return 'A' + num - 10 - 26; return '?'; } static int c2n(char c) { if (isdigit((unsigned char)c)) return (int)(c - '0'); else if (c >= 'a' && c <= 'z') return (int)(c - 'a' + 10); else if (c >= 'A' && c <= 'Z') return (int)(c - 'A' + 10 + 26); return -1; } static void unpick_desc(const game_params *params, const char *desc, game_state **sout, const char **mout) { game_state *state = blank_game(params->w, params->h); const char *msg = NULL; int num = 0, i = 0; if (strlen(desc) != state->n) { msg = "Game description is wrong length"; goto done; } for (i = 0; i < state->n; i++) { num = c2n(desc[i]); if (num <= 0 || num > state->o) { msg = "Game description contains unexpected characters"; goto done; } state->nums[i] = num; } done: if (msg) { /* sth went wrong. */ if (mout) *mout = msg; free_game(state); } else { if (mout) *mout = NULL; if (sout) *sout = state; else free_game(state); } } static char *generate_desc(game_state *state, bool issolve) { char *ret = snewn(state->n+1+(issolve?1:0), char); int i, p=0; if (issolve) ret[p++] = 'S'; for (i = 0; i < state->n; i++) ret[p++] = n2c(state->nums[i]); ret[p] = '\0'; return ret; } /* --- Useful game functions (completion, etc.) --- */ static bool game_can_format_as_text_now(const game_params *params) { return true; } static char *game_text_format(const game_state *state) { int len, x, y, i; char *ret, *p; len = (state->w)*2; /* one row ... */ len = len * (state->h*2); /* ... h rows, including gaps ... */ len += 1; /* ... final NL */ p = ret = snewn(len, char); for (y = 0; y < state->h; y++) { for (x = 0; x < state->w; x++) { i = y*state->w + x; if (x > 0) *p++ = ' '; *p++ = (state->flags[i] & F_BLACK) ? '*' : n2c(state->nums[i]); } *p++ = '\n'; for (x = 0; x < state->w; x++) { i = y*state->w + x; if (x > 0) *p++ = ' '; *p++ = (state->flags[i] & F_CIRCLE) ? '~' : ' '; } *p++ = '\n'; } *p++ = '\0'; assert(p - ret == len); return ret; } static void debug_state(const char *desc, game_state *state) { char *dbg = game_text_format(state); debug(("%s:\n%s", desc, dbg)); sfree(dbg); } static void connect_if_same(game_state *state, int *dsf, int i1, int i2) { int c1, c2; if ((state->flags[i1] & F_BLACK) != (state->flags[i2] & F_BLACK)) return; c1 = dsf_canonify(dsf, i1); c2 = dsf_canonify(dsf, i2); dsf_merge(dsf, c1, c2); } static void connect_dsf(game_state *state, int *dsf) { int x, y, i; /* Construct a dsf array for connected blocks; connections * tracked to right and down. */ dsf_init(dsf, state->n); for (x = 0; x < state->w; x++) { for (y = 0; y < state->h; y++) { i = y*state->w + x; if (x < state->w-1) connect_if_same(state, dsf, i, i+1); /* right */ if (y < state->h-1) connect_if_same(state, dsf, i, i+state->w); /* down */ } } } #define CC_MARK_ERRORS 1 #define CC_MUST_FILL 2 static int check_rowcol(game_state *state, int starti, int di, int sz, unsigned flags) { int nerr = 0, n, m, i, j; /* if any circled numbers have identical non-circled numbers on * same row/column, error (non-circled) * if any circled numbers in same column are same number, highlight them. * if any rows/columns have >1 of same number, not complete. */ for (n = 0, i = starti; n < sz; n++, i += di) { if (state->flags[i] & F_BLACK) continue; for (m = n+1, j = i+di; m < sz; m++, j += di) { if (state->flags[j] & F_BLACK) continue; if (state->nums[i] != state->nums[j]) continue; nerr++; /* ok, we have two numbers the same in a row. */ if (!(flags & CC_MARK_ERRORS)) continue; /* If we have two circles in the same row around * two identical numbers, they are _both_ wrong. */ if ((state->flags[i] & F_CIRCLE) && (state->flags[j] & F_CIRCLE)) { state->flags[i] |= F_ERROR; state->flags[j] |= F_ERROR; } /* Otherwise, if we have a circle, any other identical * numbers in that row are obviously wrong. We don't * highlight this, however, since it makes the process * of solving the puzzle too easy (you circle a number * and it promptly tells you which numbers to blacken! */ #if 0 else if (state->flags[i] & F_CIRCLE) state->flags[j] |= F_ERROR; else if (state->flags[j] & F_CIRCLE) state->flags[i] |= F_ERROR; #endif } } return nerr; } static bool check_complete(game_state *state, unsigned flags) { int *dsf = snewn(state->n, int); int x, y, i, error = 0, nwhite, w = state->w, h = state->h; if (flags & CC_MARK_ERRORS) { for (i = 0; i < state->n; i++) state->flags[i] &= ~F_ERROR; } connect_dsf(state, dsf); /* If we're the solver we need the grid all to be definitively * black or definitively white (i.e. circled) otherwise the solver * has found an ambiguous grid. */ if (flags & CC_MUST_FILL) { for (i = 0; i < state->n; i++) { if (!(state->flags[i] & F_BLACK) && !(state->flags[i] & F_CIRCLE)) error += 1; } } /* Mark any black squares in groups of >1 as errors. * Count number of white squares. */ nwhite = 0; for (i = 0; i < state->n; i++) { if (state->flags[i] & F_BLACK) { if (dsf_size(dsf, i) > 1) { error += 1; if (flags & CC_MARK_ERRORS) state->flags[i] |= F_ERROR; } } else nwhite += 1; } /* Check attributes of white squares, row- and column-wise. */ for (x = 0; x < w; x++) /* check cols from (x,0) */ error += check_rowcol(state, x, w, h, flags); for (y = 0; y < h; y++) /* check rows from (0,y) */ error += check_rowcol(state, y*w, 1, w, flags); /* If there's more than one white region, pick the largest one to * be the canonical one (arbitrarily tie-breaking towards lower * array indices), and mark all the others as erroneous. */ { int largest = 0, canonical = -1; for (i = 0; i < state->n; i++) if (!(state->flags[i] & F_BLACK)) { int size = dsf_size(dsf, i); if (largest < size) { largest = size; canonical = i; } } if (largest < nwhite) { for (i = 0; i < state->n; i++) if (!(state->flags[i] & F_BLACK) && dsf_canonify(dsf, i) != canonical) { error += 1; if (flags & CC_MARK_ERRORS) state->flags[i] |= F_ERROR; } } } sfree(dsf); return !(error > 0); } static char *game_state_diff(const game_state *src, const game_state *dst, bool issolve) { char *ret = NULL, buf[80], c; int retlen = 0, x, y, i, k; unsigned int fmask = F_BLACK | F_CIRCLE; assert(src->n == dst->n); if (issolve) { ret = sresize(ret, 3, char); ret[0] = 'S'; ret[1] = ';'; ret[2] = '\0'; retlen += 2; } for (x = 0; x < dst->w; x++) { for (y = 0; y < dst->h; y++) { i = y*dst->w + x; if ((src->flags[i] & fmask) != (dst->flags[i] & fmask)) { assert((dst->flags[i] & fmask) != fmask); if (dst->flags[i] & F_BLACK) c = 'B'; else if (dst->flags[i] & F_CIRCLE) c = 'C'; else c = 'E'; k = sprintf(buf, "%c%d,%d;", (int)c, x, y); ret = sresize(ret, retlen + k + 1, char); strcpy(ret + retlen, buf); retlen += k; } } } return ret; } /* --- Solver --- */ enum { BLACK, CIRCLE }; struct solver_op { int x, y, op; /* op one of BLACK or CIRCLE. */ const char *desc; /* must be non-malloced. */ }; struct solver_state { struct solver_op *ops; int n_ops, n_alloc; int *scratch; }; static struct solver_state *solver_state_new(game_state *state) { struct solver_state *ss = snew(struct solver_state); ss->ops = NULL; ss->n_ops = ss->n_alloc = 0; ss->scratch = snewn(state->n, int); return ss; } static void solver_state_free(struct solver_state *ss) { sfree(ss->scratch); if (ss->ops) sfree(ss->ops); sfree(ss); } static void solver_op_add(struct solver_state *ss, int x, int y, int op, const char *desc) { struct solver_op *sop; if (ss->n_alloc < ss->n_ops + 1) { ss->n_alloc = (ss->n_alloc + 1) * 2; ss->ops = sresize(ss->ops, ss->n_alloc, struct solver_op); } sop = &(ss->ops[ss->n_ops++]); sop->x = x; sop->y = y; sop->op = op; sop->desc = desc; debug(("added solver op %s ('%s') at (%d,%d)\n", op == BLACK ? "BLACK" : "CIRCLE", desc, x, y)); } static void solver_op_circle(game_state *state, struct solver_state *ss, int x, int y) { int i = y*state->w + x; if (!INGRID(state, x, y)) return; if (state->flags[i] & F_BLACK) { debug(("... solver wants to add auto-circle on black (%d,%d)\n", x, y)); state->impossible = true; return; } /* Only add circle op if it's not already circled. */ if (!(state->flags[i] & F_CIRCLE)) { solver_op_add(ss, x, y, CIRCLE, "SB - adjacent to black square"); } } static void solver_op_blacken(game_state *state, struct solver_state *ss, int x, int y, int num) { int i = y*state->w + x; if (!INGRID(state, x, y)) return; if (state->nums[i] != num) return; if (state->flags[i] & F_CIRCLE) { debug(("... solver wants to add auto-black on circled(%d,%d)\n", x, y)); state->impossible = true; return; } /* Only add black op if it's not already black. */ if (!(state->flags[i] & F_BLACK)) { solver_op_add(ss, x, y, BLACK, "SC - number on same row/col as circled"); } } static int solver_ops_do(game_state *state, struct solver_state *ss) { int next_op = 0, i, x, y, n_ops = 0; struct solver_op op; /* Care here: solver_op_* may call solver_op_add which may extend the * ss->n_ops. */ while (next_op < ss->n_ops) { op = ss->ops[next_op++]; /* copy this away, it may get reallocated. */ i = op.y*state->w + op.x; if (op.op == BLACK) { if (state->flags[i] & F_CIRCLE) { debug(("Solver wants to blacken circled square (%d,%d)!\n", op.x, op.y)); state->impossible = true; return n_ops; } if (!(state->flags[i] & F_BLACK)) { debug(("... solver adding black at (%d,%d): %s\n", op.x, op.y, op.desc)); #ifdef STANDALONE_SOLVER if (verbose) printf("Adding black at (%d,%d): %s\n", op.x, op.y, op.desc); #endif state->flags[i] |= F_BLACK; /*debug_state("State after adding black", state);*/ n_ops++; solver_op_circle(state, ss, op.x-1, op.y); solver_op_circle(state, ss, op.x+1, op.y); solver_op_circle(state, ss, op.x, op.y-1); solver_op_circle(state, ss, op.x, op.y+1); } } else { if (state->flags[i] & F_BLACK) { debug(("Solver wants to circle blackened square (%d,%d)!\n", op.x, op.y)); state->impossible = true; return n_ops; } if (!(state->flags[i] & F_CIRCLE)) { debug(("... solver adding circle at (%d,%d): %s\n", op.x, op.y, op.desc)); #ifdef STANDALONE_SOLVER if (verbose) printf("Adding circle at (%d,%d): %s\n", op.x, op.y, op.desc); #endif state->flags[i] |= F_CIRCLE; /*debug_state("State after adding circle", state);*/ n_ops++; for (x = 0; x < state->w; x++) { if (x != op.x) solver_op_blacken(state, ss, x, op.y, state->nums[i]); } for (y = 0; y < state->h; y++) { if (y != op.y) solver_op_blacken(state, ss, op.x, y, state->nums[i]); } } } } ss->n_ops = 0; return n_ops; } /* If the grid has two identical numbers with one cell between them, the inner * cell _must_ be white (and thus circled); (at least) one of the two must be * black (since they're in the same column or row) and thus the middle cell is * next to a black cell. */ static int solve_singlesep(game_state *state, struct solver_state *ss) { int x, y, i, ir, irr, id, idd, n_ops = ss->n_ops; for (x = 0; x < state->w; x++) { for (y = 0; y < state->h; y++) { i = y*state->w + x; /* Cell two to our right? */ ir = i + 1; irr = ir + 1; if (x < (state->w-2) && state->nums[i] == state->nums[irr] && !(state->flags[ir] & F_CIRCLE)) { solver_op_add(ss, x+1, y, CIRCLE, "SP/ST - between identical nums"); } /* Cell two below us? */ id = i + state->w; idd = id + state->w; if (y < (state->h-2) && state->nums[i] == state->nums[idd] && !(state->flags[id] & F_CIRCLE)) { solver_op_add(ss, x, y+1, CIRCLE, "SP/ST - between identical nums"); } } } return ss->n_ops - n_ops; } /* If we have two identical numbers next to each other (in a row or column), * any other identical numbers in that column must be black. */ static int solve_doubles(game_state *state, struct solver_state *ss) { int x, y, i, ii, n_ops = ss->n_ops, xy; for (y = 0, i = 0; y < state->h; y++) { for (x = 0; x < state->w; x++, i++) { assert(i == y*state->w+x); if (state->flags[i] & F_BLACK) continue; ii = i+1; /* check cell to our right. */ if (x < (state->w-1) && !(state->flags[ii] & F_BLACK) && state->nums[i] == state->nums[ii]) { for (xy = 0; xy < state->w; xy++) { if (xy == x || xy == (x+1)) continue; if (state->nums[y*state->w + xy] == state->nums[i] && !(state->flags[y*state->w + xy] & F_BLACK)) solver_op_add(ss, xy, y, BLACK, "PI - same row as pair"); } } ii = i+state->w; /* check cell below us */ if (y < (state->h-1) && !(state->flags[ii] & F_BLACK) && state->nums[i] == state->nums[ii]) { for (xy = 0; xy < state->h; xy++) { if (xy == y || xy == (y+1)) continue; if (state->nums[xy*state->w + x] == state->nums[i] && !(state->flags[xy*state->w + x] & F_BLACK)) solver_op_add(ss, x, xy, BLACK, "PI - same col as pair"); } } } } return ss->n_ops - n_ops; } /* If a white square has all-but-one possible adjacent squares black, the * one square left over must be white. */ static int solve_allblackbutone(game_state *state, struct solver_state *ss) { int x, y, i, n_ops = ss->n_ops, xd, yd, id, ifree; int dis[4], d; dis[0] = -state->w; dis[1] = 1; dis[2] = state->w; dis[3] = -1; for (y = 0, i = 0; y < state->h; y++) { for (x = 0; x < state->w; x++, i++) { assert(i == y*state->w+x); if (state->flags[i] & F_BLACK) continue; ifree = -1; for (d = 0; d < 4; d++) { xd = x + dxs[d]; yd = y + dys[d]; id = i + dis[d]; if (!INGRID(state, xd, yd)) continue; if (state->flags[id] & F_CIRCLE) goto skip; /* this cell already has a way out */ if (!(state->flags[id] & F_BLACK)) { if (ifree != -1) goto skip; /* this cell has >1 white cell around it. */ ifree = id; } } if (ifree != -1) solver_op_add(ss, ifree%state->w, ifree/state->w, CIRCLE, "CC/CE/QM: white cell with single non-black around it"); else { debug(("White cell with no escape at (%d,%d)\n", x, y)); state->impossible = true; return 0; } skip: ; } } return ss->n_ops - n_ops; } /* If we have 4 numbers the same in a 2x2 corner, the far corner and the * diagonally-adjacent square must both be black. * If we have 3 numbers the same in a 2x2 corner, the apex of the L * thus formed must be black. * If we have 2 numbers the same in a 2x2 corner, the non-same cell * one away from the corner must be white. */ static void solve_corner(game_state *state, struct solver_state *ss, int x, int y, int dx, int dy) { int is[4], ns[4], xx, yy, w = state->w; for (yy = 0; yy < 2; yy++) { for (xx = 0; xx < 2; xx++) { is[yy*2+xx] = (y + dy*yy) * w + (x + dx*xx); ns[yy*2+xx] = state->nums[is[yy*2+xx]]; } } /* order is now (corner, side 1, side 2, inner) */ if (ns[0] == ns[1] && ns[0] == ns[2] && ns[0] == ns[3]) { solver_op_add(ss, is[0]%w, is[0]/w, BLACK, "QC: corner with 4 matching"); solver_op_add(ss, is[3]%w, is[3]/w, BLACK, "QC: corner with 4 matching"); } else if (ns[0] == ns[1] && ns[0] == ns[2]) { /* corner and 2 sides: apex is corner. */ solver_op_add(ss, is[0]%w, is[0]/w, BLACK, "TC: corner apex from 3 matching"); } else if (ns[1] == ns[2] && ns[1] == ns[3]) { /* side, side, fourth: apex is fourth. */ solver_op_add(ss, is[3]%w, is[3]/w, BLACK, "TC: inside apex from 3 matching"); } else if (ns[0] == ns[1] || ns[1] == ns[3]) { /* either way here we match the non-identical side. */ solver_op_add(ss, is[2]%w, is[2]/w, CIRCLE, "DC: corner with 2 matching"); } else if (ns[0] == ns[2] || ns[2] == ns[3]) { /* ditto */ solver_op_add(ss, is[1]%w, is[1]/w, CIRCLE, "DC: corner with 2 matching"); } } static int solve_corners(game_state *state, struct solver_state *ss) { int n_ops = ss->n_ops; solve_corner(state, ss, 0, 0, 1, 1); solve_corner(state, ss, state->w-1, 0, -1, 1); solve_corner(state, ss, state->w-1, state->h-1, -1, -1); solve_corner(state, ss, 0, state->h-1, 1, -1); return ss->n_ops - n_ops; } /* If you have the following situation: * ... * ...x A x x y A x... * ...x B x x B y x... * ... * then both squares marked 'y' must be white. One of the left-most A or B must * be white (since two side-by-side black cells are disallowed), which means * that the corresponding right-most A or B must be black (since you can't * have two of the same number on one line); thus, the adjacent squares * to that right-most A or B must be white, which include the two marked 'y' * in either case. * Obviously this works in any row or column. It also works if A == B. * It doesn't work for the degenerate case: * ...x A A x x * ...x B y x x * where the square marked 'y' isn't necessarily white (consider the left-most A * is black). * * */ static void solve_offsetpair_pair(game_state *state, struct solver_state *ss, int x1, int y1, int x2, int y2) { int ox, oy, w = state->w, ax, ay, an, d, dx[2], dy[2], dn, xd, yd; if (x1 == x2) { /* same column */ ox = 1; oy = 0; } else { assert(y1 == y2); ox = 0; oy = 1; } /* We try adjacent to (x1,y1) and the two diag. adjacent to (x2, y2). * We expect to be called twice, once each way around. */ ax = x1+ox; ay = y1+oy; assert(INGRID(state, ax, ay)); an = state->nums[ay*w + ax]; dx[0] = x2 + ox + oy; dx[1] = x2 + ox - oy; dy[0] = y2 + oy + ox; dy[1] = y2 + oy - ox; for (d = 0; d < 2; d++) { if (INGRID(state, dx[d], dy[d]) && (dx[d] != ax || dy[d] != ay)) { /* The 'dx != ax || dy != ay' removes the degenerate case, * mentioned above. */ dn = state->nums[dy[d]*w + dx[d]]; if (an == dn) { /* We have a match; so (WLOG) the 'A' marked above are at * (x1,y1) and (x2,y2), and the 'B' are at (ax,ay) and (dx,dy). */ debug(("Found offset-pair: %d at (%d,%d) and (%d,%d)\n", state->nums[y1*w + x1], x1, y1, x2, y2)); debug((" and: %d at (%d,%d) and (%d,%d)\n", an, ax, ay, dx[d], dy[d])); xd = dx[d] - x2; yd = dy[d] - y2; solver_op_add(ss, x2 + xd, y2, CIRCLE, "IP: next to offset-pair"); solver_op_add(ss, x2, y2 + yd, CIRCLE, "IP: next to offset-pair"); } } } } static int solve_offsetpair(game_state *state, struct solver_state *ss) { int n_ops = ss->n_ops, x, xx, y, yy, n1, n2; for (x = 0; x < state->w-1; x++) { for (y = 0; y < state->h; y++) { n1 = state->nums[y*state->w + x]; for (yy = y+1; yy < state->h; yy++) { n2 = state->nums[yy*state->w + x]; if (n1 == n2) { solve_offsetpair_pair(state, ss, x, y, x, yy); solve_offsetpair_pair(state, ss, x, yy, x, y); } } } } for (y = 0; y < state->h-1; y++) { for (x = 0; x < state->w; x++) { n1 = state->nums[y*state->w + x]; for (xx = x+1; xx < state->w; xx++) { n2 = state->nums[y*state->w + xx]; if (n1 == n2) { solve_offsetpair_pair(state, ss, x, y, xx, y); solve_offsetpair_pair(state, ss, xx, y, x, y); } } } } return ss->n_ops - n_ops; } static bool solve_hassinglewhiteregion( game_state *state, struct solver_state *ss) { int i, j, nwhite = 0, lwhite = -1, szwhite, start, end, next, a, d, x, y; for (i = 0; i < state->n; i++) { if (!(state->flags[i] & F_BLACK)) { nwhite++; lwhite = i; } state->flags[i] &= ~F_SCRATCH; } if (lwhite == -1) { debug(("solve_hassinglewhite: no white squares found!\n")); state->impossible = true; return false; } /* We don't use connect_dsf here; it's too slow, and there's a quicker * algorithm if all we want is the size of one region. */ /* Having written this, this algorithm is only about 5% faster than * using a dsf. */ memset(ss->scratch, -1, state->n * sizeof(int)); ss->scratch[0] = lwhite; state->flags[lwhite] |= F_SCRATCH; start = 0; end = next = 1; while (start < end) { for (a = start; a < end; a++) { i = ss->scratch[a]; assert(i != -1); for (d = 0; d < 4; d++) { x = (i % state->w) + dxs[d]; y = (i / state->w) + dys[d]; j = y*state->w + x; if (!INGRID(state, x, y)) continue; if (state->flags[j] & (F_BLACK | F_SCRATCH)) continue; ss->scratch[next++] = j; state->flags[j] |= F_SCRATCH; } } start = end; end = next; } szwhite = next; return (szwhite == nwhite); } static void solve_removesplits_check(game_state *state, struct solver_state *ss, int x, int y) { int i = y*state->w + x; bool issingle; if (!INGRID(state, x, y)) return; if ((state->flags[i] & F_CIRCLE) || (state->flags[i] & F_BLACK)) return; /* If putting a black square at (x,y) would make the white region * non-contiguous, it must be circled. */ state->flags[i] |= F_BLACK; issingle = solve_hassinglewhiteregion(state, ss); state->flags[i] &= ~F_BLACK; if (!issingle) solver_op_add(ss, x, y, CIRCLE, "MC: black square here would split white region"); } /* For all black squares, search in squares diagonally adjacent to see if * we can rule out putting a black square there (because it would make the * white region non-contiguous). */ /* This function is likely to be somewhat slow. */ static int solve_removesplits(game_state *state, struct solver_state *ss) { int i, x, y, n_ops = ss->n_ops; if (!solve_hassinglewhiteregion(state, ss)) { debug(("solve_removesplits: white region is not contiguous at start!\n")); state->impossible = true; return 0; } for (i = 0; i < state->n; i++) { if (!(state->flags[i] & F_BLACK)) continue; x = i%state->w; y = i/state->w; solve_removesplits_check(state, ss, x-1, y-1); solve_removesplits_check(state, ss, x+1, y-1); solve_removesplits_check(state, ss, x+1, y+1); solve_removesplits_check(state, ss, x-1, y+1); } return ss->n_ops - n_ops; } /* * This function performs a solver step that isn't implicit in the rules * of the game and is thus treated somewhat differently. * * It marks cells whose number does not exist elsewhere in its row/column * with circles. As it happens the game generator here does mean that this * is always correct, but it's a solving method that people should not have * to rely upon (except in the hidden 'sneaky' difficulty setting) and so * all grids at 'tricky' and above are checked to make sure that the grid * is no easier if this solving step is performed beforehand. * * Calling with ss=NULL just returns the number of sneaky deductions that * would have been made. */ static int solve_sneaky(game_state *state, struct solver_state *ss) { int i, ii, x, xx, y, yy, nunique = 0; /* Clear SCRATCH flags. */ for (i = 0; i < state->n; i++) state->flags[i] &= ~F_SCRATCH; for (x = 0; x < state->w; x++) { for (y = 0; y < state->h; y++) { i = y*state->w + x; /* Check for duplicate numbers on our row, mark (both) if so */ for (xx = x; xx < state->w; xx++) { ii = y*state->w + xx; if (i == ii) continue; if (state->nums[i] == state->nums[ii]) { state->flags[i] |= F_SCRATCH; state->flags[ii] |= F_SCRATCH; } } /* Check for duplicate numbers on our col, mark (both) if so */ for (yy = y; yy < state->h; yy++) { ii = yy*state->w + x; if (i == ii) continue; if (state->nums[i] == state->nums[ii]) { state->flags[i] |= F_SCRATCH; state->flags[ii] |= F_SCRATCH; } } } } /* Any cell with no marking has no duplicates on its row or column: * set its CIRCLE. */ for (i = 0; i < state->n; i++) { if (!(state->flags[i] & F_SCRATCH)) { if (ss) solver_op_add(ss, i%state->w, i/state->w, CIRCLE, "SNEAKY: only one of its number in row and col"); nunique += 1; } else state->flags[i] &= ~F_SCRATCH; } return nunique; } static int solve_specific(game_state *state, int diff, bool sneaky) { struct solver_state *ss = solver_state_new(state); if (sneaky) solve_sneaky(state, ss); /* Some solver operations we only have to perform once -- * they're only based on the numbers available, and not black * squares or circles which may be added later. */ solve_singlesep(state, ss); /* never sets impossible */ solve_doubles(state, ss); /* ditto */ solve_corners(state, ss); /* ditto */ if (diff >= DIFF_TRICKY) solve_offsetpair(state, ss); /* ditto */ while (1) { if (ss->n_ops > 0) solver_ops_do(state, ss); if (state->impossible) break; if (solve_allblackbutone(state, ss) > 0) continue; if (state->impossible) break; if (diff >= DIFF_TRICKY) { if (solve_removesplits(state, ss) > 0) continue; if (state->impossible) break; } break; } solver_state_free(ss); return state->impossible ? -1 : check_complete(state, CC_MUST_FILL); } static char *solve_game(const game_state *state, const game_state *currstate, const char *aux, const char **error) { game_state *solved = dup_game(currstate); char *move = NULL; if (solve_specific(solved, DIFF_ANY, false) > 0) goto solved; free_game(solved); solved = dup_game(state); if (solve_specific(solved, DIFF_ANY, false) > 0) goto solved; free_game(solved); *error = "Unable to solve puzzle."; return NULL; solved: move = game_state_diff(currstate, solved, true); free_game(solved); return move; } /* --- Game generation --- */ /* A correctly completed Hitori board is essentially a latin square * (no duplicated numbers in any row or column) with black squares * added such that no black square touches another, and the white * squares make a contiguous region. * * So we can generate it by: * constructing a latin square * adding black squares at random (minding the constraints) * altering the numbers under the new black squares such that the solver gets a headstart working out where they are. */ static bool new_game_is_good(const game_params *params, game_state *state, game_state *tosolve) { int sret, sret_easy = 0; memcpy(tosolve->nums, state->nums, state->n * sizeof(int)); memset(tosolve->flags, 0, state->n * sizeof(unsigned int)); tosolve->completed = false; tosolve->impossible = false; /* * We try and solve it twice, once at our requested difficulty level * (ensuring it's soluble at all) and once at the level below (if * it exists), which we hope to fail: if you can also solve it at * the level below then it's too easy and we have to try again. * * With this puzzle in particular there's an extra finesse, which is * that we check that the generated puzzle isn't too easy _with * an extra solver step first_, which is the 'sneaky' mode of deductions * (asserting that any number which fulfils the latin-square rules * on its row/column must be white). This is an artefact of the * generation process and not implicit in the rules, so we don't want * people to be able to use it to make the puzzle easier. */ assert(params->diff < DIFF_MAX); sret = solve_specific(tosolve, params->diff, false); if (params->diff > DIFF_EASY) { memset(tosolve->flags, 0, state->n * sizeof(unsigned int)); tosolve->completed = false; tosolve->impossible = false; /* this is the only time the 'sneaky' flag is set. */ sret_easy = solve_specific(tosolve, params->diff-1, true); } if (sret <= 0 || sret_easy > 0) { debug(("Generated puzzle %s at chosen difficulty %s\n", sret <= 0 ? "insoluble" : "too easy", singles_diffnames[params->diff])); return false; } return true; } #define MAXTRIES 20 static int best_black_col(game_state *state, random_state *rs, int *scratch, int i, int *rownums, int *colnums) { int w = state->w, x = i%w, y = i/w, j, o = state->o; /* Randomise the list of numbers to try. */ for (i = 0; i < o; i++) scratch[i] = i; shuffle(scratch, o, sizeof(int), rs); /* Try each number in turn, first giving preference to removing * latin-square characteristics (i.e. those numbers which only * occur once in a row/column). The '&&' here, although intuitively * wrong, results in a smaller number of 'sneaky' deductions on * solvable boards. */ for (i = 0; i < o; i++) { j = scratch[i] + 1; if (rownums[y*o + j-1] == 1 && colnums[x*o + j-1] == 1) goto found; } /* Then try each number in turn returning the first one that's * not actually unique in its row/column (see comment below) */ for (i = 0; i < o; i++) { j = scratch[i] + 1; if (rownums[y*o + j-1] != 0 || colnums[x*o + j-1] != 0) goto found; } assert(!"unable to place number under black cell."); return 0; found: /* Update column and row counts assuming this number will be placed. */ rownums[y*o + j-1] += 1; colnums[x*o + j-1] += 1; return j; } static char *new_game_desc(const game_params *params, random_state *rs, char **aux, bool interactive) { game_state *state = blank_game(params->w, params->h); game_state *tosolve = blank_game(params->w, params->h); int i, j, *scratch, *rownums, *colnums, x, y, ntries; int w = state->w, h = state->h, o = state->o; char *ret; digit *latin; struct solver_state *ss = solver_state_new(state); scratch = snewn(state->n, int); rownums = snewn(h*o, int); colnums = snewn(w*o, int); generate: ss->n_ops = 0; debug(("Starting game generation, size %dx%d\n", w, h)); memset(state->flags, 0, state->n*sizeof(unsigned int)); /* First, generate the latin rectangle. * The order of this, o, is max(w,h). */ latin = latin_generate_rect(w, h, rs); for (i = 0; i < state->n; i++) state->nums[i] = (int)latin[i]; sfree(latin); debug_state("State after latin square", state); /* Add black squares at random, using bits of solver as we go (to lay * white squares), until we can lay no more blacks. */ for (i = 0; i < state->n; i++) scratch[i] = i; shuffle(scratch, state->n, sizeof(int), rs); for (j = 0; j < state->n; j++) { i = scratch[j]; if ((state->flags[i] & F_CIRCLE) || (state->flags[i] & F_BLACK)) { debug(("generator skipping (%d,%d): %s\n", i%w, i/w, (state->flags[i] & F_CIRCLE) ? "CIRCLE" : "BLACK")); continue; /* solver knows this must be one or the other already. */ } /* Add a random black cell... */ solver_op_add(ss, i%w, i/w, BLACK, "Generator: adding random black cell"); solver_ops_do(state, ss); /* ... and do as well as we know how to lay down whites that are now forced. */ solve_allblackbutone(state, ss); solver_ops_do(state, ss); solve_removesplits(state, ss); solver_ops_do(state, ss); if (state->impossible) { debug(("generator made impossible, restarting...\n")); goto generate; } } debug_state("State after adding blacks", state); /* Now we know which squares are white and which are black, we lay numbers * under black squares at random, except that the number must appear in * white cells at least once more in the same column or row as that [black] * square. That's necessary to avoid multiple solutions, where blackening * squares in the finished puzzle becomes optional. We use two arrays: * * rownums[ROW * o + NUM-1] is the no. of white cells containing NUM in y=ROW * colnums[COL * o + NUM-1] is the no. of white cells containing NUM in x=COL */ memset(rownums, 0, h*o * sizeof(int)); memset(colnums, 0, w*o * sizeof(int)); for (i = 0; i < state->n; i++) { if (state->flags[i] & F_BLACK) continue; j = state->nums[i]; x = i%w; y = i/w; rownums[y * o + j-1] += 1; colnums[x * o + j-1] += 1; } ntries = 0; randomise: for (i = 0; i < state->n; i++) { if (!(state->flags[i] & F_BLACK)) continue; state->nums[i] = best_black_col(state, rs, scratch, i, rownums, colnums); } debug_state("State after adding numbers", state); /* DIFF_ANY just returns whatever we first generated, for testing purposes. */ if (params->diff != DIFF_ANY && !new_game_is_good(params, state, tosolve)) { ntries++; if (ntries > MAXTRIES) { debug(("Ran out of randomisation attempts, re-generating.\n")); goto generate; } debug(("Re-randomising numbers under black squares.\n")); goto randomise; } ret = generate_desc(state, false); free_game(tosolve); free_game(state); solver_state_free(ss); sfree(scratch); sfree(rownums); sfree(colnums); return ret; } static const char *validate_desc(const game_params *params, const char *desc) { const char *ret = NULL; unpick_desc(params, desc, NULL, &ret); return ret; } static game_state *new_game(midend *me, const game_params *params, const char *desc) { game_state *state = NULL; unpick_desc(params, desc, &state, NULL); if (!state) assert(!"new_game failed to unpick"); return state; } /* --- Game UI and move routines --- */ struct game_ui { int cx, cy; bool cshow, show_black_nums; }; static game_ui *new_ui(const game_state *state) { game_ui *ui = snew(game_ui); ui->cx = ui->cy = 0; ui->cshow = false; ui->show_black_nums = false; return ui; } static void free_ui(game_ui *ui) { sfree(ui); } static char *encode_ui(const game_ui *ui) { return NULL; } static void decode_ui(game_ui *ui, const char *encoding) { } static void game_changed_state(game_ui *ui, const game_state *oldstate, const game_state *newstate) { if (!oldstate->completed && newstate->completed) ui->cshow = false; } static const char *current_key_label(const game_ui *ui, const game_state *state, int button) { if (IS_CURSOR_SELECT(button) && ui->cshow) { unsigned int f = state->flags[ui->cy * state->w + ui->cx]; if (f & F_BLACK) return "Restore"; if (f & F_CIRCLE) return "Remove"; return button == CURSOR_SELECT ? "Black" : "Circle"; } return ""; } #define DS_BLACK 0x1 #define DS_CIRCLE 0x2 #define DS_CURSOR 0x4 #define DS_BLACK_NUM 0x8 #define DS_ERROR 0x10 #define DS_FLASH 0x20 #define DS_IMPOSSIBLE 0x40 struct game_drawstate { int tilesize; bool started, solved; int w, h, n; unsigned int *flags; }; static char *interpret_move(const game_state *state, game_ui *ui, const game_drawstate *ds, int mx, int my, int button) { char buf[80], c; int i, x = FROMCOORD(mx), y = FROMCOORD(my); enum { NONE, TOGGLE_BLACK, TOGGLE_CIRCLE, UI } action = NONE; if (IS_CURSOR_MOVE(button)) { move_cursor(button, &ui->cx, &ui->cy, state->w, state->h, true); ui->cshow = true; action = UI; } else if (IS_CURSOR_SELECT(button)) { x = ui->cx; y = ui->cy; if (!ui->cshow) { action = UI; ui->cshow = true; } if (button == CURSOR_SELECT) { action = TOGGLE_BLACK; } else if (button == CURSOR_SELECT2) { action = TOGGLE_CIRCLE; } } else if (IS_MOUSE_DOWN(button)) { if (ui->cshow) { ui->cshow = false; action = UI; } if (!INGRID(state, x, y)) { ui->show_black_nums = !ui->show_black_nums; action = UI; /* this wants to be a per-game option. */ } else if (button == LEFT_BUTTON) { action = TOGGLE_BLACK; } else if (button == RIGHT_BUTTON) { action = TOGGLE_CIRCLE; } } if (action == UI) return UI_UPDATE; if (action == TOGGLE_BLACK || action == TOGGLE_CIRCLE) { i = y * state->w + x; if (state->flags[i] & (F_BLACK | F_CIRCLE)) c = 'E'; else c = (action == TOGGLE_BLACK) ? 'B' : 'C'; sprintf(buf, "%c%d,%d", (int)c, x, y); return dupstr(buf); } return NULL; } static game_state *execute_move(const game_state *state, const char *move) { game_state *ret = dup_game(state); int x, y, i, n; debug(("move: %s\n", move)); while (*move) { char c = *move; if (c == 'B' || c == 'C' || c == 'E') { move++; if (sscanf(move, "%d,%d%n", &x, &y, &n) != 2 || !INGRID(state, x, y)) goto badmove; i = y*ret->w + x; ret->flags[i] &= ~(F_CIRCLE | F_BLACK); /* empty first, always. */ if (c == 'B') ret->flags[i] |= F_BLACK; else if (c == 'C') ret->flags[i] |= F_CIRCLE; move += n; } else if (c == 'S') { move++; ret->used_solve = true; } else goto badmove; if (*move == ';') move++; else if (*move) goto badmove; } if (check_complete(ret, CC_MARK_ERRORS)) ret->completed = true; return ret; badmove: free_game(ret); return NULL; } /* ---------------------------------------------------------------------- * Drawing routines. */ static void game_compute_size(const game_params *params, int tilesize, int *x, int *y) { /* Ick: fake up `ds->tilesize' for macro expansion purposes */ struct { int tilesize; } ads, *ds = &ads; ads.tilesize = tilesize; *x = TILE_SIZE * params->w + 2 * BORDER; *y = TILE_SIZE * params->h + 2 * BORDER; } static void game_set_size(drawing *dr, game_drawstate *ds, const game_params *params, int tilesize) { ds->tilesize = tilesize; } static float *game_colours(frontend *fe, int *ncolours) { float *ret = snewn(3 * NCOLOURS, float); int i; game_mkhighlight(fe, ret, COL_BACKGROUND, -1, COL_LOWLIGHT); for (i = 0; i < 3; i++) { ret[COL_BLACK * 3 + i] = 0.0F; ret[COL_BLACKNUM * 3 + i] = 0.4F; ret[COL_WHITE * 3 + i] = 1.0F; ret[COL_GRID * 3 + i] = ret[COL_LOWLIGHT * 3 + i]; ret[COL_UNUSED1 * 3 + i] = 0.0F; /* To placate an assertion. */ } ret[COL_CURSOR * 3 + 0] = 0.2F; ret[COL_CURSOR * 3 + 1] = 0.8F; ret[COL_CURSOR * 3 + 2] = 0.0F; ret[COL_ERROR * 3 + 0] = 1.0F; ret[COL_ERROR * 3 + 1] = 0.0F; ret[COL_ERROR * 3 + 2] = 0.0F; *ncolours = NCOLOURS; return ret; } static game_drawstate *game_new_drawstate(drawing *dr, const game_state *state) { struct game_drawstate *ds = snew(struct game_drawstate); ds->tilesize = 0; ds->started = false; ds->solved = false; ds->w = state->w; ds->h = state->h; ds->n = state->n; ds->flags = snewn(state->n, unsigned int); memset(ds->flags, 0, state->n*sizeof(unsigned int)); return ds; } static void game_free_drawstate(drawing *dr, game_drawstate *ds) { sfree(ds->flags); sfree(ds); } static void tile_redraw(drawing *dr, game_drawstate *ds, int x, int y, int num, unsigned int f) { int tcol, bg, cx, cy, tsz; bool dnum; char buf[32]; if (f & DS_BLACK) { bg = (f & DS_ERROR) ? COL_ERROR : COL_BLACK; tcol = COL_BLACKNUM; dnum = (f & DS_BLACK_NUM); } else { bg = (f & DS_FLASH) ? COL_LOWLIGHT : COL_BACKGROUND; tcol = (f & DS_ERROR) ? COL_ERROR : COL_BLACK; dnum = true; } cx = x + TILE_SIZE/2; cy = y + TILE_SIZE/2; draw_rect(dr, x, y, TILE_SIZE, TILE_SIZE, bg); draw_rect_outline(dr, x, y, TILE_SIZE, TILE_SIZE, (f & DS_IMPOSSIBLE) ? COL_ERROR : COL_GRID); if (f & DS_CIRCLE) { draw_circle(dr, cx, cy, CRAD, tcol, tcol); draw_circle(dr, cx, cy, CRAD-1, bg, tcol); } if (dnum) { sprintf(buf, "%d", num); if (strlen(buf) == 1) tsz = TEXTSZ; else tsz = (CRAD*2 - 1) / strlen(buf); draw_text(dr, cx, cy, FONT_VARIABLE, tsz, ALIGN_VCENTRE | ALIGN_HCENTRE, tcol, buf); } if (f & DS_CURSOR) draw_rect_corners(dr, cx, cy, TEXTSZ/2, COL_CURSOR); draw_update(dr, x, y, TILE_SIZE, TILE_SIZE); } static void game_redraw(drawing *dr, game_drawstate *ds, const game_state *oldstate, const game_state *state, int dir, const game_ui *ui, float animtime, float flashtime) { int x, y, i, flash; unsigned int f; flash = (int)(flashtime * 5 / FLASH_TIME) % 2; if (!ds->started) { int wsz = TILE_SIZE * state->w + 2 * BORDER; int hsz = TILE_SIZE * state->h + 2 * BORDER; draw_rect_outline(dr, COORD(0)-1, COORD(0)-1, TILE_SIZE * state->w + 2, TILE_SIZE * state->h + 2, COL_GRID); draw_update(dr, 0, 0, wsz, hsz); } for (x = 0; x < state->w; x++) { for (y = 0; y < state->h; y++) { i = y*state->w + x; f = 0; if (flash) f |= DS_FLASH; if (state->impossible) f |= DS_IMPOSSIBLE; if (ui->cshow && x == ui->cx && y == ui->cy) f |= DS_CURSOR; if (state->flags[i] & F_BLACK) { f |= DS_BLACK; if (ui->show_black_nums) f |= DS_BLACK_NUM; } if (state->flags[i] & F_CIRCLE) f |= DS_CIRCLE; if (state->flags[i] & F_ERROR) f |= DS_ERROR; if (!ds->started || ds->flags[i] != f) { tile_redraw(dr, ds, COORD(x), COORD(y), state->nums[i], f); ds->flags[i] = f; } } } ds->started = true; } static float game_anim_length(const game_state *oldstate, const game_state *newstate, int dir, game_ui *ui) { return 0.0F; } static float game_flash_length(const game_state *oldstate, const game_state *newstate, int dir, game_ui *ui) { if (!oldstate->completed && newstate->completed && !newstate->used_solve) return FLASH_TIME; return 0.0F; } static void game_get_cursor_location(const game_ui *ui, const game_drawstate *ds, const game_state *state, const game_params *params, int *x, int *y, int *w, int *h) { if(ui->cshow) { *x = COORD(ui->cx); *y = COORD(ui->cy); *w = *h = TILE_SIZE; } } static int game_status(const game_state *state) { return state->completed ? +1 : 0; } static bool game_timing_state(const game_state *state, game_ui *ui) { return true; } static void game_print_size(const game_params *params, float *x, float *y) { int pw, ph; /* 8mm squares by default. */ game_compute_size(params, 800, &pw, &ph); *x = pw / 100.0F; *y = ph / 100.0F; } static void game_print(drawing *dr, const game_state *state, int tilesize) { int ink = print_mono_colour(dr, 0); int paper = print_mono_colour(dr, 1); int x, y, ox, oy, i; char buf[32]; /* Ick: fake up `ds->tilesize' for macro expansion purposes */ game_drawstate ads, *ds = &ads; game_set_size(dr, ds, NULL, tilesize); print_line_width(dr, 2 * TILE_SIZE / 40); for (x = 0; x < state->w; x++) { for (y = 0; y < state->h; y++) { ox = COORD(x); oy = COORD(y); i = y*state->w+x; if (state->flags[i] & F_BLACK) { draw_rect(dr, ox, oy, TILE_SIZE, TILE_SIZE, ink); } else { draw_rect_outline(dr, ox, oy, TILE_SIZE, TILE_SIZE, ink); if (state->flags[i] & DS_CIRCLE) draw_circle(dr, ox+TILE_SIZE/2, oy+TILE_SIZE/2, CRAD, paper, ink); sprintf(buf, "%d", state->nums[i]); draw_text(dr, ox+TILE_SIZE/2, oy+TILE_SIZE/2, FONT_VARIABLE, TEXTSZ/strlen(buf), ALIGN_VCENTRE | ALIGN_HCENTRE, ink, buf); } } } } #ifdef COMBINED #define thegame singles #endif const struct game thegame = { "Singles", "games.singles", "singles", default_params, game_fetch_preset, NULL, decode_params, encode_params, free_params, dup_params, true, game_configure, custom_params, validate_params, new_game_desc, validate_desc, new_game, dup_game, free_game, true, solve_game, true, game_can_format_as_text_now, game_text_format, new_ui, free_ui, encode_ui, decode_ui, NULL, /* game_request_keys */ game_changed_state, current_key_label, interpret_move, execute_move, PREFERRED_TILE_SIZE, game_compute_size, game_set_size, game_colours, game_new_drawstate, game_free_drawstate, game_redraw, game_anim_length, game_flash_length, game_get_cursor_location, game_status, true, false, game_print_size, game_print, false, /* wants_statusbar */ false, game_timing_state, REQUIRE_RBUTTON, /* flags */ }; #ifdef STANDALONE_SOLVER #include <time.h> #include <stdarg.h> static void start_soak(game_params *p, random_state *rs) { time_t tt_start, tt_now, tt_last; char *desc, *aux; game_state *s; int i, n = 0, ndiff[DIFF_MAX], diff, sret, nblack = 0, nsneaky = 0; tt_start = tt_now = time(NULL); printf("Soak-testing a %dx%d grid.\n", p->w, p->h); p->diff = DIFF_ANY; memset(ndiff, 0, DIFF_MAX * sizeof(int)); while (1) { n++; desc = new_game_desc(p, rs, &aux, false); s = new_game(NULL, p, desc); nsneaky += solve_sneaky(s, NULL); for (diff = 0; diff < DIFF_MAX; diff++) { memset(s->flags, 0, s->n * sizeof(unsigned int)); s->completed = false; s->impossible = false; sret = solve_specific(s, diff, false); if (sret > 0) { ndiff[diff]++; break; } else if (sret < 0) fprintf(stderr, "Impossible! %s\n", desc); } for (i = 0; i < s->n; i++) { if (s->flags[i] & F_BLACK) nblack++; } free_game(s); sfree(desc); tt_last = time(NULL); if (tt_last > tt_now) { tt_now = tt_last; printf("%d total, %3.1f/s, bl/sn %3.1f%%/%3.1f%%: ", n, (double)n / ((double)tt_now - tt_start), ((double)nblack * 100.0) / (double)(n * p->w * p->h), ((double)nsneaky * 100.0) / (double)(n * p->w * p->h)); for (diff = 0; diff < DIFF_MAX; diff++) { if (diff > 0) printf(", "); printf("%d (%3.1f%%) %s", ndiff[diff], (double)ndiff[diff] * 100.0 / (double)n, singles_diffnames[diff]); } printf("\n"); } } } int main(int argc, char **argv) { char *id = NULL, *desc, *desc_gen = NULL, *tgame, *aux; const char *err; game_state *s = NULL; game_params *p = NULL; int soln, ret = 1; bool soak = false; time_t seed = time(NULL); random_state *rs = NULL; setvbuf(stdout, NULL, _IONBF, 0); while (--argc > 0) { char *p = *++argv; if (!strcmp(p, "-v")) { verbose = true; } else if (!strcmp(p, "--soak")) { soak = true; } else if (!strcmp(p, "--seed")) { if (argc == 0) { fprintf(stderr, "%s: --seed needs an argument", argv[0]); goto done; } seed = (time_t)atoi(*++argv); argc--; } else if (*p == '-') { fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0], p); return 1; } else { id = p; } } rs = random_new((void*)&seed, sizeof(time_t)); if (!id) { fprintf(stderr, "usage: %s [-v] [--soak] <params> | <game_id>\n", argv[0]); goto done; } desc = strchr(id, ':'); if (desc) *desc++ = '\0'; p = default_params(); decode_params(p, id); err = validate_params(p, true); if (err) { fprintf(stderr, "%s: %s", argv[0], err); goto done; } if (soak) { if (desc) { fprintf(stderr, "%s: --soak only needs params, not game desc.\n", argv[0]); goto done; } start_soak(p, rs); } else { if (!desc) desc = desc_gen = new_game_desc(p, rs, &aux, false); err = validate_desc(p, desc); if (err) { fprintf(stderr, "%s: %s\n", argv[0], err); free_params(p); goto done; } s = new_game(NULL, p, desc); if (verbose) { tgame = game_text_format(s); fputs(tgame, stdout); sfree(tgame); } soln = solve_specific(s, DIFF_ANY, false); tgame = game_text_format(s); fputs(tgame, stdout); sfree(tgame); printf("Game was %s.\n\n", soln < 0 ? "impossible" : soln > 0 ? "solved" : "not solved"); } ret = 0; done: if (desc_gen) sfree(desc_gen); if (p) free_params(p); if (s) free_game(s); if (rs) random_free(rs); return ret; } #endif /* vim: set shiftwidth=4 tabstop=8: */