ref: 90db70378ee4b977c23984a2e1807d4ecd76de42
dir: /solo.c/
/* * solo.c: the number-placing puzzle most popularly known as `Sudoku'. * * TODO: * * - it might still be nice to do some prioritisation on the * removal of numbers from the grid * + one possibility is to try to minimise the maximum number * of filled squares in any block, which in particular ought * to enforce never leaving a completely filled block in the * puzzle as presented. * * - alternative interface modes * + sudoku.com's Windows program has a palette of possible * entries; you select a palette entry first and then click * on the square you want it to go in, thus enabling * mouse-only play. Useful for PDAs! I don't think it's * actually incompatible with the current highlight-then-type * approach: you _either_ highlight a palette entry and then * click, _or_ you highlight a square and then type. At most * one thing is ever highlighted at a time, so there's no way * to confuse the two. * + `pencil marks' might be useful for more subtle forms of * deduction, now we can create puzzles that require them. */ /* * Solo puzzles need to be square overall (since each row and each * column must contain one of every digit), but they need not be * subdivided the same way internally. I am going to adopt a * convention whereby I _always_ refer to `r' as the number of rows * of _big_ divisions, and `c' as the number of columns of _big_ * divisions. Thus, a 2c by 3r puzzle looks something like this: * * 4 5 1 | 2 6 3 * 6 3 2 | 5 4 1 * ------+------ (Of course, you can't subdivide it the other way * 1 4 5 | 6 3 2 or you'll get clashes; observe that the 4 in the * 3 2 6 | 4 1 5 top left would conflict with the 4 in the second * ------+------ box down on the left-hand side.) * 5 1 4 | 3 2 6 * 2 6 3 | 1 5 4 * * The need for a strong naming convention should now be clear: * each small box is two rows of digits by three columns, while the * overall puzzle has three rows of small boxes by two columns. So * I will (hopefully) consistently use `r' to denote the number of * rows _of small boxes_ (here 3), which is also the number of * columns of digits in each small box; and `c' vice versa (here * 2). * * I'm also going to choose arbitrarily to list c first wherever * possible: the above is a 2x3 puzzle, not a 3x2 one. */ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <assert.h> #include <ctype.h> #include <math.h> #ifdef STANDALONE_SOLVER #include <stdarg.h> int solver_show_working; #endif #include "puzzles.h" #define max(x,y) ((x)>(y)?(x):(y)) /* * To save space, I store digits internally as unsigned char. This * imposes a hard limit of 255 on the order of the puzzle. Since * even a 5x5 takes unacceptably long to generate, I don't see this * as a serious limitation unless something _really_ impressive * happens in computing technology; but here's a typedef anyway for * general good practice. */ typedef unsigned char digit; #define ORDER_MAX 255 #define TILE_SIZE 32 #define BORDER 18 #define FLASH_TIME 0.4F enum { SYMM_NONE, SYMM_ROT2, SYMM_ROT4, SYMM_REF4 }; enum { DIFF_BLOCK, DIFF_SIMPLE, DIFF_INTERSECT, DIFF_SET, DIFF_RECURSIVE, DIFF_AMBIGUOUS, DIFF_IMPOSSIBLE }; enum { COL_BACKGROUND, COL_GRID, COL_CLUE, COL_USER, COL_HIGHLIGHT, NCOLOURS }; struct game_params { int c, r, symm, diff; }; struct game_state { int c, r; digit *grid; unsigned char *immutable; /* marks which digits are clues */ int completed; }; static game_params *default_params(void) { game_params *ret = snew(game_params); ret->c = ret->r = 3; ret->symm = SYMM_ROT2; /* a plausible default */ ret->diff = DIFF_SIMPLE; /* so is this */ return ret; } static void free_params(game_params *params) { sfree(params); } static game_params *dup_params(game_params *params) { game_params *ret = snew(game_params); *ret = *params; /* structure copy */ return ret; } static int game_fetch_preset(int i, char **name, game_params **params) { static struct { char *title; game_params params; } presets[] = { { "2x2 Trivial", { 2, 2, SYMM_ROT2, DIFF_BLOCK } }, { "2x3 Basic", { 2, 3, SYMM_ROT2, DIFF_SIMPLE } }, { "3x3 Basic", { 3, 3, SYMM_ROT2, DIFF_SIMPLE } }, { "3x3 Intermediate", { 3, 3, SYMM_ROT2, DIFF_INTERSECT } }, { "3x3 Advanced", { 3, 3, SYMM_ROT2, DIFF_SET } }, { "3x4 Basic", { 3, 4, SYMM_ROT2, DIFF_SIMPLE } }, { "4x4 Basic", { 4, 4, SYMM_ROT2, DIFF_SIMPLE } }, }; if (i < 0 || i >= lenof(presets)) return FALSE; *name = dupstr(presets[i].title); *params = dup_params(&presets[i].params); return TRUE; } static game_params *decode_params(char const *string) { game_params *ret = default_params(); ret->c = ret->r = atoi(string); ret->symm = SYMM_ROT2; while (*string && isdigit((unsigned char)*string)) string++; if (*string == 'x') { string++; ret->r = atoi(string); while (*string && isdigit((unsigned char)*string)) string++; } while (*string) { if (*string == 'r' || *string == 'm' || *string == 'a') { int sn, sc; sc = *string++; sn = atoi(string); while (*string && isdigit((unsigned char)*string)) string++; if (sc == 'm' && sn == 4) ret->symm = SYMM_REF4; if (sc == 'r' && sn == 4) ret->symm = SYMM_ROT4; if (sc == 'r' && sn == 2) ret->symm = SYMM_ROT2; if (sc == 'a') ret->symm = SYMM_NONE; } else if (*string == 'd') { string++; if (*string == 't') /* trivial */ string++, ret->diff = DIFF_BLOCK; else if (*string == 'b') /* basic */ string++, ret->diff = DIFF_SIMPLE; else if (*string == 'i') /* intermediate */ string++, ret->diff = DIFF_INTERSECT; else if (*string == 'a') /* advanced */ string++, ret->diff = DIFF_SET; } else string++; /* eat unknown character */ } return ret; } static char *encode_params(game_params *params) { char str[80]; /* * Symmetry is a game generation preference and hence is left * out of the encoding. Users can add it back in as they see * fit. */ sprintf(str, "%dx%d", params->c, params->r); return dupstr(str); } static config_item *game_configure(game_params *params) { config_item *ret; char buf[80]; ret = snewn(5, config_item); ret[0].name = "Columns of sub-blocks"; ret[0].type = C_STRING; sprintf(buf, "%d", params->c); ret[0].sval = dupstr(buf); ret[0].ival = 0; ret[1].name = "Rows of sub-blocks"; ret[1].type = C_STRING; sprintf(buf, "%d", params->r); ret[1].sval = dupstr(buf); ret[1].ival = 0; ret[2].name = "Symmetry"; ret[2].type = C_CHOICES; ret[2].sval = ":None:2-way rotation:4-way rotation:4-way mirror"; ret[2].ival = params->symm; ret[3].name = "Difficulty"; ret[3].type = C_CHOICES; ret[3].sval = ":Trivial:Basic:Intermediate:Advanced"; ret[3].ival = params->diff; ret[4].name = NULL; ret[4].type = C_END; ret[4].sval = NULL; ret[4].ival = 0; return ret; } static game_params *custom_params(config_item *cfg) { game_params *ret = snew(game_params); ret->c = atoi(cfg[0].sval); ret->r = atoi(cfg[1].sval); ret->symm = cfg[2].ival; ret->diff = cfg[3].ival; return ret; } static char *validate_params(game_params *params) { if (params->c < 2 || params->r < 2) return "Both dimensions must be at least 2"; if (params->c > ORDER_MAX || params->r > ORDER_MAX) return "Dimensions greater than "STR(ORDER_MAX)" are not supported"; return NULL; } /* ---------------------------------------------------------------------- * Full recursive Solo solver. * * The algorithm for this solver is shamelessly copied from a * Python solver written by Andrew Wilkinson (which is GPLed, but * I've reused only ideas and no code). It mostly just does the * obvious recursive thing: pick an empty square, put one of the * possible digits in it, recurse until all squares are filled, * backtrack and change some choices if necessary. * * The clever bit is that every time it chooses which square to * fill in next, it does so by counting the number of _possible_ * numbers that can go in each square, and it prioritises so that * it picks a square with the _lowest_ number of possibilities. The * idea is that filling in lots of the obvious bits (particularly * any squares with only one possibility) will cut down on the list * of possibilities for other squares and hence reduce the enormous * search space as much as possible as early as possible. * * In practice the algorithm appeared to work very well; run on * sample problems from the Times it completed in well under a * second on my G5 even when written in Python, and given an empty * grid (so that in principle it would enumerate _all_ solved * grids!) it found the first valid solution just as quickly. So * with a bit more randomisation I see no reason not to use this as * my grid generator. */ /* * Internal data structure used in solver to keep track of * progress. */ struct rsolve_coord { int x, y, r; }; struct rsolve_usage { int c, r, cr; /* cr == c*r */ /* grid is a copy of the input grid, modified as we go along */ digit *grid; /* row[y*cr+n-1] TRUE if digit n has been placed in row y */ unsigned char *row; /* col[x*cr+n-1] TRUE if digit n has been placed in row x */ unsigned char *col; /* blk[(y*c+x)*cr+n-1] TRUE if digit n has been placed in block (x,y) */ unsigned char *blk; /* This lists all the empty spaces remaining in the grid. */ struct rsolve_coord *spaces; int nspaces; /* If we need randomisation in the solve, this is our random state. */ random_state *rs; /* Number of solutions so far found, and maximum number we care about. */ int solns, maxsolns; }; /* * The real recursive step in the solving function. */ static void rsolve_real(struct rsolve_usage *usage, digit *grid) { int c = usage->c, r = usage->r, cr = usage->cr; int i, j, n, sx, sy, bestm, bestr; int *digits; /* * Firstly, check for completion! If there are no spaces left * in the grid, we have a solution. */ if (usage->nspaces == 0) { if (!usage->solns) { /* * This is our first solution, so fill in the output grid. */ memcpy(grid, usage->grid, cr * cr); } usage->solns++; return; } /* * Otherwise, there must be at least one space. Find the most * constrained space, using the `r' field as a tie-breaker. */ bestm = cr+1; /* so that any space will beat it */ bestr = 0; i = sx = sy = -1; for (j = 0; j < usage->nspaces; j++) { int x = usage->spaces[j].x, y = usage->spaces[j].y; int m; /* * Find the number of digits that could go in this space. */ m = 0; for (n = 0; n < cr; n++) if (!usage->row[y*cr+n] && !usage->col[x*cr+n] && !usage->blk[((y/c)*c+(x/r))*cr+n]) m++; if (m < bestm || (m == bestm && usage->spaces[j].r < bestr)) { bestm = m; bestr = usage->spaces[j].r; sx = x; sy = y; i = j; } } /* * Swap that square into the final place in the spaces array, * so that decrementing nspaces will remove it from the list. */ if (i != usage->nspaces-1) { struct rsolve_coord t; t = usage->spaces[usage->nspaces-1]; usage->spaces[usage->nspaces-1] = usage->spaces[i]; usage->spaces[i] = t; } /* * Now we've decided which square to start our recursion at, * simply go through all possible values, shuffling them * randomly first if necessary. */ digits = snewn(bestm, int); j = 0; for (n = 0; n < cr; n++) if (!usage->row[sy*cr+n] && !usage->col[sx*cr+n] && !usage->blk[((sy/c)*c+(sx/r))*cr+n]) { digits[j++] = n+1; } if (usage->rs) { /* shuffle */ for (i = j; i > 1; i--) { int p = random_upto(usage->rs, i); if (p != i-1) { int t = digits[p]; digits[p] = digits[i-1]; digits[i-1] = t; } } } /* And finally, go through the digit list and actually recurse. */ for (i = 0; i < j; i++) { n = digits[i]; /* Update the usage structure to reflect the placing of this digit. */ usage->row[sy*cr+n-1] = usage->col[sx*cr+n-1] = usage->blk[((sy/c)*c+(sx/r))*cr+n-1] = TRUE; usage->grid[sy*cr+sx] = n; usage->nspaces--; /* Call the solver recursively. */ rsolve_real(usage, grid); /* * If we have seen as many solutions as we need, terminate * all processing immediately. */ if (usage->solns >= usage->maxsolns) break; /* Revert the usage structure. */ usage->row[sy*cr+n-1] = usage->col[sx*cr+n-1] = usage->blk[((sy/c)*c+(sx/r))*cr+n-1] = FALSE; usage->grid[sy*cr+sx] = 0; usage->nspaces++; } sfree(digits); } /* * Entry point to solver. You give it dimensions and a starting * grid, which is simply an array of N^4 digits. In that array, 0 * means an empty square, and 1..N mean a clue square. * * Return value is the number of solutions found; searching will * stop after the provided `max'. (Thus, you can pass max==1 to * indicate that you only care about finding _one_ solution, or * max==2 to indicate that you want to know the difference between * a unique and non-unique solution.) The input parameter `grid' is * also filled in with the _first_ (or only) solution found by the * solver. */ static int rsolve(int c, int r, digit *grid, random_state *rs, int max) { struct rsolve_usage *usage; int x, y, cr = c*r; int ret; /* * Create an rsolve_usage structure. */ usage = snew(struct rsolve_usage); usage->c = c; usage->r = r; usage->cr = cr; usage->grid = snewn(cr * cr, digit); memcpy(usage->grid, grid, cr * cr); usage->row = snewn(cr * cr, unsigned char); usage->col = snewn(cr * cr, unsigned char); usage->blk = snewn(cr * cr, unsigned char); memset(usage->row, FALSE, cr * cr); memset(usage->col, FALSE, cr * cr); memset(usage->blk, FALSE, cr * cr); usage->spaces = snewn(cr * cr, struct rsolve_coord); usage->nspaces = 0; usage->solns = 0; usage->maxsolns = max; usage->rs = rs; /* * Now fill it in with data from the input grid. */ for (y = 0; y < cr; y++) { for (x = 0; x < cr; x++) { int v = grid[y*cr+x]; if (v == 0) { usage->spaces[usage->nspaces].x = x; usage->spaces[usage->nspaces].y = y; if (rs) usage->spaces[usage->nspaces].r = random_bits(rs, 31); else usage->spaces[usage->nspaces].r = usage->nspaces; usage->nspaces++; } else { usage->row[y*cr+v-1] = TRUE; usage->col[x*cr+v-1] = TRUE; usage->blk[((y/c)*c+(x/r))*cr+v-1] = TRUE; } } } /* * Run the real recursive solving function. */ rsolve_real(usage, grid); ret = usage->solns; /* * Clean up the usage structure now we have our answer. */ sfree(usage->spaces); sfree(usage->blk); sfree(usage->col); sfree(usage->row); sfree(usage->grid); sfree(usage); /* * And return. */ return ret; } /* ---------------------------------------------------------------------- * End of recursive solver code. */ /* ---------------------------------------------------------------------- * Less capable non-recursive solver. This one is used to check * solubility of a grid as we gradually remove numbers from it: by * verifying a grid using this solver we can ensure it isn't _too_ * hard (e.g. does not actually require guessing and backtracking). * * It supports a variety of specific modes of reasoning. By * enabling or disabling subsets of these modes we can arrange a * range of difficulty levels. */ /* * Modes of reasoning currently supported: * * - Positional elimination: a number must go in a particular * square because all the other empty squares in a given * row/col/blk are ruled out. * * - Numeric elimination: a square must have a particular number * in because all the other numbers that could go in it are * ruled out. * * - Intersectional analysis: given two domains which overlap * (hence one must be a block, and the other can be a row or * col), if the possible locations for a particular number in * one of the domains can be narrowed down to the overlap, then * that number can be ruled out everywhere but the overlap in * the other domain too. * * - Set elimination: if there is a subset of the empty squares * within a domain such that the union of the possible numbers * in that subset has the same size as the subset itself, then * those numbers can be ruled out everywhere else in the domain. * (For example, if there are five empty squares and the * possible numbers in each are 12, 23, 13, 134 and 1345, then * the first three empty squares form such a subset: the numbers * 1, 2 and 3 _must_ be in those three squares in some * permutation, and hence we can deduce none of them can be in * the fourth or fifth squares.) * + You can also see this the other way round, concentrating * on numbers rather than squares: if there is a subset of * the unplaced numbers within a domain such that the union * of all their possible positions has the same size as the * subset itself, then all other numbers can be ruled out for * those positions. However, it turns out that this is * exactly equivalent to the first formulation at all times: * there is a 1-1 correspondence between suitable subsets of * the unplaced numbers and suitable subsets of the unfilled * places, found by taking the _complement_ of the union of * the numbers' possible positions (or the spaces' possible * contents). */ /* * Within this solver, I'm going to transform all y-coordinates by * inverting the significance of the block number and the position * within the block. That is, we will start with the top row of * each block in order, then the second row of each block in order, * etc. * * This transformation has the enormous advantage that it means * every row, column _and_ block is described by an arithmetic * progression of coordinates within the cubic array, so that I can * use the same very simple function to do blockwise, row-wise and * column-wise elimination. */ #define YTRANS(y) (((y)%c)*r+(y)/c) #define YUNTRANS(y) (((y)%r)*c+(y)/r) struct nsolve_usage { int c, r, cr; /* * We set up a cubic array, indexed by x, y and digit; each * element of this array is TRUE or FALSE according to whether * or not that digit _could_ in principle go in that position. * * The way to index this array is cube[(x*cr+y)*cr+n-1]. * y-coordinates in here are transformed. */ unsigned char *cube; /* * This is the grid in which we write down our final * deductions. y-coordinates in here are _not_ transformed. */ digit *grid; /* * Now we keep track, at a slightly higher level, of what we * have yet to work out, to prevent doing the same deduction * many times. */ /* row[y*cr+n-1] TRUE if digit n has been placed in row y */ unsigned char *row; /* col[x*cr+n-1] TRUE if digit n has been placed in row x */ unsigned char *col; /* blk[(y*c+x)*cr+n-1] TRUE if digit n has been placed in block (x,y) */ unsigned char *blk; }; #define cubepos(x,y,n) (((x)*usage->cr+(y))*usage->cr+(n)-1) #define cube(x,y,n) (usage->cube[cubepos(x,y,n)]) /* * Function called when we are certain that a particular square has * a particular number in it. The y-coordinate passed in here is * transformed. */ static void nsolve_place(struct nsolve_usage *usage, int x, int y, int n) { int c = usage->c, r = usage->r, cr = usage->cr; int i, j, bx, by; assert(cube(x,y,n)); /* * Rule out all other numbers in this square. */ for (i = 1; i <= cr; i++) if (i != n) cube(x,y,i) = FALSE; /* * Rule out this number in all other positions in the row. */ for (i = 0; i < cr; i++) if (i != y) cube(x,i,n) = FALSE; /* * Rule out this number in all other positions in the column. */ for (i = 0; i < cr; i++) if (i != x) cube(i,y,n) = FALSE; /* * Rule out this number in all other positions in the block. */ bx = (x/r)*r; by = y % r; for (i = 0; i < r; i++) for (j = 0; j < c; j++) if (bx+i != x || by+j*r != y) cube(bx+i,by+j*r,n) = FALSE; /* * Enter the number in the result grid. */ usage->grid[YUNTRANS(y)*cr+x] = n; /* * Cross out this number from the list of numbers left to place * in its row, its column and its block. */ usage->row[y*cr+n-1] = usage->col[x*cr+n-1] = usage->blk[((y%r)*c+(x/r))*cr+n-1] = TRUE; } static int nsolve_elim(struct nsolve_usage *usage, int start, int step #ifdef STANDALONE_SOLVER , char *fmt, ... #endif ) { int c = usage->c, r = usage->r, cr = c*r; int fpos, m, i; /* * Count the number of set bits within this section of the * cube. */ m = 0; fpos = -1; for (i = 0; i < cr; i++) if (usage->cube[start+i*step]) { fpos = start+i*step; m++; } if (m == 1) { int x, y, n; assert(fpos >= 0); n = 1 + fpos % cr; y = fpos / cr; x = y / cr; y %= cr; if (!usage->grid[YUNTRANS(y)*cr+x]) { #ifdef STANDALONE_SOLVER if (solver_show_working) { va_list ap; va_start(ap, fmt); vprintf(fmt, ap); va_end(ap); printf(":\n placing %d at (%d,%d)\n", n, 1+x, 1+YUNTRANS(y)); } #endif nsolve_place(usage, x, y, n); return TRUE; } } return FALSE; } static int nsolve_intersect(struct nsolve_usage *usage, int start1, int step1, int start2, int step2 #ifdef STANDALONE_SOLVER , char *fmt, ... #endif ) { int c = usage->c, r = usage->r, cr = c*r; int ret, i; /* * Loop over the first domain and see if there's any set bit * not also in the second. */ for (i = 0; i < cr; i++) { int p = start1+i*step1; if (usage->cube[p] && !(p >= start2 && p < start2+cr*step2 && (p - start2) % step2 == 0)) return FALSE; /* there is, so we can't deduce */ } /* * We have determined that all set bits in the first domain are * within its overlap with the second. So loop over the second * domain and remove all set bits that aren't also in that * overlap; return TRUE iff we actually _did_ anything. */ ret = FALSE; for (i = 0; i < cr; i++) { int p = start2+i*step2; if (usage->cube[p] && !(p >= start1 && p < start1+cr*step1 && (p - start1) % step1 == 0)) { #ifdef STANDALONE_SOLVER if (solver_show_working) { int px, py, pn; if (!ret) { va_list ap; va_start(ap, fmt); vprintf(fmt, ap); va_end(ap); printf(":\n"); } pn = 1 + p % cr; py = p / cr; px = py / cr; py %= cr; printf(" ruling out %d at (%d,%d)\n", pn, 1+px, 1+YUNTRANS(py)); } #endif ret = TRUE; /* we did something */ usage->cube[p] = 0; } } return ret; } static int nsolve_set(struct nsolve_usage *usage, int start, int step1, int step2 #ifdef STANDALONE_SOLVER , char *fmt, ... #endif ) { int c = usage->c, r = usage->r, cr = c*r; int i, j, n, count; unsigned char *grid = snewn(cr*cr, unsigned char); unsigned char *rowidx = snewn(cr, unsigned char); unsigned char *colidx = snewn(cr, unsigned char); unsigned char *set = snewn(cr, unsigned char); /* * We are passed a cr-by-cr matrix of booleans. Our first job * is to winnow it by finding any definite placements - i.e. * any row with a solitary 1 - and discarding that row and the * column containing the 1. */ memset(rowidx, TRUE, cr); memset(colidx, TRUE, cr); for (i = 0; i < cr; i++) { int count = 0, first = -1; for (j = 0; j < cr; j++) if (usage->cube[start+i*step1+j*step2]) first = j, count++; if (count == 0) { /* * This condition actually marks a completely insoluble * (i.e. internally inconsistent) puzzle. We return and * report no progress made. */ return FALSE; } if (count == 1) rowidx[i] = colidx[first] = FALSE; } /* * Convert each of rowidx/colidx from a list of 0s and 1s to a * list of the indices of the 1s. */ for (i = j = 0; i < cr; i++) if (rowidx[i]) rowidx[j++] = i; n = j; for (i = j = 0; i < cr; i++) if (colidx[i]) colidx[j++] = i; assert(n == j); /* * And create the smaller matrix. */ for (i = 0; i < n; i++) for (j = 0; j < n; j++) grid[i*cr+j] = usage->cube[start+rowidx[i]*step1+colidx[j]*step2]; /* * Having done that, we now have a matrix in which every row * has at least two 1s in. Now we search to see if we can find * a rectangle of zeroes (in the set-theoretic sense of * `rectangle', i.e. a subset of rows crossed with a subset of * columns) whose width and height add up to n. */ memset(set, 0, n); count = 0; while (1) { /* * We have a candidate set. If its size is <=1 or >=n-1 * then we move on immediately. */ if (count > 1 && count < n-1) { /* * The number of rows we need is n-count. See if we can * find that many rows which each have a zero in all * the positions listed in `set'. */ int rows = 0; for (i = 0; i < n; i++) { int ok = TRUE; for (j = 0; j < n; j++) if (set[j] && grid[i*cr+j]) { ok = FALSE; break; } if (ok) rows++; } /* * We expect never to be able to get _more_ than * n-count suitable rows: this would imply that (for * example) there are four numbers which between them * have at most three possible positions, and hence it * indicates a faulty deduction before this point or * even a bogus clue. */ assert(rows <= n - count); if (rows >= n - count) { int progress = FALSE; /* * We've got one! Now, for each row which _doesn't_ * satisfy the criterion, eliminate all its set * bits in the positions _not_ listed in `set'. * Return TRUE (meaning progress has been made) if * we successfully eliminated anything at all. * * This involves referring back through * rowidx/colidx in order to work out which actual * positions in the cube to meddle with. */ for (i = 0; i < n; i++) { int ok = TRUE; for (j = 0; j < n; j++) if (set[j] && grid[i*cr+j]) { ok = FALSE; break; } if (!ok) { for (j = 0; j < n; j++) if (!set[j] && grid[i*cr+j]) { int fpos = (start+rowidx[i]*step1+ colidx[j]*step2); #ifdef STANDALONE_SOLVER if (solver_show_working) { int px, py, pn; if (!progress) { va_list ap; va_start(ap, fmt); vprintf(fmt, ap); va_end(ap); printf(":\n"); } pn = 1 + fpos % cr; py = fpos / cr; px = py / cr; py %= cr; printf(" ruling out %d at (%d,%d)\n", pn, 1+px, 1+YUNTRANS(py)); } #endif progress = TRUE; usage->cube[fpos] = FALSE; } } } if (progress) { sfree(set); sfree(colidx); sfree(rowidx); sfree(grid); return TRUE; } } } /* * Binary increment: change the rightmost 0 to a 1, and * change all 1s to the right of it to 0s. */ i = n; while (i > 0 && set[i-1]) set[--i] = 0, count--; if (i > 0) set[--i] = 1, count++; else break; /* done */ } sfree(set); sfree(colidx); sfree(rowidx); sfree(grid); return FALSE; } static int nsolve(int c, int r, digit *grid) { struct nsolve_usage *usage; int cr = c*r; int x, y, n; int diff = DIFF_BLOCK; /* * Set up a usage structure as a clean slate (everything * possible). */ usage = snew(struct nsolve_usage); usage->c = c; usage->r = r; usage->cr = cr; usage->cube = snewn(cr*cr*cr, unsigned char); usage->grid = grid; /* write straight back to the input */ memset(usage->cube, TRUE, cr*cr*cr); usage->row = snewn(cr * cr, unsigned char); usage->col = snewn(cr * cr, unsigned char); usage->blk = snewn(cr * cr, unsigned char); memset(usage->row, FALSE, cr * cr); memset(usage->col, FALSE, cr * cr); memset(usage->blk, FALSE, cr * cr); /* * Place all the clue numbers we are given. */ for (x = 0; x < cr; x++) for (y = 0; y < cr; y++) if (grid[y*cr+x]) nsolve_place(usage, x, YTRANS(y), grid[y*cr+x]); /* * Now loop over the grid repeatedly trying all permitted modes * of reasoning. The loop terminates if we complete an * iteration without making any progress; we then return * failure or success depending on whether the grid is full or * not. */ while (1) { /* * I'd like to write `continue;' inside each of the * following loops, so that the solver returns here after * making some progress. However, I can't specify that I * want to continue an outer loop rather than the innermost * one, so I'm apologetically resorting to a goto. */ cont: /* * Blockwise positional elimination. */ for (x = 0; x < cr; x += r) for (y = 0; y < r; y++) for (n = 1; n <= cr; n++) if (!usage->blk[(y*c+(x/r))*cr+n-1] && nsolve_elim(usage, cubepos(x,y,n), r*cr #ifdef STANDALONE_SOLVER , "positional elimination," " block (%d,%d)", 1+x/r, 1+y #endif )) { diff = max(diff, DIFF_BLOCK); goto cont; } /* * Row-wise positional elimination. */ for (y = 0; y < cr; y++) for (n = 1; n <= cr; n++) if (!usage->row[y*cr+n-1] && nsolve_elim(usage, cubepos(0,y,n), cr*cr #ifdef STANDALONE_SOLVER , "positional elimination," " row %d", 1+YUNTRANS(y) #endif )) { diff = max(diff, DIFF_SIMPLE); goto cont; } /* * Column-wise positional elimination. */ for (x = 0; x < cr; x++) for (n = 1; n <= cr; n++) if (!usage->col[x*cr+n-1] && nsolve_elim(usage, cubepos(x,0,n), cr #ifdef STANDALONE_SOLVER , "positional elimination," " column %d", 1+x #endif )) { diff = max(diff, DIFF_SIMPLE); goto cont; } /* * Numeric elimination. */ for (x = 0; x < cr; x++) for (y = 0; y < cr; y++) if (!usage->grid[YUNTRANS(y)*cr+x] && nsolve_elim(usage, cubepos(x,y,1), 1 #ifdef STANDALONE_SOLVER , "numeric elimination at (%d,%d)", 1+x, 1+YUNTRANS(y) #endif )) { diff = max(diff, DIFF_SIMPLE); goto cont; } /* * Intersectional analysis, rows vs blocks. */ for (y = 0; y < cr; y++) for (x = 0; x < cr; x += r) for (n = 1; n <= cr; n++) if (!usage->row[y*cr+n-1] && !usage->blk[((y%r)*c+(x/r))*cr+n-1] && (nsolve_intersect(usage, cubepos(0,y,n), cr*cr, cubepos(x,y%r,n), r*cr #ifdef STANDALONE_SOLVER , "intersectional analysis," " row %d vs block (%d,%d)", 1+YUNTRANS(y), 1+x/r, 1+y%r #endif ) || nsolve_intersect(usage, cubepos(x,y%r,n), r*cr, cubepos(0,y,n), cr*cr #ifdef STANDALONE_SOLVER , "intersectional analysis," " block (%d,%d) vs row %d", 1+x/r, 1+y%r, 1+YUNTRANS(y) #endif ))) { diff = max(diff, DIFF_INTERSECT); goto cont; } /* * Intersectional analysis, columns vs blocks. */ for (x = 0; x < cr; x++) for (y = 0; y < r; y++) for (n = 1; n <= cr; n++) if (!usage->col[x*cr+n-1] && !usage->blk[(y*c+(x/r))*cr+n-1] && (nsolve_intersect(usage, cubepos(x,0,n), cr, cubepos((x/r)*r,y,n), r*cr #ifdef STANDALONE_SOLVER , "intersectional analysis," " column %d vs block (%d,%d)", 1+x, 1+x/r, 1+y #endif ) || nsolve_intersect(usage, cubepos((x/r)*r,y,n), r*cr, cubepos(x,0,n), cr #ifdef STANDALONE_SOLVER , "intersectional analysis," " block (%d,%d) vs column %d", 1+x/r, 1+y, 1+x #endif ))) { diff = max(diff, DIFF_INTERSECT); goto cont; } /* * Blockwise set elimination. */ for (x = 0; x < cr; x += r) for (y = 0; y < r; y++) if (nsolve_set(usage, cubepos(x,y,1), r*cr, 1 #ifdef STANDALONE_SOLVER , "set elimination, block (%d,%d)", 1+x/r, 1+y #endif )) { diff = max(diff, DIFF_SET); goto cont; } /* * Row-wise set elimination. */ for (y = 0; y < cr; y++) if (nsolve_set(usage, cubepos(0,y,1), cr*cr, 1 #ifdef STANDALONE_SOLVER , "set elimination, row %d", 1+YUNTRANS(y) #endif )) { diff = max(diff, DIFF_SET); goto cont; } /* * Column-wise set elimination. */ for (x = 0; x < cr; x++) if (nsolve_set(usage, cubepos(x,0,1), cr, 1 #ifdef STANDALONE_SOLVER , "set elimination, column %d", 1+x #endif )) { diff = max(diff, DIFF_SET); goto cont; } /* * If we reach here, we have made no deductions in this * iteration, so the algorithm terminates. */ break; } sfree(usage->cube); sfree(usage->row); sfree(usage->col); sfree(usage->blk); sfree(usage); for (x = 0; x < cr; x++) for (y = 0; y < cr; y++) if (!grid[y*cr+x]) return DIFF_IMPOSSIBLE; return diff; } /* ---------------------------------------------------------------------- * End of non-recursive solver code. */ /* * Check whether a grid contains a valid complete puzzle. */ static int check_valid(int c, int r, digit *grid) { int cr = c*r; unsigned char *used; int x, y, n; used = snewn(cr, unsigned char); /* * Check that each row contains precisely one of everything. */ for (y = 0; y < cr; y++) { memset(used, FALSE, cr); for (x = 0; x < cr; x++) if (grid[y*cr+x] > 0 && grid[y*cr+x] <= cr) used[grid[y*cr+x]-1] = TRUE; for (n = 0; n < cr; n++) if (!used[n]) { sfree(used); return FALSE; } } /* * Check that each column contains precisely one of everything. */ for (x = 0; x < cr; x++) { memset(used, FALSE, cr); for (y = 0; y < cr; y++) if (grid[y*cr+x] > 0 && grid[y*cr+x] <= cr) used[grid[y*cr+x]-1] = TRUE; for (n = 0; n < cr; n++) if (!used[n]) { sfree(used); return FALSE; } } /* * Check that each block contains precisely one of everything. */ for (x = 0; x < cr; x += r) { for (y = 0; y < cr; y += c) { int xx, yy; memset(used, FALSE, cr); for (xx = x; xx < x+r; xx++) for (yy = 0; yy < y+c; yy++) if (grid[yy*cr+xx] > 0 && grid[yy*cr+xx] <= cr) used[grid[yy*cr+xx]-1] = TRUE; for (n = 0; n < cr; n++) if (!used[n]) { sfree(used); return FALSE; } } } sfree(used); return TRUE; } static void symmetry_limit(game_params *params, int *xlim, int *ylim, int s) { int c = params->c, r = params->r, cr = c*r; switch (s) { case SYMM_NONE: *xlim = *ylim = cr; break; case SYMM_ROT2: *xlim = (cr+1) / 2; *ylim = cr; break; case SYMM_REF4: case SYMM_ROT4: *xlim = *ylim = (cr+1) / 2; break; } } static int symmetries(game_params *params, int x, int y, int *output, int s) { int c = params->c, r = params->r, cr = c*r; int i = 0; *output++ = x; *output++ = y; i++; switch (s) { case SYMM_NONE: break; /* just x,y is all we need */ case SYMM_REF4: case SYMM_ROT4: switch (s) { case SYMM_REF4: *output++ = cr - 1 - x; *output++ = y; i++; *output++ = x; *output++ = cr - 1 - y; i++; break; case SYMM_ROT4: *output++ = cr - 1 - y; *output++ = x; i++; *output++ = y; *output++ = cr - 1 - x; i++; break; } /* fall through */ case SYMM_ROT2: *output++ = cr - 1 - x; *output++ = cr - 1 - y; i++; break; } return i; } static char *new_game_seed(game_params *params, random_state *rs) { int c = params->c, r = params->r, cr = c*r; int area = cr*cr; digit *grid, *grid2; struct xy { int x, y; } *locs; int nlocs; int ret; char *seed; int coords[16], ncoords; int xlim, ylim; int maxdiff; /* * Adjust the maximum difficulty level to be consistent with * the puzzle size: all 2x2 puzzles appear to be Trivial * (DIFF_BLOCK) so we cannot hold out for even a Basic * (DIFF_SIMPLE) one. */ maxdiff = params->diff; if (c == 2 && r == 2) maxdiff = DIFF_BLOCK; grid = snewn(area, digit); locs = snewn(area, struct xy); grid2 = snewn(area, digit); /* * Loop until we get a grid of the required difficulty. This is * nasty, but it seems to be unpleasantly hard to generate * difficult grids otherwise. */ do { /* * Start the recursive solver with an empty grid to generate a * random solved state. */ memset(grid, 0, area); ret = rsolve(c, r, grid, rs, 1); assert(ret == 1); assert(check_valid(c, r, grid)); /* * Now we have a solved grid, start removing things from it * while preserving solubility. */ symmetry_limit(params, &xlim, &ylim, params->symm); while (1) { int x, y, i, j; /* * Iterate over the grid and enumerate all the filled * squares we could empty. */ nlocs = 0; for (x = 0; x < xlim; x++) for (y = 0; y < ylim; y++) if (grid[y*cr+x]) { locs[nlocs].x = x; locs[nlocs].y = y; nlocs++; } /* * Now shuffle that list. */ for (i = nlocs; i > 1; i--) { int p = random_upto(rs, i); if (p != i-1) { struct xy t = locs[p]; locs[p] = locs[i-1]; locs[i-1] = t; } } /* * Now loop over the shuffled list and, for each element, * see whether removing that element (and its reflections) * from the grid will still leave the grid soluble by * nsolve. */ for (i = 0; i < nlocs; i++) { x = locs[i].x; y = locs[i].y; memcpy(grid2, grid, area); ncoords = symmetries(params, x, y, coords, params->symm); for (j = 0; j < ncoords; j++) grid2[coords[2*j+1]*cr+coords[2*j]] = 0; if (nsolve(c, r, grid2) <= maxdiff) { for (j = 0; j < ncoords; j++) grid[coords[2*j+1]*cr+coords[2*j]] = 0; break; } } if (i == nlocs) { /* * There was nothing we could remove without destroying * solvability. */ break; } } memcpy(grid2, grid, area); } while (nsolve(c, r, grid2) != maxdiff); sfree(grid2); sfree(locs); /* * Now we have the grid as it will be presented to the user. * Encode it in a game seed. */ { char *p; int run, i; seed = snewn(5 * area, char); p = seed; run = 0; for (i = 0; i <= area; i++) { int n = (i < area ? grid[i] : -1); if (!n) run++; else { if (run) { while (run > 0) { int c = 'a' - 1 + run; if (run > 26) c = 'z'; *p++ = c; run -= c - ('a' - 1); } } else { /* * If there's a number in the very top left or * bottom right, there's no point putting an * unnecessary _ before or after it. */ if (p > seed && n > 0) *p++ = '_'; } if (n > 0) p += sprintf(p, "%d", n); run = 0; } } assert(p - seed < 5 * area); *p++ = '\0'; seed = sresize(seed, p - seed, char); } sfree(grid); return seed; } static char *validate_seed(game_params *params, char *seed) { int area = params->r * params->r * params->c * params->c; int squares = 0; while (*seed) { int n = *seed++; if (n >= 'a' && n <= 'z') { squares += n - 'a' + 1; } else if (n == '_') { /* do nothing */; } else if (n > '0' && n <= '9') { squares++; while (*seed >= '0' && *seed <= '9') seed++; } else return "Invalid character in game specification"; } if (squares < area) return "Not enough data to fill grid"; if (squares > area) return "Too much data to fit in grid"; return NULL; } static game_state *new_game(game_params *params, char *seed) { game_state *state = snew(game_state); int c = params->c, r = params->r, cr = c*r, area = cr * cr; int i; state->c = params->c; state->r = params->r; state->grid = snewn(area, digit); state->immutable = snewn(area, unsigned char); memset(state->immutable, FALSE, area); state->completed = FALSE; i = 0; while (*seed) { int n = *seed++; if (n >= 'a' && n <= 'z') { int run = n - 'a' + 1; assert(i + run <= area); while (run-- > 0) state->grid[i++] = 0; } else if (n == '_') { /* do nothing */; } else if (n > '0' && n <= '9') { assert(i < area); state->immutable[i] = TRUE; state->grid[i++] = atoi(seed-1); while (*seed >= '0' && *seed <= '9') seed++; } else { assert(!"We can't get here"); } } assert(i == area); return state; } static game_state *dup_game(game_state *state) { game_state *ret = snew(game_state); int c = state->c, r = state->r, cr = c*r, area = cr * cr; ret->c = state->c; ret->r = state->r; ret->grid = snewn(area, digit); memcpy(ret->grid, state->grid, area); ret->immutable = snewn(area, unsigned char); memcpy(ret->immutable, state->immutable, area); ret->completed = state->completed; return ret; } static void free_game(game_state *state) { sfree(state->immutable); sfree(state->grid); sfree(state); } struct game_ui { /* * These are the coordinates of the currently highlighted * square on the grid, or -1,-1 if there isn't one. When there * is, pressing a valid number or letter key or Space will * enter that number or letter in the grid. */ int hx, hy; }; static game_ui *new_ui(game_state *state) { game_ui *ui = snew(game_ui); ui->hx = ui->hy = -1; return ui; } static void free_ui(game_ui *ui) { sfree(ui); } static game_state *make_move(game_state *from, game_ui *ui, int x, int y, int button) { int c = from->c, r = from->r, cr = c*r; int tx, ty; game_state *ret; tx = (x + TILE_SIZE - BORDER) / TILE_SIZE - 1; ty = (y + TILE_SIZE - BORDER) / TILE_SIZE - 1; if (tx >= 0 && tx < cr && ty >= 0 && ty < cr && button == LEFT_BUTTON) { if (tx == ui->hx && ty == ui->hy) { ui->hx = ui->hy = -1; } else { ui->hx = tx; ui->hy = ty; } return from; /* UI activity occurred */ } if (ui->hx != -1 && ui->hy != -1 && ((button >= '1' && button <= '9' && button - '0' <= cr) || (button >= 'a' && button <= 'z' && button - 'a' + 10 <= cr) || (button >= 'A' && button <= 'Z' && button - 'A' + 10 <= cr) || button == ' ')) { int n = button - '0'; if (button >= 'A' && button <= 'Z') n = button - 'A' + 10; if (button >= 'a' && button <= 'z') n = button - 'a' + 10; if (button == ' ') n = 0; if (from->immutable[ui->hy*cr+ui->hx]) return NULL; /* can't overwrite this square */ ret = dup_game(from); ret->grid[ui->hy*cr+ui->hx] = n; ui->hx = ui->hy = -1; /* * We've made a real change to the grid. Check to see * if the game has been completed. */ if (!ret->completed && check_valid(c, r, ret->grid)) { ret->completed = TRUE; } return ret; /* made a valid move */ } return NULL; } /* ---------------------------------------------------------------------- * Drawing routines. */ struct game_drawstate { int started; int c, r, cr; digit *grid; unsigned char *hl; }; #define XSIZE(cr) ((cr) * TILE_SIZE + 2*BORDER + 1) #define YSIZE(cr) ((cr) * TILE_SIZE + 2*BORDER + 1) static void game_size(game_params *params, int *x, int *y) { int c = params->c, r = params->r, cr = c*r; *x = XSIZE(cr); *y = YSIZE(cr); } static float *game_colours(frontend *fe, game_state *state, int *ncolours) { float *ret = snewn(3 * NCOLOURS, float); frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]); ret[COL_GRID * 3 + 0] = 0.0F; ret[COL_GRID * 3 + 1] = 0.0F; ret[COL_GRID * 3 + 2] = 0.0F; ret[COL_CLUE * 3 + 0] = 0.0F; ret[COL_CLUE * 3 + 1] = 0.0F; ret[COL_CLUE * 3 + 2] = 0.0F; ret[COL_USER * 3 + 0] = 0.0F; ret[COL_USER * 3 + 1] = 0.6F * ret[COL_BACKGROUND * 3 + 1]; ret[COL_USER * 3 + 2] = 0.0F; ret[COL_HIGHLIGHT * 3 + 0] = 0.85F * ret[COL_BACKGROUND * 3 + 0]; ret[COL_HIGHLIGHT * 3 + 1] = 0.85F * ret[COL_BACKGROUND * 3 + 1]; ret[COL_HIGHLIGHT * 3 + 2] = 0.85F * ret[COL_BACKGROUND * 3 + 2]; *ncolours = NCOLOURS; return ret; } static game_drawstate *game_new_drawstate(game_state *state) { struct game_drawstate *ds = snew(struct game_drawstate); int c = state->c, r = state->r, cr = c*r; ds->started = FALSE; ds->c = c; ds->r = r; ds->cr = cr; ds->grid = snewn(cr*cr, digit); memset(ds->grid, 0, cr*cr); ds->hl = snewn(cr*cr, unsigned char); memset(ds->hl, 0, cr*cr); return ds; } static void game_free_drawstate(game_drawstate *ds) { sfree(ds->hl); sfree(ds->grid); sfree(ds); } static void draw_number(frontend *fe, game_drawstate *ds, game_state *state, int x, int y, int hl) { int c = state->c, r = state->r, cr = c*r; int tx, ty; int cx, cy, cw, ch; char str[2]; if (ds->grid[y*cr+x] == state->grid[y*cr+x] && ds->hl[y*cr+x] == hl) return; /* no change required */ tx = BORDER + x * TILE_SIZE + 2; ty = BORDER + y * TILE_SIZE + 2; cx = tx; cy = ty; cw = TILE_SIZE-3; ch = TILE_SIZE-3; if (x % r) cx--, cw++; if ((x+1) % r) cw++; if (y % c) cy--, ch++; if ((y+1) % c) ch++; clip(fe, cx, cy, cw, ch); /* background needs erasing? */ if (ds->grid[y*cr+x] || ds->hl[y*cr+x] != hl) draw_rect(fe, cx, cy, cw, ch, hl ? COL_HIGHLIGHT : COL_BACKGROUND); /* new number needs drawing? */ if (state->grid[y*cr+x]) { str[1] = '\0'; str[0] = state->grid[y*cr+x] + '0'; if (str[0] > '9') str[0] += 'a' - ('9'+1); draw_text(fe, tx + TILE_SIZE/2, ty + TILE_SIZE/2, FONT_VARIABLE, TILE_SIZE/2, ALIGN_VCENTRE | ALIGN_HCENTRE, state->immutable[y*cr+x] ? COL_CLUE : COL_USER, str); } unclip(fe); draw_update(fe, cx, cy, cw, ch); ds->grid[y*cr+x] = state->grid[y*cr+x]; ds->hl[y*cr+x] = hl; } static void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate, game_state *state, int dir, game_ui *ui, float animtime, float flashtime) { int c = state->c, r = state->r, cr = c*r; int x, y; if (!ds->started) { /* * The initial contents of the window are not guaranteed * and can vary with front ends. To be on the safe side, * all games should start by drawing a big * background-colour rectangle covering the whole window. */ draw_rect(fe, 0, 0, XSIZE(cr), YSIZE(cr), COL_BACKGROUND); /* * Draw the grid. */ for (x = 0; x <= cr; x++) { int thick = (x % r ? 0 : 1); draw_rect(fe, BORDER + x*TILE_SIZE - thick, BORDER-1, 1+2*thick, cr*TILE_SIZE+3, COL_GRID); } for (y = 0; y <= cr; y++) { int thick = (y % c ? 0 : 1); draw_rect(fe, BORDER-1, BORDER + y*TILE_SIZE - thick, cr*TILE_SIZE+3, 1+2*thick, COL_GRID); } } /* * Draw any numbers which need redrawing. */ for (x = 0; x < cr; x++) { for (y = 0; y < cr; y++) { draw_number(fe, ds, state, x, y, (x == ui->hx && y == ui->hy) || (flashtime > 0 && (flashtime <= FLASH_TIME/3 || flashtime >= FLASH_TIME*2/3))); } } /* * Update the _entire_ grid if necessary. */ if (!ds->started) { draw_update(fe, 0, 0, XSIZE(cr), YSIZE(cr)); ds->started = TRUE; } } static float game_anim_length(game_state *oldstate, game_state *newstate, int dir) { return 0.0F; } static float game_flash_length(game_state *oldstate, game_state *newstate, int dir) { if (!oldstate->completed && newstate->completed) return FLASH_TIME; return 0.0F; } static int game_wants_statusbar(void) { return FALSE; } #ifdef COMBINED #define thegame solo #endif const struct game thegame = { "Solo", "games.solo", TRUE, default_params, game_fetch_preset, decode_params, encode_params, free_params, dup_params, game_configure, custom_params, validate_params, new_game_seed, validate_seed, new_game, dup_game, free_game, new_ui, free_ui, make_move, game_size, game_colours, game_new_drawstate, game_free_drawstate, game_redraw, game_anim_length, game_flash_length, game_wants_statusbar, }; #ifdef STANDALONE_SOLVER /* * gcc -DSTANDALONE_SOLVER -o solosolver solo.c malloc.c */ void frontend_default_colour(frontend *fe, float *output) {} void draw_text(frontend *fe, int x, int y, int fonttype, int fontsize, int align, int colour, char *text) {} void draw_rect(frontend *fe, int x, int y, int w, int h, int colour) {} void draw_line(frontend *fe, int x1, int y1, int x2, int y2, int colour) {} void draw_polygon(frontend *fe, int *coords, int npoints, int fill, int colour) {} void clip(frontend *fe, int x, int y, int w, int h) {} void unclip(frontend *fe) {} void start_draw(frontend *fe) {} void draw_update(frontend *fe, int x, int y, int w, int h) {} void end_draw(frontend *fe) {} unsigned long random_bits(random_state *state, int bits) { assert(!"Shouldn't get randomness"); return 0; } unsigned long random_upto(random_state *state, unsigned long limit) { assert(!"Shouldn't get randomness"); return 0; } void fatal(char *fmt, ...) { va_list ap; fprintf(stderr, "fatal error: "); va_start(ap, fmt); vfprintf(stderr, fmt, ap); va_end(ap); fprintf(stderr, "\n"); exit(1); } int main(int argc, char **argv) { game_params *p; game_state *s; int recurse = TRUE; char *id = NULL, *seed, *err; int y, x; int grade = FALSE; while (--argc > 0) { char *p = *++argv; if (!strcmp(p, "-r")) { recurse = TRUE; } else if (!strcmp(p, "-n")) { recurse = FALSE; } else if (!strcmp(p, "-v")) { solver_show_working = TRUE; recurse = FALSE; } else if (!strcmp(p, "-g")) { grade = TRUE; recurse = FALSE; } else if (*p == '-') { fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0]); return 1; } else { id = p; } } if (!id) { fprintf(stderr, "usage: %s [-n | -r | -g | -v] <game_id>\n", argv[0]); return 1; } seed = strchr(id, ':'); if (!seed) { fprintf(stderr, "%s: game id expects a colon in it\n", argv[0]); return 1; } *seed++ = '\0'; p = decode_params(id); err = validate_seed(p, seed); if (err) { fprintf(stderr, "%s: %s\n", argv[0], err); return 1; } s = new_game(p, seed); if (recurse) { int ret = rsolve(p->c, p->r, s->grid, NULL, 2); if (ret > 1) { fprintf(stderr, "%s: rsolve: multiple solutions detected\n", argv[0]); } } else { int ret = nsolve(p->c, p->r, s->grid); if (grade) { if (ret == DIFF_IMPOSSIBLE) { /* * Now resort to rsolve to determine whether it's * really soluble. */ ret = rsolve(p->c, p->r, s->grid, NULL, 2); if (ret == 0) ret = DIFF_IMPOSSIBLE; else if (ret == 1) ret = DIFF_RECURSIVE; else ret = DIFF_AMBIGUOUS; } printf("Difficulty rating: %s\n", ret==DIFF_BLOCK ? "Trivial (blockwise positional elimination only)": ret==DIFF_SIMPLE ? "Basic (row/column/number elimination required)": ret==DIFF_INTERSECT ? "Intermediate (intersectional analysis required)": ret==DIFF_SET ? "Advanced (set elimination required)": ret==DIFF_RECURSIVE ? "Unreasonable (guesswork and backtracking required)": ret==DIFF_AMBIGUOUS ? "Ambiguous (multiple solutions exist)": ret==DIFF_IMPOSSIBLE ? "Impossible (no solution exists)": "INTERNAL ERROR: unrecognised difficulty code"); } } for (y = 0; y < p->c * p->r; y++) { for (x = 0; x < p->c * p->r; x++) { int c = s->grid[y * p->c * p->r + x]; if (c == 0) c = ' '; else if (c <= 9) c = '0' + c; else c = 'a' + c-10; printf("%c", c); if (x+1 < p->c * p->r) { if ((x+1) % p->r) printf(" "); else printf(" | "); } } printf("\n"); if (y+1 < p->c * p->r && (y+1) % p->c == 0) { for (x = 0; x < p->c * p->r; x++) { printf("-"); if (x+1 < p->c * p->r) { if ((x+1) % p->r) printf("-"); else printf("-+-"); } } printf("\n"); } } printf("\n"); return 0; } #endif