ref: b74dac6de22e783ac6619411743df6bca1755a8b
dir: /misc.c/
/* * misc.c: Miscellaneous helpful functions. */ #include <assert.h> #include <stdlib.h> #include <string.h> #include <stdio.h> #include "puzzles.h" void free_cfg(config_item *cfg) { config_item *i; for (i = cfg; i->type != C_END; i++) if (i->type == C_STRING) sfree(i->sval); sfree(cfg); } /* * The Mines (among others) game descriptions contain the location of every * mine, and can therefore be used to cheat. * * It would be pointless to attempt to _prevent_ this form of * cheating by encrypting the description, since Mines is * open-source so anyone can find out the encryption key. However, * I think it is worth doing a bit of gentle obfuscation to prevent * _accidental_ spoilers: if you happened to note that the game ID * starts with an F, for example, you might be unable to put the * knowledge of those mines out of your mind while playing. So, * just as discussions of film endings are rot13ed to avoid * spoiling it for people who don't want to be told, we apply a * keyless, reversible, but visually completely obfuscatory masking * function to the mine bitmap. */ void obfuscate_bitmap(unsigned char *bmp, int bits, int decode) { int bytes, firsthalf, secondhalf; struct step { unsigned char *seedstart; int seedlen; unsigned char *targetstart; int targetlen; } steps[2]; int i, j; /* * My obfuscation algorithm is similar in concept to the OAEP * encoding used in some forms of RSA. Here's a specification * of it: * * + We have a `masking function' which constructs a stream of * pseudorandom bytes from a seed of some number of input * bytes. * * + We pad out our input bit stream to a whole number of * bytes by adding up to 7 zero bits on the end. (In fact * the bitmap passed as input to this function will already * have had this done in practice.) * * + We divide the _byte_ stream exactly in half, rounding the * half-way position _down_. So an 81-bit input string, for * example, rounds up to 88 bits or 11 bytes, and then * dividing by two gives 5 bytes in the first half and 6 in * the second half. * * + We generate a mask from the second half of the bytes, and * XOR it over the first half. * * + We generate a mask from the (encoded) first half of the * bytes, and XOR it over the second half. Any null bits at * the end which were added as padding are cleared back to * zero even if this operation would have made them nonzero. * * To de-obfuscate, the steps are precisely the same except * that the final two are reversed. * * Finally, our masking function. Given an input seed string of * bytes, the output mask consists of concatenating the SHA-1 * hashes of the seed string and successive decimal integers, * starting from 0. */ bytes = (bits + 7) / 8; firsthalf = bytes / 2; secondhalf = bytes - firsthalf; steps[decode ? 1 : 0].seedstart = bmp + firsthalf; steps[decode ? 1 : 0].seedlen = secondhalf; steps[decode ? 1 : 0].targetstart = bmp; steps[decode ? 1 : 0].targetlen = firsthalf; steps[decode ? 0 : 1].seedstart = bmp; steps[decode ? 0 : 1].seedlen = firsthalf; steps[decode ? 0 : 1].targetstart = bmp + firsthalf; steps[decode ? 0 : 1].targetlen = secondhalf; for (i = 0; i < 2; i++) { SHA_State base, final; unsigned char digest[20]; char numberbuf[80]; int digestpos = 20, counter = 0; SHA_Init(&base); SHA_Bytes(&base, steps[i].seedstart, steps[i].seedlen); for (j = 0; j < steps[i].targetlen; j++) { if (digestpos >= 20) { sprintf(numberbuf, "%d", counter++); final = base; SHA_Bytes(&final, numberbuf, strlen(numberbuf)); SHA_Final(&final, digest); digestpos = 0; } steps[i].targetstart[j] ^= digest[digestpos++]; } /* * Mask off the pad bits in the final byte after both steps. */ if (bits % 8) bmp[bits / 8] &= 0xFF & (0xFF00 >> (bits % 8)); } } /* err, yeah, these two pretty much rely on unsigned char being 8 bits. * Platforms where this is not the case probably have bigger problems * than just making these two work, though... */ char *bin2hex(const unsigned char *in, int inlen) { char *ret = snewn(inlen*2 + 1, char), *p = ret; int i; for (i = 0; i < inlen*2; i++) { int v = in[i/2]; if (i % 2 == 0) v >>= 4; *p++ = "0123456789abcdef"[v & 0xF]; } *p = '\0'; return ret; } unsigned char *hex2bin(const char *in, int outlen) { unsigned char *ret = snewn(outlen, unsigned char); int i; debug(("hex2bin: in '%s'", in)); memset(ret, 0, outlen*sizeof(unsigned char)); for (i = 0; i < outlen*2; i++) { int c = in[i]; int v; assert(c != 0); if (c >= '0' && c <= '9') v = c - '0'; else if (c >= 'a' && c <= 'f') v = c - 'a' + 10; else if (c >= 'A' && c <= 'F') v = c - 'A' + 10; else v = 0; ret[i / 2] |= v << (4 * (1 - (i % 2))); } return ret; } /* vim: set shiftwidth=4 tabstop=8: */