ref: ba3247bb927b412f67365264914740f75a35825b
dir: /fifteen.c/
/* * fifteen.c: standard 15-puzzle. */ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <assert.h> #include <ctype.h> #include <math.h> #include "puzzles.h" #define TILE_SIZE 48 #define BORDER (TILE_SIZE / 2) #define HIGHLIGHT_WIDTH (TILE_SIZE / 20) #define COORD(x) ( (x) * TILE_SIZE + BORDER ) #define FROMCOORD(x) ( ((x) - BORDER + TILE_SIZE) / TILE_SIZE - 1 ) #define ANIM_TIME 0.13F #define FLASH_FRAME 0.13F #define X(state, i) ( (i) % (state)->w ) #define Y(state, i) ( (i) / (state)->w ) #define C(state, x, y) ( (y) * (state)->w + (x) ) enum { COL_BACKGROUND, COL_TEXT, COL_HIGHLIGHT, COL_LOWLIGHT, NCOLOURS }; struct game_params { int w, h; }; struct game_state { int w, h, n; int *tiles; int gap_pos; int completed; int just_used_solve; /* used to suppress undo animation */ int used_solve; /* used to suppress completion flash */ int movecount; }; static game_params *default_params(void) { game_params *ret = snew(game_params); ret->w = ret->h = 4; return ret; } static int game_fetch_preset(int i, char **name, game_params **params) { return FALSE; } static void free_params(game_params *params) { sfree(params); } static game_params *dup_params(game_params *params) { game_params *ret = snew(game_params); *ret = *params; /* structure copy */ return ret; } static void decode_params(game_params *ret, char const *string) { ret->w = ret->h = atoi(string); while (*string && isdigit(*string)) string++; if (*string == 'x') { string++; ret->h = atoi(string); } } static char *encode_params(game_params *params, int full) { char data[256]; sprintf(data, "%dx%d", params->w, params->h); return dupstr(data); } static config_item *game_configure(game_params *params) { config_item *ret; char buf[80]; ret = snewn(3, config_item); ret[0].name = "Width"; ret[0].type = C_STRING; sprintf(buf, "%d", params->w); ret[0].sval = dupstr(buf); ret[0].ival = 0; ret[1].name = "Height"; ret[1].type = C_STRING; sprintf(buf, "%d", params->h); ret[1].sval = dupstr(buf); ret[1].ival = 0; ret[2].name = NULL; ret[2].type = C_END; ret[2].sval = NULL; ret[2].ival = 0; return ret; } static game_params *custom_params(config_item *cfg) { game_params *ret = snew(game_params); ret->w = atoi(cfg[0].sval); ret->h = atoi(cfg[1].sval); return ret; } static char *validate_params(game_params *params) { if (params->w < 2 && params->h < 2) return "Width and height must both be at least two"; return NULL; } static int perm_parity(int *perm, int n) { int i, j, ret; ret = 0; for (i = 0; i < n-1; i++) for (j = i+1; j < n; j++) if (perm[i] > perm[j]) ret = !ret; return ret; } static char *new_game_desc(game_params *params, random_state *rs, game_aux_info **aux) { int gap, n, i, x; int x1, x2, p1, p2, parity; int *tiles, *used; char *ret; int retlen; n = params->w * params->h; tiles = snewn(n, int); used = snewn(n, int); for (i = 0; i < n; i++) { tiles[i] = -1; used[i] = FALSE; } gap = random_upto(rs, n); tiles[gap] = 0; used[0] = TRUE; /* * Place everything else except the last two tiles. */ for (x = 0, i = n-1; i > 2; i--) { int k = random_upto(rs, i); int j; for (j = 0; j < n; j++) if (!used[j] && (k-- == 0)) break; assert(j < n && !used[j]); used[j] = TRUE; while (tiles[x] >= 0) x++; assert(x < n); tiles[x] = j; } /* * Find the last two locations, and the last two pieces. */ while (tiles[x] >= 0) x++; assert(x < n); x1 = x; x++; while (tiles[x] >= 0) x++; assert(x < n); x2 = x; for (i = 0; i < n; i++) if (!used[i]) break; p1 = i; for (i = p1+1; i < n; i++) if (!used[i]) break; p2 = i; /* * Determine the required parity of the overall permutation. * This is the XOR of: * * - The chessboard parity ((x^y)&1) of the gap square. The * bottom right counts as even. * * - The parity of n. (The target permutation is 1,...,n-1,0 * rather than 0,...,n-1; this is a cyclic permutation of * the starting point and hence is odd iff n is even.) */ parity = ((X(params, gap) - (params->w-1)) ^ (Y(params, gap) - (params->h-1)) ^ (n+1)) & 1; /* * Try the last two tiles one way round. If that fails, swap * them. */ tiles[x1] = p1; tiles[x2] = p2; if (perm_parity(tiles, n) != parity) { tiles[x1] = p2; tiles[x2] = p1; assert(perm_parity(tiles, n) == parity); } /* * Now construct the game description, by describing the tile * array as a simple sequence of comma-separated integers. */ ret = NULL; retlen = 0; for (i = 0; i < n; i++) { char buf[80]; int k; k = sprintf(buf, "%d,", tiles[i]); ret = sresize(ret, retlen + k + 1, char); strcpy(ret + retlen, buf); retlen += k; } ret[retlen-1] = '\0'; /* delete last comma */ sfree(tiles); sfree(used); return ret; } static void game_free_aux_info(game_aux_info *aux) { assert(!"Shouldn't happen"); } static char *validate_desc(game_params *params, char *desc) { char *p, *err; int i, area; int *used; area = params->w * params->h; p = desc; err = NULL; used = snewn(area, int); for (i = 0; i < area; i++) used[i] = FALSE; for (i = 0; i < area; i++) { char *q = p; int n; if (*p < '0' || *p > '9') { err = "Not enough numbers in string"; goto leave; } while (*p >= '0' && *p <= '9') p++; if (i < area-1 && *p != ',') { err = "Expected comma after number"; goto leave; } else if (i == area-1 && *p) { err = "Excess junk at end of string"; goto leave; } n = atoi(q); if (n < 0 || n >= area) { err = "Number out of range"; goto leave; } if (used[n]) { err = "Number used twice"; goto leave; } used[n] = TRUE; if (*p) p++; /* eat comma */ } leave: sfree(used); return err; } static game_state *new_game(game_params *params, char *desc) { game_state *state = snew(game_state); int i; char *p; state->w = params->w; state->h = params->h; state->n = params->w * params->h; state->tiles = snewn(state->n, int); state->gap_pos = 0; p = desc; i = 0; for (i = 0; i < state->n; i++) { assert(*p); state->tiles[i] = atoi(p); if (state->tiles[i] == 0) state->gap_pos = i; while (*p && *p != ',') p++; if (*p) p++; /* eat comma */ } assert(!*p); assert(state->tiles[state->gap_pos] == 0); state->completed = state->movecount = 0; state->used_solve = state->just_used_solve = FALSE; return state; } static game_state *dup_game(game_state *state) { game_state *ret = snew(game_state); ret->w = state->w; ret->h = state->h; ret->n = state->n; ret->tiles = snewn(state->w * state->h, int); memcpy(ret->tiles, state->tiles, state->w * state->h * sizeof(int)); ret->gap_pos = state->gap_pos; ret->completed = state->completed; ret->movecount = state->movecount; ret->used_solve = state->used_solve; ret->just_used_solve = state->just_used_solve; return ret; } static void free_game(game_state *state) { sfree(state); } static game_state *solve_game(game_state *state, game_aux_info *aux, char **error) { game_state *ret = dup_game(state); int i; /* * Simply replace the grid with a solved one. For this game, * this isn't a useful operation for actually telling the user * what they should have done, but it is useful for * conveniently being able to get hold of a clean state from * which to practise manoeuvres. */ for (i = 0; i < ret->n; i++) ret->tiles[i] = (i+1) % ret->n; ret->gap_pos = ret->n-1; ret->used_solve = ret->just_used_solve = TRUE; ret->completed = ret->movecount = 1; return ret; } static char *game_text_format(game_state *state) { char *ret, *p, buf[80]; int x, y, col, maxlen; /* * First work out how many characters we need to display each * number. */ col = sprintf(buf, "%d", state->n-1); /* * Now we know the exact total size of the grid we're going to * produce: it's got h rows, each containing w lots of col, w-1 * spaces and a trailing newline. */ maxlen = state->h * state->w * (col+1); ret = snewn(maxlen+1, char); p = ret; for (y = 0; y < state->h; y++) { for (x = 0; x < state->w; x++) { int v = state->tiles[state->w*y+x]; if (v == 0) sprintf(buf, "%*s", col, ""); else sprintf(buf, "%*d", col, v); memcpy(p, buf, col); p += col; if (x+1 == state->w) *p++ = '\n'; else *p++ = ' '; } } assert(p - ret == maxlen); *p = '\0'; return ret; } static game_ui *new_ui(game_state *state) { return NULL; } static void free_ui(game_ui *ui) { } static game_state *make_move(game_state *from, game_ui *ui, int x, int y, int button) { int gx, gy, dx, dy, ux, uy, up, p; game_state *ret; gx = X(from, from->gap_pos); gy = Y(from, from->gap_pos); if (button == CURSOR_RIGHT && gx > 0) dx = gx - 1, dy = gy; else if (button == CURSOR_LEFT && gx < from->w-1) dx = gx + 1, dy = gy; else if (button == CURSOR_DOWN && gy > 0) dy = gy - 1, dx = gx; else if (button == CURSOR_UP && gy < from->h-1) dy = gy + 1, dx = gx; else if (button == LEFT_BUTTON) { dx = FROMCOORD(x); dy = FROMCOORD(y); if (dx < 0 || dx >= from->w || dy < 0 || dy >= from->h) return NULL; /* out of bounds */ /* * Any click location should be equal to the gap location * in _precisely_ one coordinate. */ if ((dx == gx && dy == gy) || (dx != gx && dy != gy)) return NULL; } else return NULL; /* no move */ /* * Find the unit displacement from the original gap * position towards this one. */ ux = (dx < gx ? -1 : dx > gx ? +1 : 0); uy = (dy < gy ? -1 : dy > gy ? +1 : 0); up = C(from, ux, uy); ret = dup_game(from); ret->just_used_solve = FALSE; /* zero this in a hurry */ ret->gap_pos = C(from, dx, dy); assert(ret->gap_pos >= 0 && ret->gap_pos < ret->n); ret->tiles[ret->gap_pos] = 0; for (p = from->gap_pos; p != ret->gap_pos; p += up) { assert(p >= 0 && p < from->n); ret->tiles[p] = from->tiles[p + up]; ret->movecount++; } /* * See if the game has been completed. */ if (!ret->completed) { ret->completed = ret->movecount; for (p = 0; p < ret->n; p++) if (ret->tiles[p] != (p < ret->n-1 ? p+1 : 0)) ret->completed = 0; } return ret; } /* ---------------------------------------------------------------------- * Drawing routines. */ struct game_drawstate { int started; int w, h, bgcolour; int *tiles; }; static void game_size(game_params *params, int *x, int *y) { *x = TILE_SIZE * params->w + 2 * BORDER; *y = TILE_SIZE * params->h + 2 * BORDER; } static float *game_colours(frontend *fe, game_state *state, int *ncolours) { float *ret = snewn(3 * NCOLOURS, float); int i; float max; frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]); /* * Drop the background colour so that the highlight is * noticeably brighter than it while still being under 1. */ max = ret[COL_BACKGROUND*3]; for (i = 1; i < 3; i++) if (ret[COL_BACKGROUND*3+i] > max) max = ret[COL_BACKGROUND*3+i]; if (max * 1.2F > 1.0F) { for (i = 0; i < 3; i++) ret[COL_BACKGROUND*3+i] /= (max * 1.2F); } for (i = 0; i < 3; i++) { ret[COL_HIGHLIGHT * 3 + i] = ret[COL_BACKGROUND * 3 + i] * 1.2F; ret[COL_LOWLIGHT * 3 + i] = ret[COL_BACKGROUND * 3 + i] * 0.8F; ret[COL_TEXT * 3 + i] = 0.0; } *ncolours = NCOLOURS; return ret; } static game_drawstate *game_new_drawstate(game_state *state) { struct game_drawstate *ds = snew(struct game_drawstate); int i; ds->started = FALSE; ds->w = state->w; ds->h = state->h; ds->bgcolour = COL_BACKGROUND; ds->tiles = snewn(ds->w*ds->h, int); for (i = 0; i < ds->w*ds->h; i++) ds->tiles[i] = -1; return ds; } static void game_free_drawstate(game_drawstate *ds) { sfree(ds->tiles); sfree(ds); } static void draw_tile(frontend *fe, game_state *state, int x, int y, int tile, int flash_colour) { if (tile == 0) { draw_rect(fe, x, y, TILE_SIZE, TILE_SIZE, flash_colour); } else { int coords[6]; char str[40]; coords[0] = x + TILE_SIZE - 1; coords[1] = y + TILE_SIZE - 1; coords[2] = x + TILE_SIZE - 1; coords[3] = y; coords[4] = x; coords[5] = y + TILE_SIZE - 1; draw_polygon(fe, coords, 3, TRUE, COL_LOWLIGHT); draw_polygon(fe, coords, 3, FALSE, COL_LOWLIGHT); coords[0] = x; coords[1] = y; draw_polygon(fe, coords, 3, TRUE, COL_HIGHLIGHT); draw_polygon(fe, coords, 3, FALSE, COL_HIGHLIGHT); draw_rect(fe, x + HIGHLIGHT_WIDTH, y + HIGHLIGHT_WIDTH, TILE_SIZE - 2*HIGHLIGHT_WIDTH, TILE_SIZE - 2*HIGHLIGHT_WIDTH, flash_colour); sprintf(str, "%d", tile); draw_text(fe, x + TILE_SIZE/2, y + TILE_SIZE/2, FONT_VARIABLE, TILE_SIZE/3, ALIGN_VCENTRE | ALIGN_HCENTRE, COL_TEXT, str); } draw_update(fe, x, y, TILE_SIZE, TILE_SIZE); } static void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate, game_state *state, int dir, game_ui *ui, float animtime, float flashtime) { int i, pass, bgcolour; if (flashtime > 0) { int frame = (int)(flashtime / FLASH_FRAME); bgcolour = (frame % 2 ? COL_LOWLIGHT : COL_HIGHLIGHT); } else bgcolour = COL_BACKGROUND; if (!ds->started) { int coords[6]; draw_rect(fe, 0, 0, TILE_SIZE * state->w + 2 * BORDER, TILE_SIZE * state->h + 2 * BORDER, COL_BACKGROUND); draw_update(fe, 0, 0, TILE_SIZE * state->w + 2 * BORDER, TILE_SIZE * state->h + 2 * BORDER); /* * Recessed area containing the whole puzzle. */ coords[0] = COORD(state->w) + HIGHLIGHT_WIDTH - 1; coords[1] = COORD(state->h) + HIGHLIGHT_WIDTH - 1; coords[2] = COORD(state->w) + HIGHLIGHT_WIDTH - 1; coords[3] = COORD(0) - HIGHLIGHT_WIDTH; coords[4] = COORD(0) - HIGHLIGHT_WIDTH; coords[5] = COORD(state->h) + HIGHLIGHT_WIDTH - 1; draw_polygon(fe, coords, 3, TRUE, COL_HIGHLIGHT); draw_polygon(fe, coords, 3, FALSE, COL_HIGHLIGHT); coords[1] = COORD(0) - HIGHLIGHT_WIDTH; coords[0] = COORD(0) - HIGHLIGHT_WIDTH; draw_polygon(fe, coords, 3, TRUE, COL_LOWLIGHT); draw_polygon(fe, coords, 3, FALSE, COL_LOWLIGHT); ds->started = TRUE; } /* * Now draw each tile. We do this in two passes to make * animation easy. */ for (pass = 0; pass < 2; pass++) { for (i = 0; i < state->n; i++) { int t, t0; /* * Figure out what should be displayed at this * location. It's either a simple tile, or it's a * transition between two tiles (in which case we say * -1 because it must always be drawn). */ if (oldstate && oldstate->tiles[i] != state->tiles[i]) t = -1; else t = state->tiles[i]; t0 = t; if (ds->bgcolour != bgcolour || /* always redraw when flashing */ ds->tiles[i] != t || ds->tiles[i] == -1 || t == -1) { int x, y; /* * Figure out what to _actually_ draw, and where to * draw it. */ if (t == -1) { int x0, y0, x1, y1; int j; /* * On the first pass, just blank the tile. */ if (pass == 0) { x = COORD(X(state, i)); y = COORD(Y(state, i)); t = 0; } else { float c; t = state->tiles[i]; /* * Don't bother moving the gap; just don't * draw it. */ if (t == 0) continue; /* * Find the coordinates of this tile in the old and * new states. */ x1 = COORD(X(state, i)); y1 = COORD(Y(state, i)); for (j = 0; j < oldstate->n; j++) if (oldstate->tiles[j] == state->tiles[i]) break; assert(j < oldstate->n); x0 = COORD(X(state, j)); y0 = COORD(Y(state, j)); c = (animtime / ANIM_TIME); if (c < 0.0F) c = 0.0F; if (c > 1.0F) c = 1.0F; x = x0 + (int)(c * (x1 - x0)); y = y0 + (int)(c * (y1 - y0)); } } else { if (pass == 0) continue; x = COORD(X(state, i)); y = COORD(Y(state, i)); } draw_tile(fe, state, x, y, t, bgcolour); } ds->tiles[i] = t0; } } ds->bgcolour = bgcolour; /* * Update the status bar. */ { char statusbuf[256]; /* * Don't show the new status until we're also showing the * new _state_ - after the game animation is complete. */ if (oldstate) state = oldstate; if (state->used_solve) sprintf(statusbuf, "Moves since auto-solve: %d", state->movecount - state->completed); else sprintf(statusbuf, "%sMoves: %d", (state->completed ? "COMPLETED! " : ""), (state->completed ? state->completed : state->movecount)); status_bar(fe, statusbuf); } } static float game_anim_length(game_state *oldstate, game_state *newstate, int dir) { if ((dir > 0 && newstate->just_used_solve) || (dir < 0 && oldstate->just_used_solve)) return 0.0F; else return ANIM_TIME; } static float game_flash_length(game_state *oldstate, game_state *newstate, int dir) { if (!oldstate->completed && newstate->completed && !oldstate->used_solve && !newstate->used_solve) return 2 * FLASH_FRAME; else return 0.0F; } static int game_wants_statusbar(void) { return TRUE; } #ifdef COMBINED #define thegame fifteen #endif const struct game thegame = { "Fifteen", "games.fifteen", default_params, game_fetch_preset, decode_params, encode_params, free_params, dup_params, TRUE, game_configure, custom_params, validate_params, new_game_desc, game_free_aux_info, validate_desc, new_game, dup_game, free_game, TRUE, solve_game, TRUE, game_text_format, new_ui, free_ui, make_move, game_size, game_colours, game_new_drawstate, game_free_drawstate, game_redraw, game_anim_length, game_flash_length, game_wants_statusbar, };