ref: 8ac92e860769b822300115064d090cff0645c7dd
dir: /untangle.c/
/* * untangle.c: Game about planar graphs. You are given a graph * represented by points and straight lines, with some lines * crossing; your task is to drag the points into a configuration * where none of the lines cross. * * Cloned from a Flash game called `Planarity', by John Tantalo. * <http://home.cwru.edu/~jnt5/Planarity> at the time of writing * this. The Flash game had a fixed set of levels; my added value, * as usual, is automatic generation of random games to order. */ /* * TODO: * * - Docs and checklist etc * - Any way we can speed up redraws on GTK? Uck. */ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <assert.h> #include <ctype.h> #include <math.h> #include "puzzles.h" #include "tree234.h" #define CIRCLE_RADIUS 6 #define DRAG_THRESHOLD (CIRCLE_RADIUS * 2) #define PREFERRED_TILESIZE 64 #define FLASH_TIME 0.13F #define ANIM_TIME 0.13F #define SOLVEANIM_TIME 0.50F enum { COL_BACKGROUND, COL_LINE, COL_OUTLINE, COL_POINT, COL_DRAGPOINT, COL_NEIGHBOUR, NCOLOURS }; typedef struct point { /* * Points are stored using rational coordinates, with the same * denominator for both coordinates. */ int x, y, d; } point; typedef struct edge { /* * This structure is implicitly associated with a particular * point set, so all it has to do is to store two point * indices. It is required to store them in the order (lower, * higher), i.e. a < b always. */ int a, b; } edge; struct game_params { int n; /* number of points */ }; struct graph { int refcount; /* for deallocation */ tree234 *edges; /* stores `edge' structures */ }; struct game_state { game_params params; int w, h; /* extent of coordinate system only */ point *pts; struct graph *graph; int completed, cheated, just_solved; }; static int edgecmpC(const void *av, const void *bv) { const edge *a = (const edge *)av; const edge *b = (const edge *)bv; if (a->a < b->a) return -1; else if (a->a > b->a) return +1; else if (a->b < b->b) return -1; else if (a->b > b->b) return +1; return 0; } static int edgecmp(void *av, void *bv) { return edgecmpC(av, bv); } static game_params *default_params(void) { game_params *ret = snew(game_params); ret->n = 10; return ret; } static int game_fetch_preset(int i, char **name, game_params **params) { game_params *ret; int n; char buf[80]; switch (i) { case 0: n = 6; break; case 1: n = 10; break; case 2: n = 15; break; case 3: n = 20; break; case 4: n = 25; break; default: return FALSE; } sprintf(buf, "%d points", n); *name = dupstr(buf); *params = ret = snew(game_params); ret->n = n; return TRUE; } static void free_params(game_params *params) { sfree(params); } static game_params *dup_params(game_params *params) { game_params *ret = snew(game_params); *ret = *params; /* structure copy */ return ret; } static void decode_params(game_params *params, char const *string) { params->n = atoi(string); } static char *encode_params(game_params *params, int full) { char buf[80]; sprintf(buf, "%d", params->n); return dupstr(buf); } static config_item *game_configure(game_params *params) { config_item *ret; char buf[80]; ret = snewn(3, config_item); ret[0].name = "Number of points"; ret[0].type = C_STRING; sprintf(buf, "%d", params->n); ret[0].sval = dupstr(buf); ret[0].ival = 0; ret[1].name = NULL; ret[1].type = C_END; ret[1].sval = NULL; ret[1].ival = 0; return ret; } static game_params *custom_params(config_item *cfg) { game_params *ret = snew(game_params); ret->n = atoi(cfg[0].sval); return ret; } static char *validate_params(game_params *params, int full) { if (params->n < 4) return "Number of points must be at least four"; return NULL; } /* * Determine whether the line segments between a1 and a2, and * between b1 and b2, intersect. We count it as an intersection if * any of the endpoints lies _on_ the other line. */ static int cross(point a1, point a2, point b1, point b2) { int b1x, b1y, b2x, b2y, px, py, d1, d2, d3; /* * The condition for crossing is that b1 and b2 are on opposite * sides of the line a1-a2, and vice versa. We determine this * by taking the dot product of b1-a1 with a vector * perpendicular to a2-a1, and similarly with b2-a1, and seeing * if they have different signs. */ /* * Construct the vector b1-a1. We don't have to worry too much * about the denominator, because we're only going to check the * sign of this vector; we just need to get the numerator * right. */ b1x = b1.x * a1.d - a1.x * b1.d; b1y = b1.y * a1.d - a1.y * b1.d; /* Now construct b2-a1, and a vector perpendicular to a2-a1, * in the same way. */ b2x = b2.x * a1.d - a1.x * b2.d; b2y = b2.y * a1.d - a1.y * b2.d; px = a1.y * a2.d - a2.y * a1.d; py = a2.x * a1.d - a1.x * a2.d; /* Take the dot products. */ d1 = b1x * px + b1y * py; d2 = b2x * px + b2y * py; /* If they have the same non-zero sign, the lines do not cross. */ if ((d1 > 0 && d2 > 0) || (d1 < 0 && d2 < 0)) return FALSE; /* * If the dot products are both exactly zero, then the two line * segments are collinear. At this point the intersection * condition becomes whether or not they overlap within their * line. */ if (d1 == 0 && d2 == 0) { /* Construct the vector a2-a1. */ px = a2.x * a1.d - a1.x * a2.d; py = a2.y * a1.d - a1.y * a2.d; /* Determine the dot products of b1-a1 and b2-a1 with this. */ d1 = b1x * px + b1y * py; d2 = b2x * px + b2y * py; /* If they're both strictly negative, the lines do not cross. */ if (d1 < 0 && d2 < 0) return FALSE; /* Otherwise, take the dot product of a2-a1 with itself. If * the other two dot products both exceed this, the lines do * not cross. */ d3 = px * px + py * py; if (d1 > d3 && d2 > d3) return FALSE; } /* * We've eliminated the only important special case, and we * have determined that b1 and b2 are on opposite sides of the * line a1-a2. Now do the same thing the other way round and * we're done. */ b1x = a1.x * b1.d - b1.x * a1.d; b1y = a1.y * b1.d - b1.y * a1.d; b2x = a2.x * b1.d - b1.x * a2.d; b2y = a2.y * b1.d - b1.y * a2.d; px = b1.y * b2.d - b2.y * b1.d; py = b2.x * b1.d - b1.x * b2.d; d1 = b1x * px + b1y * py; d2 = b2x * px + b2y * py; if ((d1 > 0 && d2 > 0) || (d1 < 0 && d2 < 0)) return FALSE; /* * The lines must cross. */ return TRUE; } static unsigned long squarert(unsigned long n) { unsigned long d, a, b, di; d = n; a = 0; b = 1L << 30; /* largest available power of 4 */ do { a >>= 1; di = 2*a + b; if (di <= d) { d -= di; a += b; } b >>= 2; } while (b); return a; } /* * Our solutions are arranged on a square grid big enough that n * points occupy about 1/POINTDENSITY of the grid. */ #define POINTDENSITY 3 #define MAXDEGREE 4 #define COORDLIMIT(n) squarert((n) * POINTDENSITY) static void addedge(tree234 *edges, int a, int b) { edge *e = snew(edge); assert(a != b); e->a = min(a, b); e->b = max(a, b); add234(edges, e); } static int isedge(tree234 *edges, int a, int b) { edge e; assert(a != b); e.a = min(a, b); e.b = max(a, b); return find234(edges, &e, NULL) != NULL; } typedef struct vertex { int param; int vindex; } vertex; static int vertcmpC(const void *av, const void *bv) { const vertex *a = (vertex *)av; const vertex *b = (vertex *)bv; if (a->param < b->param) return -1; else if (a->param > b->param) return +1; else if (a->vindex < b->vindex) return -1; else if (a->vindex > b->vindex) return +1; return 0; } static int vertcmp(void *av, void *bv) { return vertcmpC(av, bv); } /* * Construct point coordinates for n points arranged in a circle, * within the bounding box (0,0) to (w,w). */ static void make_circle(point *pts, int n, int w) { int d, r, c, i; /* * First, decide on a denominator. Although in principle it * would be nice to set this really high so as to finely * distinguish all the points on the circle, I'm going to set * it at a fixed size to prevent integer overflow problems. */ d = PREFERRED_TILESIZE; /* * Leave a little space outside the circle. */ c = d * w / 2; r = d * w * 3 / 7; /* * Place the points. */ for (i = 0; i < n; i++) { double angle = i * 2 * PI / n; double x = r * sin(angle), y = - r * cos(angle); pts[i].x = (int)(c + x + 0.5); pts[i].y = (int)(c + y + 0.5); pts[i].d = d; } } static char *new_game_desc(game_params *params, random_state *rs, char **aux, int interactive) { int n = params->n; int w, h, i, j, k, m; point *pts, *pts2; int *tmp; tree234 *edges, *vertices; edge *e, *e2; vertex *v, *vs, *vlist; char *ret; w = h = COORDLIMIT(n); /* * Choose n points from this grid. */ pts = snewn(n, point); tmp = snewn(w*h, int); for (i = 0; i < w*h; i++) tmp[i] = i; shuffle(tmp, w*h, sizeof(*tmp), rs); for (i = 0; i < n; i++) { pts[i].x = tmp[i] % w; pts[i].y = tmp[i] / w; pts[i].d = 1; } sfree(tmp); /* * Now start adding edges between the points. * * At all times, we attempt to add an edge to the lowest-degree * vertex we currently have, and we try the other vertices as * candidate second endpoints in order of distance from this * one. We stop as soon as we find an edge which * * (a) does not increase any vertex's degree beyond MAXDEGREE * (b) does not cross any existing edges * (c) does not intersect any actual point. */ vs = snewn(n, vertex); vertices = newtree234(vertcmp); for (i = 0; i < n; i++) { v = vs + i; v->param = 0; /* in this tree, param is the degree */ v->vindex = i; add234(vertices, v); } edges = newtree234(edgecmp); vlist = snewn(n, vertex); while (1) { int added = FALSE; for (i = 0; i < n; i++) { v = index234(vertices, i); j = v->vindex; if (v->param >= MAXDEGREE) break; /* nothing left to add! */ /* * Sort the other vertices into order of their distance * from this one. Don't bother looking below i, because * we've already tried those edges the other way round. * Also here we rule out target vertices with too high * a degree, and (of course) ones to which we already * have an edge. */ m = 0; for (k = i+1; k < n; k++) { vertex *kv = index234(vertices, k); int ki = kv->vindex; int dx, dy; if (kv->param >= MAXDEGREE || isedge(edges, ki, j)) continue; vlist[m].vindex = ki; dx = pts[ki].x - pts[j].x; dy = pts[ki].y - pts[j].y; vlist[m].param = dx*dx + dy*dy; m++; } qsort(vlist, m, sizeof(*vlist), vertcmpC); for (k = 0; k < m; k++) { int p; int ki = vlist[k].vindex; /* * Check to see whether this edge intersects any * existing edge or point. */ for (p = 0; p < n; p++) if (p != ki && p != j && cross(pts[ki], pts[j], pts[p], pts[p])) break; if (p < n) continue; for (p = 0; (e = index234(edges, p)) != NULL; p++) if (e->a != ki && e->a != j && e->b != ki && e->b != j && cross(pts[ki], pts[j], pts[e->a], pts[e->b])) break; if (e) continue; /* * We're done! Add this edge, modify the degrees of * the two vertices involved, and break. */ addedge(edges, j, ki); added = TRUE; del234(vertices, vs+j); vs[j].param++; add234(vertices, vs+j); del234(vertices, vs+ki); vs[ki].param++; add234(vertices, vs+ki); break; } if (k < m) break; } if (!added) break; /* we're done. */ } /* * That's our graph. Now shuffle the points, making sure that * they come out with at least one crossed line when arranged * in a circle (so that the puzzle isn't immediately solved!). */ tmp = snewn(n, int); for (i = 0; i < n; i++) tmp[i] = i; pts2 = snewn(n, point); make_circle(pts2, n, w); while (1) { shuffle(tmp, n, sizeof(*tmp), rs); for (i = 0; (e = index234(edges, i)) != NULL; i++) { for (j = i+1; (e2 = index234(edges, j)) != NULL; j++) { if (e2->a == e->a || e2->a == e->b || e2->b == e->a || e2->b == e->b) continue; if (cross(pts2[tmp[e2->a]], pts2[tmp[e2->b]], pts2[tmp[e->a]], pts2[tmp[e->b]])) break; } if (e2) break; } if (e) break; /* we've found a crossing */ } /* * We're done. Now encode the graph in a string format. Let's * use a comma-separated list of dash-separated vertex number * pairs, numbered from zero. We'll sort the list to prevent * side channels. */ ret = NULL; { char *sep; char buf[80]; int retlen; edge *ea; retlen = 0; m = count234(edges); ea = snewn(m, edge); for (i = 0; (e = index234(edges, i)) != NULL; i++) { assert(i < m); ea[i].a = min(tmp[e->a], tmp[e->b]); ea[i].b = max(tmp[e->a], tmp[e->b]); retlen += 1 + sprintf(buf, "%d-%d", ea[i].a, ea[i].b); } assert(i == m); qsort(ea, m, sizeof(*ea), edgecmpC); ret = snewn(retlen, char); sep = ""; k = 0; for (i = 0; i < m; i++) { k += sprintf(ret + k, "%s%d-%d", sep, ea[i].a, ea[i].b); sep = ","; } assert(k < retlen); sfree(ea); } /* * Encode the solution we started with as an aux_info string. */ { char buf[80]; char *auxstr; int auxlen; auxlen = 2; /* leading 'S' and trailing '\0' */ for (i = 0; i < n; i++) { j = tmp[i]; pts2[j] = pts[i]; if (pts2[j].d & 1) { pts2[j].x *= 2; pts2[j].y *= 2; pts2[j].d *= 2; } pts2[j].x += pts2[j].d / 2; pts2[j].y += pts2[j].d / 2; auxlen += sprintf(buf, ";P%d:%d,%d/%d", i, pts2[j].x, pts2[j].y, pts2[j].d); } k = 0; auxstr = snewn(auxlen, char); auxstr[k++] = 'S'; for (i = 0; i < n; i++) k += sprintf(auxstr+k, ";P%d:%d,%d/%d", i, pts2[i].x, pts2[i].y, pts2[i].d); assert(k < auxlen); *aux = auxstr; } sfree(pts2); sfree(tmp); sfree(vlist); freetree234(vertices); sfree(vs); while ((e = delpos234(edges, 0)) != NULL) sfree(e); freetree234(edges); sfree(pts); return ret; } static char *validate_desc(game_params *params, char *desc) { int a, b; while (*desc) { a = atoi(desc); if (a < 0 || a >= params->n) return "Number out of range in game description"; while (*desc && isdigit((unsigned char)*desc)) desc++; if (*desc != '-') return "Expected '-' after number in game description"; desc++; /* eat dash */ b = atoi(desc); if (b < 0 || b >= params->n) return "Number out of range in game description"; while (*desc && isdigit((unsigned char)*desc)) desc++; if (*desc) { if (*desc != ',') return "Expected ',' after number in game description"; desc++; /* eat comma */ } } return NULL; } static game_state *new_game(midend_data *me, game_params *params, char *desc) { int n = params->n; game_state *state = snew(game_state); int a, b; state->params = *params; state->w = state->h = COORDLIMIT(n); state->pts = snewn(n, point); make_circle(state->pts, n, state->w); state->graph = snew(struct graph); state->graph->refcount = 1; state->graph->edges = newtree234(edgecmp); state->completed = state->cheated = state->just_solved = FALSE; while (*desc) { a = atoi(desc); assert(a >= 0 && a < params->n); while (*desc && isdigit((unsigned char)*desc)) desc++; assert(*desc == '-'); desc++; /* eat dash */ b = atoi(desc); assert(b >= 0 && b < params->n); while (*desc && isdigit((unsigned char)*desc)) desc++; if (*desc) { assert(*desc == ','); desc++; /* eat comma */ } addedge(state->graph->edges, a, b); } return state; } static game_state *dup_game(game_state *state) { int n = state->params.n; game_state *ret = snew(game_state); ret->params = state->params; ret->w = state->w; ret->h = state->h; ret->pts = snewn(n, point); memcpy(ret->pts, state->pts, n * sizeof(point)); ret->graph = state->graph; ret->graph->refcount++; ret->completed = state->completed; ret->cheated = state->cheated; ret->just_solved = state->just_solved; return ret; } static void free_game(game_state *state) { if (--state->graph->refcount <= 0) { edge *e; while ((e = delpos234(state->graph->edges, 0)) != NULL) sfree(e); freetree234(state->graph->edges); sfree(state->graph); } sfree(state->pts); sfree(state); } static char *solve_game(game_state *state, game_state *currstate, char *aux, char **error) { if (!aux) { *error = "Solution not known for this puzzle"; return NULL; } return dupstr(aux); } static char *game_text_format(game_state *state) { return NULL; } struct game_ui { int dragpoint; /* point being dragged; -1 if none */ point newpoint; /* where it's been dragged to so far */ int just_dragged; /* reset in game_changed_state */ int just_moved; /* _set_ in game_changed_state */ float anim_length; }; static game_ui *new_ui(game_state *state) { game_ui *ui = snew(game_ui); ui->dragpoint = -1; ui->just_moved = ui->just_dragged = FALSE; return ui; } static void free_ui(game_ui *ui) { sfree(ui); } static char *encode_ui(game_ui *ui) { return NULL; } static void decode_ui(game_ui *ui, char *encoding) { } static void game_changed_state(game_ui *ui, game_state *oldstate, game_state *newstate) { ui->dragpoint = -1; ui->just_moved = ui->just_dragged; ui->just_dragged = FALSE; } struct game_drawstate { int tilesize; }; static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds, int x, int y, int button) { int n = state->params.n; if (button == LEFT_BUTTON) { int i, best, bestd; /* * Begin drag. We drag the vertex _nearest_ to the pointer, * just in case one is nearly on top of another and we want * to drag the latter. However, we drag nothing at all if * the nearest vertex is outside DRAG_THRESHOLD. */ best = -1; bestd = 0; for (i = 0; i < n; i++) { int px = state->pts[i].x * ds->tilesize / state->pts[i].d; int py = state->pts[i].y * ds->tilesize / state->pts[i].d; int dx = px - x; int dy = py - y; int d = dx*dx + dy*dy; if (best == -1 || bestd > d) { best = i; bestd = d; } } if (bestd <= DRAG_THRESHOLD * DRAG_THRESHOLD) { ui->dragpoint = best; ui->newpoint.x = x; ui->newpoint.y = y; ui->newpoint.d = ds->tilesize; return ""; } } else if (button == LEFT_DRAG && ui->dragpoint >= 0) { ui->newpoint.x = x; ui->newpoint.y = y; ui->newpoint.d = ds->tilesize; return ""; } else if (button == LEFT_RELEASE && ui->dragpoint >= 0) { int p = ui->dragpoint; char buf[80]; ui->dragpoint = -1; /* terminate drag, no matter what */ /* * First, see if we're within range. The user can cancel a * drag by dragging the point right off the window. */ if (ui->newpoint.x < 0 || ui->newpoint.x >= state->w*ui->newpoint.d || ui->newpoint.y < 0 || ui->newpoint.y >= state->h*ui->newpoint.d) return ""; /* * We aren't cancelling the drag. Construct a move string * indicating where this point is going to. */ sprintf(buf, "P%d:%d,%d/%d", p, ui->newpoint.x, ui->newpoint.y, ui->newpoint.d); ui->just_dragged = TRUE; return dupstr(buf); } return NULL; } static game_state *execute_move(game_state *state, char *move) { int n = state->params.n; int p, x, y, d, k; game_state *ret = dup_game(state); ret->just_solved = FALSE; while (*move) { if (*move == 'S') { move++; if (*move == ';') move++; ret->cheated = ret->just_solved = TRUE; } if (*move == 'P' && sscanf(move+1, "%d:%d,%d/%d%n", &p, &x, &y, &d, &k) == 4 && p >= 0 && p < n && d > 0) { ret->pts[p].x = x; ret->pts[p].y = y; ret->pts[p].d = d; move += k+1; if (*move == ';') move++; } else { free_game(ret); return NULL; } } /* * Check correctness: for every pair of edges, see whether they * cross. */ if (!ret->completed) { int i, j; edge *e, *e2; for (i = 0; (e = index234(ret->graph->edges, i)) != NULL; i++) { for (j = i+1; (e2 = index234(ret->graph->edges, j)) != NULL; j++) { if (e2->a == e->a || e2->a == e->b || e2->b == e->a || e2->b == e->b) continue; if (cross(ret->pts[e2->a], ret->pts[e2->b], ret->pts[e->a], ret->pts[e->b])) break; } if (e2) break; } /* * e == NULL if we've gone through all the edge pairs * without finding a crossing. */ ret->completed = (e == NULL); } return ret; } /* ---------------------------------------------------------------------- * Drawing routines. */ static void game_compute_size(game_params *params, int tilesize, int *x, int *y) { *x = *y = COORDLIMIT(params->n) * tilesize; } static void game_set_size(game_drawstate *ds, game_params *params, int tilesize) { ds->tilesize = tilesize; } static float *game_colours(frontend *fe, game_state *state, int *ncolours) { float *ret = snewn(3 * NCOLOURS, float); frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]); ret[COL_LINE * 3 + 0] = 0.0F; ret[COL_LINE * 3 + 1] = 0.0F; ret[COL_LINE * 3 + 2] = 0.0F; ret[COL_OUTLINE * 3 + 0] = 0.0F; ret[COL_OUTLINE * 3 + 1] = 0.0F; ret[COL_OUTLINE * 3 + 2] = 0.0F; ret[COL_POINT * 3 + 0] = 0.0F; ret[COL_POINT * 3 + 1] = 0.0F; ret[COL_POINT * 3 + 2] = 1.0F; ret[COL_DRAGPOINT * 3 + 0] = 1.0F; ret[COL_DRAGPOINT * 3 + 1] = 1.0F; ret[COL_DRAGPOINT * 3 + 2] = 1.0F; ret[COL_NEIGHBOUR * 3 + 0] = 1.0F; ret[COL_NEIGHBOUR * 3 + 1] = 0.0F; ret[COL_NEIGHBOUR * 3 + 2] = 0.0F; *ncolours = NCOLOURS; return ret; } static game_drawstate *game_new_drawstate(game_state *state) { struct game_drawstate *ds = snew(struct game_drawstate); ds->tilesize = 0; return ds; } static void game_free_drawstate(game_drawstate *ds) { sfree(ds); } static point mix(point a, point b, float distance) { point ret; ret.d = a.d * b.d; ret.x = a.x * b.d + distance * (b.x * a.d - a.x * b.d); ret.y = a.y * b.d + distance * (b.y * a.d - a.y * b.d); return ret; } static void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate, game_state *state, int dir, game_ui *ui, float animtime, float flashtime) { int w, h; edge *e; int i, j; int bg; /* * There's no terribly sensible way to do partial redraws of * this game, so I'm going to have to resort to redrawing the * whole thing every time. */ bg = (flashtime != 0 ? COL_DRAGPOINT : COL_BACKGROUND); game_compute_size(&state->params, ds->tilesize, &w, &h); draw_rect(fe, 0, 0, w, h, bg); /* * Draw the edges. */ for (i = 0; (e = index234(state->graph->edges, i)) != NULL; i++) { point p1, p2; int x1, y1, x2, y2; p1 = state->pts[e->a]; p2 = state->pts[e->b]; if (ui->dragpoint == e->a) p1 = ui->newpoint; else if (ui->dragpoint == e->b) p2 = ui->newpoint; if (oldstate) { p1 = mix(oldstate->pts[e->a], p1, animtime / ui->anim_length); p2 = mix(oldstate->pts[e->b], p2, animtime / ui->anim_length); } x1 = p1.x * ds->tilesize / p1.d; y1 = p1.y * ds->tilesize / p1.d; x2 = p2.x * ds->tilesize / p2.d; y2 = p2.y * ds->tilesize / p2.d; draw_line(fe, x1, y1, x2, y2, COL_LINE); } /* * Draw the points. * * When dragging, we should not only vary the colours, but * leave the point being dragged until last. */ for (j = 0; j < 3; j++) { int thisc = (j == 0 ? COL_POINT : j == 1 ? COL_NEIGHBOUR : COL_DRAGPOINT); for (i = 0; i < state->params.n; i++) { int x, y, c; point p = state->pts[i]; if (ui->dragpoint == i) { p = ui->newpoint; c = COL_DRAGPOINT; } else if (ui->dragpoint >= 0 && isedge(state->graph->edges, ui->dragpoint, i)) { c = COL_NEIGHBOUR; } else { c = COL_POINT; } if (oldstate) p = mix(oldstate->pts[i], p, animtime / ui->anim_length); if (c == thisc) { x = p.x * ds->tilesize / p.d; y = p.y * ds->tilesize / p.d; #ifdef VERTEX_NUMBERS draw_circle(fe, x, y, DRAG_THRESHOLD, bg, bg); { char buf[80]; sprintf(buf, "%d", i); draw_text(fe, x, y, FONT_VARIABLE, DRAG_THRESHOLD*3/2, ALIGN_VCENTRE|ALIGN_HCENTRE, c, buf); } #else draw_circle(fe, x, y, CIRCLE_RADIUS, c, COL_OUTLINE); #endif } } } draw_update(fe, 0, 0, w, h); } static float game_anim_length(game_state *oldstate, game_state *newstate, int dir, game_ui *ui) { if (ui->just_moved) return 0.0F; if ((dir < 0 ? oldstate : newstate)->just_solved) ui->anim_length = SOLVEANIM_TIME; else ui->anim_length = ANIM_TIME; return ui->anim_length; } static float game_flash_length(game_state *oldstate, game_state *newstate, int dir, game_ui *ui) { if (!oldstate->completed && newstate->completed && !oldstate->cheated && !newstate->cheated) return FLASH_TIME; return 0.0F; } static int game_wants_statusbar(void) { return FALSE; } static int game_timing_state(game_state *state, game_ui *ui) { return TRUE; } #ifdef COMBINED #define thegame untangle #endif const struct game thegame = { "Untangle", "games.untangle", default_params, game_fetch_preset, decode_params, encode_params, free_params, dup_params, TRUE, game_configure, custom_params, validate_params, new_game_desc, validate_desc, new_game, dup_game, free_game, TRUE, solve_game, FALSE, game_text_format, new_ui, free_ui, encode_ui, decode_ui, game_changed_state, interpret_move, execute_move, PREFERRED_TILESIZE, game_compute_size, game_set_size, game_colours, game_new_drawstate, game_free_drawstate, game_redraw, game_anim_length, game_flash_length, game_wants_statusbar, FALSE, game_timing_state, SOLVE_ANIMATES, /* mouse_priorities */ };