ref: 666c528326b881460f2b677e20a2a9bc4d86898f
dir: /magnets.c/
/* * magnets.c: implementation of janko.at 'magnets puzzle' game. * * http://64.233.179.104/translate_c?hl=en&u=http://www.janko.at/Raetsel/Magnete/Beispiel.htm * * Puzzle definition is just the size, and then the list of + (across then * down) and - (across then down) present, then domino edges. * * An example: * * + 2 0 1 * +-----+ * 1|+ -| |1 * |-+-+ | * 0|-|#| |1 * | +-+-| * 2|+|- +|1 * +-----+ * 1 2 0 - * * 3x3:201,102,120,111,LRTT*BBLR * * 'Zotmeister' examples: * 5x5:.2..1,3..1.,.2..2,2..2.,LRLRTTLRTBBT*BTTBLRBBLRLR * 9x9:3.51...33,.2..23.13,..33.33.2,12...5.3.,**TLRTLR*,*TBLRBTLR,TBLRLRBTT,BLRTLRTBB,LRTB*TBLR,LRBLRBLRT,TTTLRLRTB,BBBTLRTB*,*LRBLRB** * * Janko 6x6 with solution: * 6x6:322223,323132,232223,232223,LRTLRTTTBLRBBBTTLRLRBBLRTTLRTTBBLRBB * * janko 8x8: * 8x8:34131323,23131334,43122323,21332243,LRTLRLRT,LRBTTTTB,LRTBBBBT,TTBTLRTB,BBTBTTBT,TTBTBBTB,BBTBLRBT,LRBLRLRB */ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <assert.h> #include <ctype.h> #include <math.h> #include "puzzles.h" #ifdef STANDALONE_SOLVER int verbose = 0; #endif enum { COL_BACKGROUND, COL_HIGHLIGHT, COL_LOWLIGHT, COL_TEXT, COL_ERROR, COL_CURSOR, COL_DONE, COL_NEUTRAL, COL_NEGATIVE, COL_POSITIVE, COL_NOT, NCOLOURS }; /* Cell states. */ enum { EMPTY = 0, NEUTRAL = EMPTY, POSITIVE = 1, NEGATIVE = 2 }; #if defined DEBUGGING || defined STANDALONE_SOLVER static const char *cellnames[3] = { "neutral", "positive", "negative" }; #define NAME(w) ( ((w) < 0 || (w) > 2) ? "(out of range)" : cellnames[(w)] ) #endif #define GRID2CHAR(g) ( ((g) >= 0 && (g) <= 2) ? ".+-"[(g)] : '?' ) #define CHAR2GRID(c) ( (c) == '+' ? POSITIVE : (c) == '-' ? NEGATIVE : NEUTRAL ) #define INGRID(s,x,y) ((x) >= 0 && (x) < (s)->w && (y) >= 0 && (y) < (s)->h) #define OPPOSITE(x) ( ((x)*2) % 3 ) /* 0 --> 0, 1 --> 2, 2 --> 4 --> 1 */ #define FLASH_TIME 0.7F /* Macro ickery copied from slant.c */ #define DIFFLIST(A) \ A(EASY,Easy,e) \ A(TRICKY,Tricky,t) #define ENUM(upper,title,lower) DIFF_ ## upper, #define TITLE(upper,title,lower) #title, #define ENCODE(upper,title,lower) #lower #define CONFIG(upper,title,lower) ":" #title enum { DIFFLIST(ENUM) DIFFCOUNT }; static char const *const magnets_diffnames[] = { DIFFLIST(TITLE) "(count)" }; static char const magnets_diffchars[] = DIFFLIST(ENCODE); #define DIFFCONFIG DIFFLIST(CONFIG) /* --------------------------------------------------------------- */ /* Game parameter functions. */ struct game_params { int w, h, diff, stripclues; }; #define DEFAULT_PRESET 2 static const struct game_params magnets_presets[] = { {6, 5, DIFF_EASY, 0}, {6, 5, DIFF_TRICKY, 0}, {6, 5, DIFF_TRICKY, 1}, {8, 7, DIFF_EASY, 0}, {8, 7, DIFF_TRICKY, 0}, {8, 7, DIFF_TRICKY, 1}, {10, 9, DIFF_TRICKY, 0}, {10, 9, DIFF_TRICKY, 1} }; static game_params *default_params(void) { game_params *ret = snew(game_params); *ret = magnets_presets[DEFAULT_PRESET]; return ret; } static int game_fetch_preset(int i, char **name, game_params **params) { game_params *ret; char buf[64]; if (i < 0 || i >= lenof(magnets_presets)) return FALSE; ret = default_params(); *ret = magnets_presets[i]; /* struct copy */ *params = ret; sprintf(buf, "%dx%d %s%s", magnets_presets[i].w, magnets_presets[i].h, magnets_diffnames[magnets_presets[i].diff], magnets_presets[i].stripclues ? ", strip clues" : ""); *name = dupstr(buf); return TRUE; } static void free_params(game_params *params) { sfree(params); } static game_params *dup_params(const game_params *params) { game_params *ret = snew(game_params); *ret = *params; /* structure copy */ return ret; } static void decode_params(game_params *ret, char const *string) { ret->w = ret->h = atoi(string); while (*string && isdigit((unsigned char) *string)) ++string; if (*string == 'x') { string++; ret->h = atoi(string); while (*string && isdigit((unsigned char)*string)) string++; } ret->diff = DIFF_EASY; if (*string == 'd') { int i; string++; for (i = 0; i < DIFFCOUNT; i++) if (*string == magnets_diffchars[i]) ret->diff = i; if (*string) string++; } ret->stripclues = 0; if (*string == 'S') { string++; ret->stripclues = 1; } } static char *encode_params(const game_params *params, int full) { char buf[256]; sprintf(buf, "%dx%d", params->w, params->h); if (full) sprintf(buf + strlen(buf), "d%c%s", magnets_diffchars[params->diff], params->stripclues ? "S" : ""); return dupstr(buf); } static config_item *game_configure(const game_params *params) { config_item *ret; char buf[64]; ret = snewn(5, config_item); ret[0].name = "Width"; ret[0].type = C_STRING; sprintf(buf, "%d", params->w); ret[0].sval = dupstr(buf); ret[0].ival = 0; ret[1].name = "Height"; ret[1].type = C_STRING; sprintf(buf, "%d", params->h); ret[1].sval = dupstr(buf); ret[1].ival = 0; ret[2].name = "Difficulty"; ret[2].type = C_CHOICES; ret[2].sval = DIFFCONFIG; ret[2].ival = params->diff; ret[3].name = "Strip clues"; ret[3].type = C_BOOLEAN; ret[3].sval = NULL; ret[3].ival = params->stripclues; ret[4].name = NULL; ret[4].type = C_END; ret[4].sval = NULL; ret[4].ival = 0; return ret; } static game_params *custom_params(const config_item *cfg) { game_params *ret = snew(game_params); ret->w = atoi(cfg[0].sval); ret->h = atoi(cfg[1].sval); ret->diff = cfg[2].ival; ret->stripclues = cfg[3].ival; return ret; } static char *validate_params(const game_params *params, int full) { if (params->w < 2) return "Width must be at least one"; if (params->h < 2) return "Height must be at least one"; if (params->diff < 0 || params->diff >= DIFFCOUNT) return "Unknown difficulty level"; return NULL; } /* --------------------------------------------------------------- */ /* Game state allocation, deallocation. */ struct game_common { int *dominoes; /* size w*h, dominoes[i] points to other end of domino. */ int *rowcount; /* size 3*h, array of [plus, minus, neutral] counts */ int *colcount; /* size 3*w, ditto */ int refcount; }; #define GS_ERROR 1 #define GS_SET 2 #define GS_NOTPOSITIVE 4 #define GS_NOTNEGATIVE 8 #define GS_NOTNEUTRAL 16 #define GS_MARK 32 #define GS_NOTMASK (GS_NOTPOSITIVE|GS_NOTNEGATIVE|GS_NOTNEUTRAL) #define NOTFLAG(w) ( (w) == NEUTRAL ? GS_NOTNEUTRAL : \ (w) == POSITIVE ? GS_NOTPOSITIVE : \ (w) == NEGATIVE ? GS_NOTNEGATIVE : \ 0 ) #define POSSIBLE(f,w) (!(state->flags[(f)] & NOTFLAG(w))) struct game_state { int w, h, wh; int *grid; /* size w*h, for cell state (pos/neg) */ unsigned int *flags; /* size w*h */ int solved, completed, numbered; unsigned char *counts_done; struct game_common *common; /* domino layout never changes. */ }; static void clear_state(game_state *ret) { int i; ret->solved = ret->completed = ret->numbered = 0; memset(ret->common->rowcount, 0, ret->h*3*sizeof(int)); memset(ret->common->colcount, 0, ret->w*3*sizeof(int)); memset(ret->counts_done, 0, (ret->h + ret->w) * 2 * sizeof(unsigned char)); for (i = 0; i < ret->wh; i++) { ret->grid[i] = EMPTY; ret->flags[i] = 0; ret->common->dominoes[i] = i; } } static game_state *new_state(int w, int h) { game_state *ret = snew(game_state); memset(ret, 0, sizeof(game_state)); ret->w = w; ret->h = h; ret->wh = w*h; ret->grid = snewn(ret->wh, int); ret->flags = snewn(ret->wh, unsigned int); ret->counts_done = snewn((ret->h + ret->w) * 2, unsigned char); ret->common = snew(struct game_common); ret->common->refcount = 1; ret->common->dominoes = snewn(ret->wh, int); ret->common->rowcount = snewn(ret->h*3, int); ret->common->colcount = snewn(ret->w*3, int); clear_state(ret); return ret; } static game_state *dup_game(const game_state *src) { game_state *dest = snew(game_state); dest->w = src->w; dest->h = src->h; dest->wh = src->wh; dest->solved = src->solved; dest->completed = src->completed; dest->numbered = src->numbered; dest->common = src->common; dest->common->refcount++; dest->grid = snewn(dest->wh, int); memcpy(dest->grid, src->grid, dest->wh*sizeof(int)); dest->counts_done = snewn((dest->h + dest->w) * 2, unsigned char); memcpy(dest->counts_done, src->counts_done, (dest->h + dest->w) * 2 * sizeof(unsigned char)); dest->flags = snewn(dest->wh, unsigned int); memcpy(dest->flags, src->flags, dest->wh*sizeof(unsigned int)); return dest; } static void free_game(game_state *state) { state->common->refcount--; if (state->common->refcount == 0) { sfree(state->common->dominoes); sfree(state->common->rowcount); sfree(state->common->colcount); sfree(state->common); } sfree(state->counts_done); sfree(state->flags); sfree(state->grid); sfree(state); } /* --------------------------------------------------------------- */ /* Game generation and reading. */ /* For a game of size w*h the game description is: * w-sized string of column + numbers (L-R), or '.' for none * semicolon * h-sized string of row + numbers (T-B), or '.' * semicolon * w-sized string of column - numbers (L-R), or '.' * semicolon * h-sized string of row - numbers (T-B), or '.' * semicolon * w*h-sized string of 'L', 'R', 'U', 'D' for domino associations, * or '*' for a black singleton square. * * for a total length of 2w + 2h + wh + 4. */ static char n2c(int num) { /* XXX cloned from singles.c */ if (num == -1) return '.'; if (num < 10) return '0' + num; else if (num < 10+26) return 'a' + num - 10; else return 'A' + num - 10 - 26; return '?'; } static int c2n(char c) { /* XXX cloned from singles.c */ if (isdigit((unsigned char)c)) return (int)(c - '0'); else if (c >= 'a' && c <= 'z') return (int)(c - 'a' + 10); else if (c >= 'A' && c <= 'Z') return (int)(c - 'A' + 10 + 26); return -1; } static const char *readrow(const char *desc, int n, int *array, int off, const char **prob) { int i, num; char c; for (i = 0; i < n; i++) { c = *desc++; if (c == 0) goto badchar; if (c == '.') num = -1; else { num = c2n(c); if (num < 0) goto badchar; } array[i*3+off] = num; } c = *desc++; if (c != ',') goto badchar; return desc; badchar: *prob = (c == 0) ? "Game description too short" : "Game description contained unexpected characters"; return NULL; } static game_state *new_game_int(const game_params *params, const char *desc, const char **prob) { game_state *state = new_state(params->w, params->h); int x, y, idx, *count; char c; *prob = NULL; /* top row, left-to-right */ desc = readrow(desc, state->w, state->common->colcount, POSITIVE, prob); if (*prob) goto done; /* left column, top-to-bottom */ desc = readrow(desc, state->h, state->common->rowcount, POSITIVE, prob); if (*prob) goto done; /* bottom row, left-to-right */ desc = readrow(desc, state->w, state->common->colcount, NEGATIVE, prob); if (*prob) goto done; /* right column, top-to-bottom */ desc = readrow(desc, state->h, state->common->rowcount, NEGATIVE, prob); if (*prob) goto done; /* Add neutral counts (== size - pos - neg) to columns and rows. * Any singleton cells will just be treated as permanently neutral. */ count = state->common->colcount; for (x = 0; x < state->w; x++) { if (count[x*3+POSITIVE] < 0 || count[x*3+NEGATIVE] < 0) count[x*3+NEUTRAL] = -1; else { count[x*3+NEUTRAL] = state->h - count[x*3+POSITIVE] - count[x*3+NEGATIVE]; if (count[x*3+NEUTRAL] < 0) { *prob = "Column counts inconsistent"; goto done; } } } count = state->common->rowcount; for (y = 0; y < state->h; y++) { if (count[y*3+POSITIVE] < 0 || count[y*3+NEGATIVE] < 0) count[y*3+NEUTRAL] = -1; else { count[y*3+NEUTRAL] = state->w - count[y*3+POSITIVE] - count[y*3+NEGATIVE]; if (count[y*3+NEUTRAL] < 0) { *prob = "Row counts inconsistent"; goto done; } } } for (y = 0; y < state->h; y++) { for (x = 0; x < state->w; x++) { idx = y*state->w + x; nextchar: c = *desc++; if (c == 'L') /* this square is LHS of a domino */ state->common->dominoes[idx] = idx+1; else if (c == 'R') /* ... RHS of a domino */ state->common->dominoes[idx] = idx-1; else if (c == 'T') /* ... top of a domino */ state->common->dominoes[idx] = idx+state->w; else if (c == 'B') /* ... bottom of a domino */ state->common->dominoes[idx] = idx-state->w; else if (c == '*') /* singleton */ state->common->dominoes[idx] = idx; else if (c == ',') /* spacer, ignore */ goto nextchar; else goto badchar; } } /* Check dominoes as input are sensibly consistent * (i.e. each end points to the other) */ for (idx = 0; idx < state->wh; idx++) { if (state->common->dominoes[idx] < 0 || state->common->dominoes[idx] > state->wh || state->common->dominoes[state->common->dominoes[idx]] != idx) { *prob = "Domino descriptions inconsistent"; goto done; } if (state->common->dominoes[idx] == idx) { state->grid[idx] = NEUTRAL; state->flags[idx] |= GS_SET; } } /* Success. */ state->numbered = 1; goto done; badchar: *prob = (c == 0) ? "Game description too short" : "Game description contained unexpected characters"; done: if (*prob) { free_game(state); return NULL; } return state; } static char *validate_desc(const game_params *params, const char *desc) { const char *prob; game_state *st = new_game_int(params, desc, &prob); if (!st) return (char*)prob; free_game(st); return NULL; } static game_state *new_game(midend *me, const game_params *params, const char *desc) { const char *prob; game_state *st = new_game_int(params, desc, &prob); assert(st); return st; } static char *generate_desc(game_state *new) { int x, y, idx, other, w = new->w, h = new->h; char *desc = snewn(new->wh + 2*(w + h) + 5, char), *p = desc; for (x = 0; x < w; x++) *p++ = n2c(new->common->colcount[x*3+POSITIVE]); *p++ = ','; for (y = 0; y < h; y++) *p++ = n2c(new->common->rowcount[y*3+POSITIVE]); *p++ = ','; for (x = 0; x < w; x++) *p++ = n2c(new->common->colcount[x*3+NEGATIVE]); *p++ = ','; for (y = 0; y < h; y++) *p++ = n2c(new->common->rowcount[y*3+NEGATIVE]); *p++ = ','; for (y = 0; y < h; y++) { for (x = 0; x < w; x++) { idx = y*w + x; other = new->common->dominoes[idx]; if (other == idx) *p++ = '*'; else if (other == idx+1) *p++ = 'L'; else if (other == idx-1) *p++ = 'R'; else if (other == idx+w) *p++ = 'T'; else if (other == idx-w) *p++ = 'B'; else assert(!"mad domino orientation"); } } *p = '\0'; return desc; } static void game_text_hborder(const game_state *state, char **p_r) { char *p = *p_r; int x; *p++ = ' '; *p++ = '+'; for (x = 0; x < state->w*2-1; x++) *p++ = '-'; *p++ = '+'; *p++ = '\n'; *p_r = p; } static int game_can_format_as_text_now(const game_params *params) { return TRUE; } static char *game_text_format(const game_state *state) { int len, x, y, i; char *ret, *p; len = ((state->w*2)+4) * ((state->h*2)+4) + 2; p = ret = snewn(len, char); /* top row: '+' then column totals for plus. */ *p++ = '+'; for (x = 0; x < state->w; x++) { *p++ = ' '; *p++ = n2c(state->common->colcount[x*3+POSITIVE]); } *p++ = '\n'; /* top border. */ game_text_hborder(state, &p); for (y = 0; y < state->h; y++) { *p++ = n2c(state->common->rowcount[y*3+POSITIVE]); *p++ = '|'; for (x = 0; x < state->w; x++) { i = y*state->w+x; *p++ = state->common->dominoes[i] == i ? '#' : state->grid[i] == POSITIVE ? '+' : state->grid[i] == NEGATIVE ? '-' : state->flags[i] & GS_SET ? '*' : ' '; if (x < (state->w-1)) *p++ = state->common->dominoes[i] == i+1 ? ' ' : '|'; } *p++ = '|'; *p++ = n2c(state->common->rowcount[y*3+NEGATIVE]); *p++ = '\n'; if (y < (state->h-1)) { *p++ = ' '; *p++ = '|'; for (x = 0; x < state->w; x++) { i = y*state->w+x; *p++ = state->common->dominoes[i] == i+state->w ? ' ' : '-'; if (x < (state->w-1)) *p++ = '+'; } *p++ = '|'; *p++ = '\n'; } } /* bottom border. */ game_text_hborder(state, &p); /* bottom row: column totals for minus then '-'. */ *p++ = ' '; for (x = 0; x < state->w; x++) { *p++ = ' '; *p++ = n2c(state->common->colcount[x*3+NEGATIVE]); } *p++ = ' '; *p++ = '-'; *p++ = '\n'; *p++ = '\0'; return ret; } static void game_debug(game_state *state, const char *desc) { char *fmt = game_text_format(state); debug(("%s:\n%s\n", desc, fmt)); sfree(fmt); } enum { ROW, COLUMN }; typedef struct rowcol { int i, di, n, roworcol, num; int *targets; const char *name; } rowcol; static rowcol mkrowcol(const game_state *state, int num, int roworcol) { rowcol rc; rc.roworcol = roworcol; rc.num = num; if (roworcol == ROW) { rc.i = num * state->w; rc.di = 1; rc.n = state->w; rc.targets = &(state->common->rowcount[num*3]); rc.name = "row"; } else if (roworcol == COLUMN) { rc.i = num; rc.di = state->w; rc.n = state->h; rc.targets = &(state->common->colcount[num*3]); rc.name = "column"; } else { assert(!"unknown roworcol"); } return rc; } static int count_rowcol(const game_state *state, int num, int roworcol, int which) { int i, count = 0; rowcol rc = mkrowcol(state, num, roworcol); for (i = 0; i < rc.n; i++, rc.i += rc.di) { if (which < 0) { if (state->grid[rc.i] == EMPTY && !(state->flags[rc.i] & GS_SET)) count++; } else if (state->grid[rc.i] == which) count++; } return count; } static void check_rowcol(game_state *state, int num, int roworcol, int which, int *wrong, int *incomplete) { int count, target = mkrowcol(state, num, roworcol).targets[which]; if (target == -1) return; /* no number to check against. */ count = count_rowcol(state, num, roworcol, which); if (count < target) *incomplete = 1; if (count > target) *wrong = 1; } static int check_completion(game_state *state) { int i, j, x, y, idx, w = state->w, h = state->h; int which = POSITIVE, wrong = 0, incomplete = 0; /* Check row and column counts for magnets. */ for (which = POSITIVE, j = 0; j < 2; which = OPPOSITE(which), j++) { for (i = 0; i < w; i++) check_rowcol(state, i, COLUMN, which, &wrong, &incomplete); for (i = 0; i < h; i++) check_rowcol(state, i, ROW, which, &wrong, &incomplete); } /* Check each domino has been filled, and that we don't have * touching identical terminals. */ for (i = 0; i < state->wh; i++) state->flags[i] &= ~GS_ERROR; for (x = 0; x < w; x++) { for (y = 0; y < h; y++) { idx = y*w + x; if (state->common->dominoes[idx] == idx) continue; /* no domino here */ if (!(state->flags[idx] & GS_SET)) incomplete = 1; which = state->grid[idx]; if (which != NEUTRAL) { #define CHECK(xx,yy) do { \ if (INGRID(state,xx,yy) && \ (state->grid[(yy)*w+(xx)] == which)) { \ wrong = 1; \ state->flags[(yy)*w+(xx)] |= GS_ERROR; \ state->flags[y*w+x] |= GS_ERROR; \ } \ } while(0) CHECK(x,y-1); CHECK(x,y+1); CHECK(x-1,y); CHECK(x+1,y); #undef CHECK } } } return wrong ? -1 : incomplete ? 0 : 1; } static const int dx[4] = {-1, 1, 0, 0}; static const int dy[4] = {0, 0, -1, 1}; static void solve_clearflags(game_state *state) { int i; for (i = 0; i < state->wh; i++) { state->flags[i] &= ~GS_NOTMASK; if (state->common->dominoes[i] != i) state->flags[i] &= ~GS_SET; } } /* Knowing a given cell cannot be a certain colour also tells us * something about the other cell in that domino. */ static int solve_unflag(game_state *state, int i, int which, const char *why, rowcol *rc) { int ii, ret = 0; #if defined DEBUGGING || defined STANDALONE_SOLVER int w = state->w; #endif assert(i >= 0 && i < state->wh); ii = state->common->dominoes[i]; if (ii == i) return 0; if (rc) debug(("solve_unflag: (%d,%d) for %s %d", i%w, i/w, rc->name, rc->num)); if ((state->flags[i] & GS_SET) && (state->grid[i] == which)) { debug(("solve_unflag: (%d,%d) already %s, cannot unflag (for %s).", i%w, i/w, NAME(which), why)); return -1; } if ((state->flags[ii] & GS_SET) && (state->grid[ii] == OPPOSITE(which))) { debug(("solve_unflag: (%d,%d) opposite already %s, cannot unflag (for %s).", ii%w, ii/w, NAME(OPPOSITE(which)), why)); return -1; } if (POSSIBLE(i, which)) { state->flags[i] |= NOTFLAG(which); ret++; debug(("solve_unflag: (%d,%d) CANNOT be %s (%s)", i%w, i/w, NAME(which), why)); } if (POSSIBLE(ii, OPPOSITE(which))) { state->flags[ii] |= NOTFLAG(OPPOSITE(which)); ret++; debug(("solve_unflag: (%d,%d) CANNOT be %s (%s, other half)", ii%w, ii/w, NAME(OPPOSITE(which)), why)); } #ifdef STANDALONE_SOLVER if (verbose && ret) { printf("(%d,%d)", i%w, i/w); if (rc) printf(" in %s %d", rc->name, rc->num); printf(" cannot be %s (%s); opposite (%d,%d) not %s.\n", NAME(which), why, ii%w, ii/w, NAME(OPPOSITE(which))); } #endif return ret; } static int solve_unflag_surrounds(game_state *state, int i, int which) { int x = i%state->w, y = i/state->w, xx, yy, j, ii; assert(INGRID(state, x, y)); for (j = 0; j < 4; j++) { xx = x+dx[j]; yy = y+dy[j]; if (!INGRID(state, xx, yy)) continue; ii = yy*state->w+xx; if (solve_unflag(state, ii, which, "adjacent to set cell", NULL) < 0) return -1; } return 0; } /* Sets a cell to a particular colour, and also perform other * housekeeping around that. */ static int solve_set(game_state *state, int i, int which, const char *why, rowcol *rc) { int ii; #if defined DEBUGGING || defined STANDALONE_SOLVER int w = state->w; #endif ii = state->common->dominoes[i]; if (state->flags[i] & GS_SET) { if (state->grid[i] == which) { return 0; /* was already set and held, do nothing. */ } else { debug(("solve_set: (%d,%d) is held and %s, cannot set to %s", i%w, i/w, NAME(state->grid[i]), NAME(which))); return -1; } } if ((state->flags[ii] & GS_SET) && state->grid[ii] != OPPOSITE(which)) { debug(("solve_set: (%d,%d) opposite is held and %s, cannot set to %s", ii%w, ii/w, NAME(state->grid[ii]), NAME(OPPOSITE(which)))); return -1; } if (!POSSIBLE(i, which)) { debug(("solve_set: (%d,%d) NOT %s, cannot set.", i%w, i/w, NAME(which))); return -1; } if (!POSSIBLE(ii, OPPOSITE(which))) { debug(("solve_set: (%d,%d) NOT %s, cannot set (%d,%d).", ii%w, ii/w, NAME(OPPOSITE(which)), i%w, i/w)); return -1; } #ifdef STANDALONE_SOLVER if (verbose) { printf("(%d,%d)", i%w, i/w); if (rc) printf(" in %s %d", rc->name, rc->num); printf(" set to %s (%s), opposite (%d,%d) set to %s.\n", NAME(which), why, ii%w, ii/w, NAME(OPPOSITE(which))); } #endif if (rc) debug(("solve_set: (%d,%d) for %s %d", i%w, i/w, rc->name, rc->num)); debug(("solve_set: (%d,%d) setting to %s (%s), surrounds first:", i%w, i/w, NAME(which), why)); if (which != NEUTRAL) { if (solve_unflag_surrounds(state, i, which) < 0) return -1; if (solve_unflag_surrounds(state, ii, OPPOSITE(which)) < 0) return -1; } state->grid[i] = which; state->grid[ii] = OPPOSITE(which); state->flags[i] |= GS_SET; state->flags[ii] |= GS_SET; debug(("solve_set: (%d,%d) set to %s (%s)", i%w, i/w, NAME(which), why)); return 1; } /* counts should be int[4]. */ static void solve_counts(game_state *state, rowcol rc, int *counts, int *unset) { int i, j, which; assert(counts); for (i = 0; i < 4; i++) { counts[i] = 0; if (unset) unset[i] = 0; } for (i = rc.i, j = 0; j < rc.n; i += rc.di, j++) { if (state->flags[i] & GS_SET) { assert(state->grid[i] < 3); counts[state->grid[i]]++; } else if (unset) { for (which = 0; which <= 2; which++) { if (POSSIBLE(i, which)) unset[which]++; } } } } static int solve_checkfull(game_state *state, rowcol rc, int *counts) { int starti = rc.i, j, which, didsth = 0, target; int unset[4]; assert(state->numbered); /* only useful (should only be called) if numbered. */ solve_counts(state, rc, counts, unset); for (which = 0; which <= 2; which++) { target = rc.targets[which]; if (target == -1) continue; /*debug(("%s %d for %s: target %d, count %d, unset %d", rc.name, rc.num, NAME(which), target, counts[which], unset[which]));*/ if (target < counts[which]) { debug(("%s %d has too many (%d) %s squares (target %d), impossible!", rc.name, rc.num, counts[which], NAME(which), target)); return -1; } if (target == counts[which]) { /* We have the correct no. of the colour in this row/column * already; unflag all the rest. */ for (rc.i = starti, j = 0; j < rc.n; rc.i += rc.di, j++) { if (state->flags[rc.i] & GS_SET) continue; if (!POSSIBLE(rc.i, which)) continue; if (solve_unflag(state, rc.i, which, "row/col full", &rc) < 0) return -1; didsth = 1; } } else if ((target - counts[which]) == unset[which]) { /* We need all the remaining unset squares for this colour; * set them all. */ for (rc.i = starti, j = 0; j < rc.n; rc.i += rc.di, j++) { if (state->flags[rc.i] & GS_SET) continue; if (!POSSIBLE(rc.i, which)) continue; if (solve_set(state, rc.i, which, "row/col needs all unset", &rc) < 0) return -1; didsth = 1; } } } return didsth; } static int solve_startflags(game_state *state) { int x, y, i; for (x = 0; x < state->w; x++) { for (y = 0; y < state->h; y++) { i = y*state->w+x; if (state->common->dominoes[i] == i) continue; if (state->grid[i] != NEUTRAL || state->flags[i] & GS_SET) { if (solve_set(state, i, state->grid[i], "initial set-and-hold", NULL) < 0) return -1; } } } return 0; } typedef int (*rowcolfn)(game_state *state, rowcol rc, int *counts); static int solve_rowcols(game_state *state, rowcolfn fn) { int x, y, didsth = 0, ret; rowcol rc; int counts[4]; for (x = 0; x < state->w; x++) { rc = mkrowcol(state, x, COLUMN); solve_counts(state, rc, counts, NULL); ret = fn(state, rc, counts); if (ret < 0) return ret; didsth += ret; } for (y = 0; y < state->h; y++) { rc = mkrowcol(state, y, ROW); solve_counts(state, rc, counts, NULL); ret = fn(state, rc, counts); if (ret < 0) return ret; didsth += ret; } return didsth; } static int solve_force(game_state *state) { int i, which, didsth = 0; unsigned long f; for (i = 0; i < state->wh; i++) { if (state->flags[i] & GS_SET) continue; if (state->common->dominoes[i] == i) continue; f = state->flags[i] & GS_NOTMASK; which = -1; if (f == (GS_NOTPOSITIVE|GS_NOTNEGATIVE)) which = NEUTRAL; if (f == (GS_NOTPOSITIVE|GS_NOTNEUTRAL)) which = NEGATIVE; if (f == (GS_NOTNEGATIVE|GS_NOTNEUTRAL)) which = POSITIVE; if (which != -1) { if (solve_set(state, i, which, "forced by flags", NULL) < 0) return -1; didsth = 1; } } return didsth; } static int solve_neither(game_state *state) { int i, j, didsth = 0; for (i = 0; i < state->wh; i++) { if (state->flags[i] & GS_SET) continue; j = state->common->dominoes[i]; if (i == j) continue; if (((state->flags[i] & GS_NOTPOSITIVE) && (state->flags[j] & GS_NOTPOSITIVE)) || ((state->flags[i] & GS_NOTNEGATIVE) && (state->flags[j] & GS_NOTNEGATIVE))) { if (solve_set(state, i, NEUTRAL, "neither tile magnet", NULL) < 0) return -1; didsth = 1; } } return didsth; } static int solve_advancedfull(game_state *state, rowcol rc, int *counts) { int i, j, nfound = 0, clearpos = 0, clearneg = 0, ret = 0; /* For this row/col, look for a domino entirely within the row where * both ends can only be + or - (but isn't held). * The +/- counts can thus be decremented by 1 each, and the 'unset' * count by 2. * * Once that's done for all such dominoes (and they're marked), try * and made usual deductions about rest of the row based on new totals. */ if (rc.targets[POSITIVE] == -1 && rc.targets[NEGATIVE] == -1) return 0; /* don't have a target for either colour, nothing to do. */ if ((rc.targets[POSITIVE] >= 0 && counts[POSITIVE] == rc.targets[POSITIVE]) && (rc.targets[NEGATIVE] >= 0 && counts[NEGATIVE] == rc.targets[NEGATIVE])) return 0; /* both colours are full up already, nothing to do. */ for (i = rc.i, j = 0; j < rc.n; i += rc.di, j++) state->flags[i] &= ~GS_MARK; for (i = rc.i, j = 0; j < rc.n; i += rc.di, j++) { if (state->flags[i] & GS_SET) continue; /* We're looking for a domino in our row/col, thus if * dominoes[i] -> i+di we've found one. */ if (state->common->dominoes[i] != i+rc.di) continue; /* We need both squares of this domino to be either + or - * (i.e. both NOTNEUTRAL only). */ if (((state->flags[i] & GS_NOTMASK) != GS_NOTNEUTRAL) || ((state->flags[i+rc.di] & GS_NOTMASK) != GS_NOTNEUTRAL)) continue; debug(("Domino in %s %d at (%d,%d) must be polarised.", rc.name, rc.num, i%state->w, i/state->w)); state->flags[i] |= GS_MARK; state->flags[i+rc.di] |= GS_MARK; nfound++; } if (nfound == 0) return 0; /* nfound is #dominoes we matched, which will all be marked. */ counts[POSITIVE] += nfound; counts[NEGATIVE] += nfound; if (rc.targets[POSITIVE] >= 0 && counts[POSITIVE] == rc.targets[POSITIVE]) { debug(("%s %d has now filled POSITIVE:", rc.name, rc.num)); clearpos = 1; } if (rc.targets[NEGATIVE] >= 0 && counts[NEGATIVE] == rc.targets[NEGATIVE]) { debug(("%s %d has now filled NEGATIVE:", rc.name, rc.num)); clearneg = 1; } if (!clearpos && !clearneg) return 0; for (i = rc.i, j = 0; j < rc.n; i += rc.di, j++) { if (state->flags[i] & GS_SET) continue; if (state->flags[i] & GS_MARK) continue; if (clearpos && !(state->flags[i] & GS_NOTPOSITIVE)) { if (solve_unflag(state, i, POSITIVE, "row/col full (+ve) [tricky]", &rc) < 0) return -1; ret++; } if (clearneg && !(state->flags[i] & GS_NOTNEGATIVE)) { if (solve_unflag(state, i, NEGATIVE, "row/col full (-ve) [tricky]", &rc) < 0) return -1; ret++; } } return ret; } /* If we only have one neutral still to place on a row/column then no dominoes entirely in that row/column can be neutral. */ static int solve_nonneutral(game_state *state, rowcol rc, int *counts) { int i, j, ret = 0; if (rc.targets[NEUTRAL] != counts[NEUTRAL]+1) return 0; for (i = rc.i, j = 0; j < rc.n; i += rc.di, j++) { if (state->flags[i] & GS_SET) continue; if (state->common->dominoes[i] != i+rc.di) continue; if (!(state->flags[i] & GS_NOTNEUTRAL)) { if (solve_unflag(state, i, NEUTRAL, "single neutral in row/col [tricky]", &rc) < 0) return -1; ret++; } } return ret; } /* If we need to fill all unfilled cells with +-, and we need 1 more of * one than the other, and we have a single odd-numbered region of unfilled * cells, that odd-numbered region must start and end with the extra number. */ static int solve_oddlength(game_state *state, rowcol rc, int *counts) { int i, j, ret = 0, extra, tpos, tneg; int start = -1, length = 0, inempty = 0, startodd = -1; /* need zero neutral cells still to find... */ if (rc.targets[NEUTRAL] != counts[NEUTRAL]) return 0; /* ...and #positive and #negative to differ by one. */ tpos = rc.targets[POSITIVE] - counts[POSITIVE]; tneg = rc.targets[NEGATIVE] - counts[NEGATIVE]; if (tpos == tneg+1) extra = POSITIVE; else if (tneg == tpos+1) extra = NEGATIVE; else return 0; for (i = rc.i, j = 0; j < rc.n; i += rc.di, j++) { if (state->flags[i] & GS_SET) { if (inempty) { if (length % 2) { /* we've just finished an odd-length section. */ if (startodd != -1) goto twoodd; startodd = start; } inempty = 0; } } else { if (inempty) length++; else { start = i; length = 1; inempty = 1; } } } if (inempty && (length % 2)) { if (startodd != -1) goto twoodd; startodd = start; } if (startodd != -1) ret = solve_set(state, startodd, extra, "odd-length section start", &rc); return ret; twoodd: debug(("%s %d has >1 odd-length sections, starting at %d,%d and %d,%d.", rc.name, rc.num, startodd%state->w, startodd/state->w, start%state->w, start/state->w)); return 0; } /* Count the number of remaining empty dominoes in any row/col. * If that number is equal to the #remaining positive, * or to the #remaining negative, no empty cells can be neutral. */ static int solve_countdominoes_neutral(game_state *state, rowcol rc, int *counts) { int i, j, ndom = 0, nonn = 0, ret = 0; if ((rc.targets[POSITIVE] == -1) && (rc.targets[NEGATIVE] == -1)) return 0; /* need at least one target to compare. */ for (i = rc.i, j = 0; j < rc.n; i += rc.di, j++) { if (state->flags[i] & GS_SET) continue; assert(state->grid[i] == EMPTY); /* Skip solo cells, or second cell in domino. */ if ((state->common->dominoes[i] == i) || (state->common->dominoes[i] == i-rc.di)) continue; ndom++; } if ((rc.targets[POSITIVE] != -1) && (rc.targets[POSITIVE]-counts[POSITIVE] == ndom)) nonn = 1; if ((rc.targets[NEGATIVE] != -1) && (rc.targets[NEGATIVE]-counts[NEGATIVE] == ndom)) nonn = 1; if (!nonn) return 0; for (i = rc.i, j = 0; j < rc.n; i += rc.di, j++) { if (state->flags[i] & GS_SET) continue; if (!(state->flags[i] & GS_NOTNEUTRAL)) { if (solve_unflag(state, i, NEUTRAL, "all dominoes +/- [tricky]", &rc) < 0) return -1; ret++; } } return ret; } static int solve_domino_count(game_state *state, rowcol rc, int i, int which) { int nposs = 0; /* Skip solo cells or 2nd in domino. */ if ((state->common->dominoes[i] == i) || (state->common->dominoes[i] == i-rc.di)) return 0; if (state->flags[i] & GS_SET) return 0; if (POSSIBLE(i, which)) nposs++; if (state->common->dominoes[i] == i+rc.di) { /* second cell of domino is on our row: test that too. */ if (POSSIBLE(i+rc.di, which)) nposs++; } return nposs; } /* Count number of dominoes we could put each of + and - into. If it is equal * to the #left, any domino we can only put + or - in one cell of must have it. */ static int solve_countdominoes_nonneutral(game_state *state, rowcol rc, int *counts) { int which, w, i, j, ndom = 0, didsth = 0, toset; for (which = POSITIVE, w = 0; w < 2; which = OPPOSITE(which), w++) { if (rc.targets[which] == -1) continue; for (i = rc.i, j = 0; j < rc.n; i += rc.di, j++) { if (solve_domino_count(state, rc, i, which) > 0) ndom++; } if ((rc.targets[which] - counts[which]) != ndom) continue; for (i = rc.i, j = 0; j < rc.n; i += rc.di, j++) { if (solve_domino_count(state, rc, i, which) == 1) { if (POSSIBLE(i, which)) toset = i; else { /* paranoia, should have been checked by solve_domino_count. */ assert(state->common->dominoes[i] == i+rc.di); assert(POSSIBLE(i+rc.di, which)); toset = i+rc.di; } if (solve_set(state, toset, which, "all empty dominoes need +/- [tricky]", &rc) < 0) return -1; didsth++; } } } return didsth; } /* danger, evil macro. can't use the do { ... } while(0) trick because * the continue breaks. */ #define SOLVE_FOR_ROWCOLS(fn) \ ret = solve_rowcols(state, fn); \ if (ret < 0) { debug(("%s said impossible, cannot solve", #fn)); return -1; } \ if (ret > 0) continue static int solve_state(game_state *state, int diff) { int ret; debug(("solve_state, difficulty %s", magnets_diffnames[diff])); solve_clearflags(state); if (solve_startflags(state) < 0) return -1; while (1) { ret = solve_force(state); if (ret > 0) continue; if (ret < 0) return -1; ret = solve_neither(state); if (ret > 0) continue; if (ret < 0) return -1; SOLVE_FOR_ROWCOLS(solve_checkfull); SOLVE_FOR_ROWCOLS(solve_oddlength); if (diff < DIFF_TRICKY) break; SOLVE_FOR_ROWCOLS(solve_advancedfull); SOLVE_FOR_ROWCOLS(solve_nonneutral); SOLVE_FOR_ROWCOLS(solve_countdominoes_neutral); SOLVE_FOR_ROWCOLS(solve_countdominoes_nonneutral); /* more ... */ break; } return check_completion(state); } static char *game_state_diff(const game_state *src, const game_state *dst, int issolve) { char *ret = NULL, buf[80], c; int retlen = 0, x, y, i, k; assert(src->w == dst->w && src->h == dst->h); if (issolve) { ret = sresize(ret, 3, char); ret[0] = 'S'; ret[1] = ';'; ret[2] = '\0'; retlen += 2; } for (x = 0; x < dst->w; x++) { for (y = 0; y < dst->h; y++) { i = y*dst->w+x; if (src->common->dominoes[i] == i) continue; #define APPEND do { \ ret = sresize(ret, retlen + k + 1, char); \ strcpy(ret + retlen, buf); \ retlen += k; \ } while(0) if ((src->grid[i] != dst->grid[i]) || ((src->flags[i] & GS_SET) != (dst->flags[i] & GS_SET))) { if (dst->grid[i] == EMPTY && !(dst->flags[i] & GS_SET)) c = ' '; else c = GRID2CHAR(dst->grid[i]); k = sprintf(buf, "%c%d,%d;", (int)c, x, y); APPEND; } } } debug(("game_state_diff returns %s", ret)); return ret; } static void solve_from_aux(const game_state *state, const char *aux) { int i; assert(strlen(aux) == state->wh); for (i = 0; i < state->wh; i++) { state->grid[i] = CHAR2GRID(aux[i]); state->flags[i] |= GS_SET; } } static char *solve_game(const game_state *state, const game_state *currstate, const char *aux, char **error) { game_state *solved = dup_game(currstate); char *move = NULL; int ret; if (aux && strlen(aux) == state->wh) { solve_from_aux(solved, aux); goto solved; } if (solve_state(solved, DIFFCOUNT) > 0) goto solved; free_game(solved); solved = dup_game(state); ret = solve_state(solved, DIFFCOUNT); if (ret > 0) goto solved; free_game(solved); *error = (ret < 0) ? "Puzzle is impossible." : "Unable to solve puzzle."; return NULL; solved: move = game_state_diff(currstate, solved, 1); free_game(solved); return move; } static int solve_unnumbered(game_state *state) { int i, ret; while (1) { ret = solve_force(state); if (ret > 0) continue; if (ret < 0) return -1; ret = solve_neither(state); if (ret > 0) continue; if (ret < 0) return -1; break; } for (i = 0; i < state->wh; i++) { if (!(state->flags[i] & GS_SET)) return 0; } return 1; } static int lay_dominoes(game_state *state, random_state *rs, int *scratch) { int n, i, ret = 0, nlaid = 0, n_initial_neutral; for (i = 0; i < state->wh; i++) { scratch[i] = i; state->grid[i] = EMPTY; state->flags[i] = (state->common->dominoes[i] == i) ? GS_SET : 0; } shuffle(scratch, state->wh, sizeof(int), rs); n_initial_neutral = (state->wh > 100) ? 5 : (state->wh / 10); for (n = 0; n < state->wh; n++) { /* Find a space ... */ i = scratch[n]; if (state->flags[i] & GS_SET) continue; /* already laid here. */ /* ...and lay a domino if we can. */ debug(("Laying domino at i:%d, (%d,%d)\n", i, i%state->w, i/state->w)); /* The choice of which type of domino to lay here leads to subtle differences * in the sorts of boards that get produced. Too much bias towards magnets * leads to games that are too easy. * * Currently, it lays a small set of dominoes at random as neutral, and * then lays the rest preferring to be magnets -- however, if the * current layout is such that a magnet won't go there, then it lays * another neutral. * * The number of initially neutral dominoes is limited as grids get bigger: * too many neutral dominoes invariably ends up with insoluble puzzle at * this size, and the positioning process means it'll always end up laying * more than the initial 5 anyway. */ /* We should always be able to lay a neutral anywhere. */ assert(!(state->flags[i] & GS_NOTNEUTRAL)); if (n < n_initial_neutral) { debug((" ...laying neutral\n")); ret = solve_set(state, i, NEUTRAL, "layout initial neutral", NULL); } else { debug((" ... preferring magnet\n")); if (!(state->flags[i] & GS_NOTPOSITIVE)) ret = solve_set(state, i, POSITIVE, "layout", NULL); else if (!(state->flags[i] & GS_NOTNEGATIVE)) ret = solve_set(state, i, NEGATIVE, "layout", NULL); else ret = solve_set(state, i, NEUTRAL, "layout", NULL); } if (!ret) { debug(("Unable to lay anything at (%d,%d), giving up.", i%state->w, i/state->w)); ret = -1; break; } nlaid++; ret = solve_unnumbered(state); if (ret == -1) debug(("solve_unnumbered decided impossible.\n")); if (ret != 0) break; } debug(("Laid %d dominoes, total %d dominoes.\n", nlaid, state->wh/2)); game_debug(state, "Final layout"); return ret; } static void gen_game(game_state *new, random_state *rs) { int ret, x, y, val; int *scratch = snewn(new->wh, int); #ifdef STANDALONE_SOLVER if (verbose) printf("Generating new game...\n"); #endif clear_state(new); sfree(new->common->dominoes); /* bit grotty. */ new->common->dominoes = domino_layout(new->w, new->h, rs); do { ret = lay_dominoes(new, rs, scratch); } while(ret == -1); /* for each cell, update colcount/rowcount as appropriate. */ memset(new->common->colcount, 0, new->w*3*sizeof(int)); memset(new->common->rowcount, 0, new->h*3*sizeof(int)); for (x = 0; x < new->w; x++) { for (y = 0; y < new->h; y++) { val = new->grid[y*new->w+x]; new->common->colcount[x*3+val]++; new->common->rowcount[y*3+val]++; } } new->numbered = 1; sfree(scratch); } static void generate_aux(game_state *new, char *aux) { int i; for (i = 0; i < new->wh; i++) aux[i] = GRID2CHAR(new->grid[i]); aux[new->wh] = '\0'; } static int check_difficulty(const game_params *params, game_state *new, random_state *rs) { int *scratch, *grid_correct, slen, i; memset(new->grid, EMPTY, new->wh*sizeof(int)); if (params->diff > DIFF_EASY) { /* If this is too easy, return. */ if (solve_state(new, params->diff-1) > 0) { debug(("Puzzle is too easy.")); return -1; } } if (solve_state(new, params->diff) <= 0) { debug(("Puzzle is not soluble at requested difficulty.")); return -1; } if (!params->stripclues) return 0; /* Copy the correct grid away. */ grid_correct = snewn(new->wh, int); memcpy(grid_correct, new->grid, new->wh*sizeof(int)); /* Create shuffled array of side-clue locations. */ slen = new->w*2 + new->h*2; scratch = snewn(slen, int); for (i = 0; i < slen; i++) scratch[i] = i; shuffle(scratch, slen, sizeof(int), rs); /* For each clue, check whether removing it makes the puzzle unsoluble; * put it back if so. */ for (i = 0; i < slen; i++) { int num = scratch[i], which, roworcol, target, targetn, ret; rowcol rc; /* work out which clue we meant. */ if (num < new->w+new->h) { which = POSITIVE; } else { which = NEGATIVE; num -= new->w+new->h; } if (num < new->w) { roworcol = COLUMN; } else { roworcol = ROW; num -= new->w; } /* num is now the row/column index in question. */ rc = mkrowcol(new, num, roworcol); /* Remove clue, storing original... */ target = rc.targets[which]; targetn = rc.targets[NEUTRAL]; rc.targets[which] = -1; rc.targets[NEUTRAL] = -1; /* ...and see if we can still solve it. */ game_debug(new, "removed clue, new board:"); memset(new->grid, EMPTY, new->wh * sizeof(int)); ret = solve_state(new, params->diff); assert(ret != -1); if (ret == 0 || memcmp(new->grid, grid_correct, new->wh*sizeof(int)) != 0) { /* We made it ambiguous: put clue back. */ debug(("...now impossible/different, put clue back.")); rc.targets[which] = target; rc.targets[NEUTRAL] = targetn; } } sfree(scratch); sfree(grid_correct); return 0; } static char *new_game_desc(const game_params *params, random_state *rs, char **aux_r, int interactive) { game_state *new = new_state(params->w, params->h); char *desc, *aux = snewn(new->wh+1, char); do { gen_game(new, rs); generate_aux(new, aux); } while (check_difficulty(params, new, rs) < 0); /* now we're complete, generate the description string * and an aux_info for the completed game. */ desc = generate_desc(new); free_game(new); *aux_r = aux; return desc; } struct game_ui { int cur_x, cur_y, cur_visible; }; static game_ui *new_ui(const game_state *state) { game_ui *ui = snew(game_ui); ui->cur_x = ui->cur_y = 0; ui->cur_visible = 0; return ui; } static void free_ui(game_ui *ui) { sfree(ui); } static char *encode_ui(const game_ui *ui) { return NULL; } static void decode_ui(game_ui *ui, const char *encoding) { } static void game_changed_state(game_ui *ui, const game_state *oldstate, const game_state *newstate) { if (!oldstate->completed && newstate->completed) ui->cur_visible = 0; } struct game_drawstate { int tilesize, started, solved; int w, h; unsigned long *what; /* size w*h */ unsigned long *colwhat, *rowwhat; /* size 3*w, 3*h */ }; #define DS_WHICH_MASK 0xf #define DS_ERROR 0x10 #define DS_CURSOR 0x20 #define DS_SET 0x40 #define DS_NOTPOS 0x80 #define DS_NOTNEG 0x100 #define DS_NOTNEU 0x200 #define DS_FLASH 0x400 #define PREFERRED_TILE_SIZE 32 #define TILE_SIZE (ds->tilesize) #define BORDER (TILE_SIZE / 8) #define COORD(x) ( (x+1) * TILE_SIZE + BORDER ) #define FROMCOORD(x) ( (x - BORDER) / TILE_SIZE - 1 ) static int is_clue(const game_state *state, int x, int y) { int h = state->h, w = state->w; if (((x == -1 || x == w) && y >= 0 && y < h) || ((y == -1 || y == h) && x >= 0 && x < w)) return TRUE; return FALSE; } static int clue_index(const game_state *state, int x, int y) { int h = state->h, w = state->w; if (y == -1) return x; else if (x == w) return w + y; else if (y == h) return 2 * w + h - x - 1; else if (x == -1) return 2 * (w + h) - y - 1; return -1; } static char *interpret_move(const game_state *state, game_ui *ui, const game_drawstate *ds, int x, int y, int button) { int gx = FROMCOORD(x), gy = FROMCOORD(y), idx, curr; char *nullret = NULL, buf[80], movech; enum { CYCLE_MAGNET, CYCLE_NEUTRAL } action; if (IS_CURSOR_MOVE(button)) { move_cursor(button, &ui->cur_x, &ui->cur_y, state->w, state->h, 0); ui->cur_visible = 1; return ""; } else if (IS_CURSOR_SELECT(button)) { if (!ui->cur_visible) { ui->cur_visible = 1; return ""; } action = (button == CURSOR_SELECT) ? CYCLE_MAGNET : CYCLE_NEUTRAL; gx = ui->cur_x; gy = ui->cur_y; } else if (INGRID(state, gx, gy) && (button == LEFT_BUTTON || button == RIGHT_BUTTON)) { if (ui->cur_visible) { ui->cur_visible = 0; nullret = ""; } action = (button == LEFT_BUTTON) ? CYCLE_MAGNET : CYCLE_NEUTRAL; } else if (button == LEFT_BUTTON && is_clue(state, gx, gy)) { sprintf(buf, "D%d,%d", gx, gy); return dupstr(buf); } else return NULL; idx = gy * state->w + gx; if (state->common->dominoes[idx] == idx) return nullret; curr = state->grid[idx]; if (action == CYCLE_MAGNET) { /* ... empty --> positive --> negative --> empty ... */ if (state->grid[idx] == NEUTRAL && state->flags[idx] & GS_SET) return nullret; /* can't cycle a magnet from a neutral. */ movech = (curr == EMPTY) ? '+' : (curr == POSITIVE) ? '-' : ' '; } else if (action == CYCLE_NEUTRAL) { /* ... empty -> neutral -> !neutral --> empty ... */ if (state->grid[idx] != NEUTRAL) return nullret; /* can't cycle through neutral from a magnet. */ /* All of these are grid == EMPTY == NEUTRAL; it twiddles * combinations of flags. */ if (state->flags[idx] & GS_SET) /* neutral */ movech = '?'; else if (state->flags[idx] & GS_NOTNEUTRAL) /* !neutral */ movech = ' '; else movech = '.'; } else { assert(!"unknown action"); movech = 0; /* placate optimiser */ } sprintf(buf, "%c%d,%d", movech, gx, gy); return dupstr(buf); } static game_state *execute_move(const game_state *state, const char *move) { game_state *ret = dup_game(state); int x, y, n, idx, idx2; char c; if (!*move) goto badmove; while (*move) { c = *move++; if (c == 'S') { ret->solved = TRUE; n = 0; } else if (c == '+' || c == '-' || c == '.' || c == ' ' || c == '?') { if ((sscanf(move, "%d,%d%n", &x, &y, &n) != 2) || !INGRID(state, x, y)) goto badmove; idx = y*state->w + x; idx2 = state->common->dominoes[idx]; if (idx == idx2) goto badmove; ret->flags[idx] &= ~GS_NOTMASK; ret->flags[idx2] &= ~GS_NOTMASK; if (c == ' ' || c == '?') { ret->grid[idx] = EMPTY; ret->grid[idx2] = EMPTY; ret->flags[idx] &= ~GS_SET; ret->flags[idx2] &= ~GS_SET; if (c == '?') { ret->flags[idx] |= GS_NOTNEUTRAL; ret->flags[idx2] |= GS_NOTNEUTRAL; } } else { ret->grid[idx] = CHAR2GRID(c); ret->grid[idx2] = OPPOSITE(CHAR2GRID(c)); ret->flags[idx] |= GS_SET; ret->flags[idx2] |= GS_SET; } } else if (c == 'D' && sscanf(move, "%d,%d%n", &x, &y, &n) == 2 && is_clue(ret, x, y)) { ret->counts_done[clue_index(ret, x, y)] ^= 1; } else goto badmove; move += n; if (*move == ';') move++; else if (*move) goto badmove; } if (check_completion(ret) == 1) ret->completed = 1; return ret; badmove: free_game(ret); return NULL; } /* ---------------------------------------------------------------------- * Drawing routines. */ static void game_compute_size(const game_params *params, int tilesize, int *x, int *y) { /* Ick: fake up `ds->tilesize' for macro expansion purposes */ struct { int tilesize; } ads, *ds = &ads; ads.tilesize = tilesize; *x = TILE_SIZE * (params->w+2) + 2 * BORDER; *y = TILE_SIZE * (params->h+2) + 2 * BORDER; } static void game_set_size(drawing *dr, game_drawstate *ds, const game_params *params, int tilesize) { ds->tilesize = tilesize; } static float *game_colours(frontend *fe, int *ncolours) { float *ret = snewn(3 * NCOLOURS, float); int i; game_mkhighlight(fe, ret, COL_BACKGROUND, COL_HIGHLIGHT, COL_LOWLIGHT); for (i = 0; i < 3; i++) { ret[COL_TEXT * 3 + i] = 0.0F; ret[COL_NEGATIVE * 3 + i] = 0.0F; ret[COL_CURSOR * 3 + i] = 0.9F; ret[COL_DONE * 3 + i] = ret[COL_BACKGROUND * 3 + i] / 1.5F; } ret[COL_POSITIVE * 3 + 0] = 0.8F; ret[COL_POSITIVE * 3 + 1] = 0.0F; ret[COL_POSITIVE * 3 + 2] = 0.0F; ret[COL_NEUTRAL * 3 + 0] = 0.10F; ret[COL_NEUTRAL * 3 + 1] = 0.60F; ret[COL_NEUTRAL * 3 + 2] = 0.10F; ret[COL_ERROR * 3 + 0] = 1.0F; ret[COL_ERROR * 3 + 1] = 0.0F; ret[COL_ERROR * 3 + 2] = 0.0F; ret[COL_NOT * 3 + 0] = 0.2F; ret[COL_NOT * 3 + 1] = 0.2F; ret[COL_NOT * 3 + 2] = 1.0F; *ncolours = NCOLOURS; return ret; } static game_drawstate *game_new_drawstate(drawing *dr, const game_state *state) { struct game_drawstate *ds = snew(struct game_drawstate); ds->tilesize = ds->started = ds->solved = 0; ds->w = state->w; ds->h = state->h; ds->what = snewn(state->wh, unsigned long); memset(ds->what, 0, state->wh*sizeof(unsigned long)); ds->colwhat = snewn(state->w*3, unsigned long); memset(ds->colwhat, 0, state->w*3*sizeof(unsigned long)); ds->rowwhat = snewn(state->h*3, unsigned long); memset(ds->rowwhat, 0, state->h*3*sizeof(unsigned long)); return ds; } static void game_free_drawstate(drawing *dr, game_drawstate *ds) { sfree(ds->colwhat); sfree(ds->rowwhat); sfree(ds->what); sfree(ds); } static void draw_num(drawing *dr, game_drawstate *ds, int rowcol, int which, int idx, int colbg, int col, int num) { char buf[32]; int cx, cy, tsz; if (num < 0) return; sprintf(buf, "%d", num); tsz = (strlen(buf) == 1) ? (7*TILE_SIZE/10) : (9*TILE_SIZE/10)/strlen(buf); if (rowcol == ROW) { cx = BORDER; if (which == NEGATIVE) cx += TILE_SIZE * (ds->w+1); cy = BORDER + TILE_SIZE * (idx+1); } else { cx = BORDER + TILE_SIZE * (idx+1); cy = BORDER; if (which == NEGATIVE) cy += TILE_SIZE * (ds->h+1); } draw_rect(dr, cx, cy, TILE_SIZE, TILE_SIZE, colbg); draw_text(dr, cx + TILE_SIZE/2, cy + TILE_SIZE/2, FONT_VARIABLE, tsz, ALIGN_VCENTRE | ALIGN_HCENTRE, col, buf); draw_update(dr, cx, cy, TILE_SIZE, TILE_SIZE); } static void draw_sym(drawing *dr, game_drawstate *ds, int x, int y, int which, int col) { int cx = COORD(x), cy = COORD(y); int ccx = cx + TILE_SIZE/2, ccy = cy + TILE_SIZE/2; int roff = TILE_SIZE/4, rsz = 2*roff+1; int soff = TILE_SIZE/16, ssz = 2*soff+1; if (which == POSITIVE || which == NEGATIVE) { draw_rect(dr, ccx - roff, ccy - soff, rsz, ssz, col); if (which == POSITIVE) draw_rect(dr, ccx - soff, ccy - roff, ssz, rsz, col); } else if (col == COL_NOT) { /* not-a-neutral is a blue question mark. */ char qu[2] = { '?', 0 }; draw_text(dr, ccx, ccy, FONT_VARIABLE, 7*TILE_SIZE/10, ALIGN_VCENTRE | ALIGN_HCENTRE, col, qu); } else { draw_line(dr, ccx - roff, ccy - roff, ccx + roff, ccy + roff, col); draw_line(dr, ccx + roff, ccy - roff, ccx - roff, ccy + roff, col); } } enum { TYPE_L, TYPE_R, TYPE_T, TYPE_B, TYPE_BLANK }; /* NOT responsible for redrawing background or updating. */ static void draw_tile_col(drawing *dr, game_drawstate *ds, int *dominoes, int x, int y, int which, int bg, int fg, int perc) { int cx = COORD(x), cy = COORD(y), i, other, type = TYPE_BLANK; int gutter, radius, coffset; /* gutter is TSZ/16 for 100%, 8*TSZ/16 (TSZ/2) for 0% */ gutter = (TILE_SIZE / 16) + ((100 - perc) * (7*TILE_SIZE / 16))/100; radius = (perc * (TILE_SIZE / 8)) / 100; coffset = gutter + radius; i = y*ds->w + x; other = dominoes[i]; if (other == i) return; else if (other == i+1) type = TYPE_L; else if (other == i-1) type = TYPE_R; else if (other == i+ds->w) type = TYPE_T; else if (other == i-ds->w) type = TYPE_B; else assert(!"mad domino orientation"); /* domino drawing shamelessly stolen from dominosa.c. */ if (type == TYPE_L || type == TYPE_T) draw_circle(dr, cx+coffset, cy+coffset, radius, bg, bg); if (type == TYPE_R || type == TYPE_T) draw_circle(dr, cx+TILE_SIZE-1-coffset, cy+coffset, radius, bg, bg); if (type == TYPE_L || type == TYPE_B) draw_circle(dr, cx+coffset, cy+TILE_SIZE-1-coffset, radius, bg, bg); if (type == TYPE_R || type == TYPE_B) draw_circle(dr, cx+TILE_SIZE-1-coffset, cy+TILE_SIZE-1-coffset, radius, bg, bg); for (i = 0; i < 2; i++) { int x1, y1, x2, y2; x1 = cx + (i ? gutter : coffset); y1 = cy + (i ? coffset : gutter); x2 = cx + TILE_SIZE-1 - (i ? gutter : coffset); y2 = cy + TILE_SIZE-1 - (i ? coffset : gutter); if (type == TYPE_L) x2 = cx + TILE_SIZE; else if (type == TYPE_R) x1 = cx; else if (type == TYPE_T) y2 = cy + TILE_SIZE ; else if (type == TYPE_B) y1 = cy; draw_rect(dr, x1, y1, x2-x1+1, y2-y1+1, bg); } if (fg != -1) draw_sym(dr, ds, x, y, which, fg); } static void draw_tile(drawing *dr, game_drawstate *ds, int *dominoes, int x, int y, unsigned long flags) { int cx = COORD(x), cy = COORD(y), bg, fg, perc = 100; int which = flags & DS_WHICH_MASK; flags &= ~DS_WHICH_MASK; draw_rect(dr, cx, cy, TILE_SIZE, TILE_SIZE, COL_BACKGROUND); if (flags & DS_CURSOR) bg = COL_CURSOR; /* off-white white for cursor */ else if (which == POSITIVE) bg = COL_POSITIVE; else if (which == NEGATIVE) bg = COL_NEGATIVE; else if (flags & DS_SET) bg = COL_NEUTRAL; /* green inner for neutral cells */ else bg = COL_LOWLIGHT; /* light grey for empty cells. */ if (which == EMPTY && !(flags & DS_SET)) { int notwhich = -1; fg = -1; /* don't draw cross unless actually set as neutral. */ if (flags & DS_NOTPOS) notwhich = POSITIVE; if (flags & DS_NOTNEG) notwhich = NEGATIVE; if (flags & DS_NOTNEU) notwhich = NEUTRAL; if (notwhich != -1) { which = notwhich; fg = COL_NOT; } } else fg = (flags & DS_ERROR) ? COL_ERROR : (flags & DS_CURSOR) ? COL_TEXT : COL_BACKGROUND; draw_rect(dr, cx, cy, TILE_SIZE, TILE_SIZE, COL_BACKGROUND); if (flags & DS_FLASH) { int bordercol = COL_HIGHLIGHT; draw_tile_col(dr, ds, dominoes, x, y, which, bordercol, -1, perc); perc = 3*perc/4; } draw_tile_col(dr, ds, dominoes, x, y, which, bg, fg, perc); draw_update(dr, cx, cy, TILE_SIZE, TILE_SIZE); } static int get_count_color(const game_state *state, int rowcol, int which, int index, int target) { int idx; int count = count_rowcol(state, index, rowcol, which); if ((count > target) || (count < target && !count_rowcol(state, index, rowcol, -1))) { return COL_ERROR; } else if (rowcol == COLUMN) { idx = clue_index(state, index, which == POSITIVE ? -1 : state->h); } else { idx = clue_index(state, which == POSITIVE ? -1 : state->w, index); } if (state->counts_done[idx]) { return COL_DONE; } return COL_TEXT; } static void game_redraw(drawing *dr, game_drawstate *ds, const game_state *oldstate, const game_state *state, int dir, const game_ui *ui, float animtime, float flashtime) { int x, y, w = state->w, h = state->h, which, i, j, flash; flash = (int)(flashtime * 5 / FLASH_TIME) % 2; if (!ds->started) { /* draw background, corner +-. */ draw_rect(dr, 0, 0, TILE_SIZE * (w+2) + 2 * BORDER, TILE_SIZE * (h+2) + 2 * BORDER, COL_BACKGROUND); draw_sym(dr, ds, -1, -1, POSITIVE, COL_TEXT); draw_sym(dr, ds, state->w, state->h, NEGATIVE, COL_TEXT); draw_update(dr, 0, 0, TILE_SIZE * (ds->w+2) + 2 * BORDER, TILE_SIZE * (ds->h+2) + 2 * BORDER); } /* Draw grid */ for (y = 0; y < h; y++) { for (x = 0; x < w; x++) { int idx = y*w+x; unsigned long c = state->grid[idx]; if (state->flags[idx] & GS_ERROR) c |= DS_ERROR; if (state->flags[idx] & GS_SET) c |= DS_SET; if (x == ui->cur_x && y == ui->cur_y && ui->cur_visible) c |= DS_CURSOR; if (flash) c |= DS_FLASH; if (state->flags[idx] & GS_NOTPOSITIVE) c |= DS_NOTPOS; if (state->flags[idx] & GS_NOTNEGATIVE) c |= DS_NOTNEG; if (state->flags[idx] & GS_NOTNEUTRAL) c |= DS_NOTNEU; if (ds->what[idx] != c || !ds->started) { draw_tile(dr, ds, state->common->dominoes, x, y, c); ds->what[idx] = c; } } } /* Draw counts around side */ for (which = POSITIVE, j = 0; j < 2; which = OPPOSITE(which), j++) { for (i = 0; i < w; i++) { int index = i * 3 + which; int target = state->common->colcount[index]; int color = get_count_color(state, COLUMN, which, i, target); if (color != ds->colwhat[index] || !ds->started) { draw_num(dr, ds, COLUMN, which, i, COL_BACKGROUND, color, target); ds->colwhat[index] = color; } } for (i = 0; i < h; i++) { int index = i * 3 + which; int target = state->common->rowcount[index]; int color = get_count_color(state, ROW, which, i, target); if (color != ds->rowwhat[index] || !ds->started) { draw_num(dr, ds, ROW, which, i, COL_BACKGROUND, color, target); ds->rowwhat[index] = color; } } } ds->started = 1; } static float game_anim_length(const game_state *oldstate, const game_state *newstate, int dir, game_ui *ui) { return 0.0F; } static float game_flash_length(const game_state *oldstate, const game_state *newstate, int dir, game_ui *ui) { if (!oldstate->completed && newstate->completed && !oldstate->solved && !newstate->solved) return FLASH_TIME; return 0.0F; } static int game_status(const game_state *state) { return state->completed ? +1 : 0; } static int game_timing_state(const game_state *state, game_ui *ui) { return TRUE; } static void game_print_size(const game_params *params, float *x, float *y) { int pw, ph; /* * I'll use 6mm squares by default. */ game_compute_size(params, 600, &pw, &ph); *x = pw / 100.0F; *y = ph / 100.0F; } static void game_print(drawing *dr, const game_state *state, int tilesize) { int w = state->w, h = state->h; int ink = print_mono_colour(dr, 0); int paper = print_mono_colour(dr, 1); int x, y, which, i, j; /* Ick: fake up `ds->tilesize' for macro expansion purposes */ game_drawstate ads, *ds = &ads; game_set_size(dr, ds, NULL, tilesize); ds->w = w; ds->h = h; /* Border. */ print_line_width(dr, TILE_SIZE/12); /* Numbers and +/- for corners. */ draw_sym(dr, ds, -1, -1, POSITIVE, ink); draw_sym(dr, ds, state->w, state->h, NEGATIVE, ink); for (which = POSITIVE, j = 0; j < 2; which = OPPOSITE(which), j++) { for (i = 0; i < w; i++) { draw_num(dr, ds, COLUMN, which, i, paper, ink, state->common->colcount[i*3+which]); } for (i = 0; i < h; i++) { draw_num(dr, ds, ROW, which, i, paper, ink, state->common->rowcount[i*3+which]); } } /* Dominoes. */ for (x = 0; x < w; x++) { for (y = 0; y < h; y++) { i = y*state->w + x; if (state->common->dominoes[i] == i+1 || state->common->dominoes[i] == i+w) { int dx = state->common->dominoes[i] == i+1 ? 2 : 1; int dy = 3 - dx; int xx, yy; int cx = COORD(x), cy = COORD(y); print_line_width(dr, 0); /* Ink the domino */ for (yy = 0; yy < 2; yy++) for (xx = 0; xx < 2; xx++) draw_circle(dr, cx+xx*dx*TILE_SIZE+(1-2*xx)*3*TILE_SIZE/16, cy+yy*dy*TILE_SIZE+(1-2*yy)*3*TILE_SIZE/16, TILE_SIZE/8, ink, ink); draw_rect(dr, cx + TILE_SIZE/16, cy + 3*TILE_SIZE/16, dx*TILE_SIZE - 2*(TILE_SIZE/16), dy*TILE_SIZE - 6*(TILE_SIZE/16), ink); draw_rect(dr, cx + 3*TILE_SIZE/16, cy + TILE_SIZE/16, dx*TILE_SIZE - 6*(TILE_SIZE/16), dy*TILE_SIZE - 2*(TILE_SIZE/16), ink); /* Un-ink the domino interior */ for (yy = 0; yy < 2; yy++) for (xx = 0; xx < 2; xx++) draw_circle(dr, cx+xx*dx*TILE_SIZE+(1-2*xx)*3*TILE_SIZE/16, cy+yy*dy*TILE_SIZE+(1-2*yy)*3*TILE_SIZE/16, 3*TILE_SIZE/32, paper, paper); draw_rect(dr, cx + 3*TILE_SIZE/32, cy + 3*TILE_SIZE/16, dx*TILE_SIZE - 2*(3*TILE_SIZE/32), dy*TILE_SIZE - 6*(TILE_SIZE/16), paper); draw_rect(dr, cx + 3*TILE_SIZE/16, cy + 3*TILE_SIZE/32, dx*TILE_SIZE - 6*(TILE_SIZE/16), dy*TILE_SIZE - 2*(3*TILE_SIZE/32), paper); } } } /* Grid symbols (solution). */ for (x = 0; x < w; x++) { for (y = 0; y < h; y++) { i = y*state->w + x; if ((state->grid[i] != NEUTRAL) || (state->flags[i] & GS_SET)) draw_sym(dr, ds, x, y, state->grid[i], ink); } } } #ifdef COMBINED #define thegame magnets #endif const struct game thegame = { "Magnets", "games.magnets", "magnets", default_params, game_fetch_preset, NULL, decode_params, encode_params, free_params, dup_params, TRUE, game_configure, custom_params, validate_params, new_game_desc, validate_desc, new_game, dup_game, free_game, TRUE, solve_game, TRUE, game_can_format_as_text_now, game_text_format, new_ui, free_ui, encode_ui, decode_ui, game_changed_state, interpret_move, execute_move, PREFERRED_TILE_SIZE, game_compute_size, game_set_size, game_colours, game_new_drawstate, game_free_drawstate, game_redraw, game_anim_length, game_flash_length, game_status, TRUE, FALSE, game_print_size, game_print, FALSE, /* wants_statusbar */ FALSE, game_timing_state, REQUIRE_RBUTTON, /* flags */ }; #ifdef STANDALONE_SOLVER #include <time.h> #include <stdarg.h> const char *quis = NULL; int csv = 0; void usage(FILE *out) { fprintf(out, "usage: %s [-v] [--print] <params>|<game id>\n", quis); } void doprint(game_state *state) { char *fmt = game_text_format(state); printf("%s", fmt); sfree(fmt); } static void pnum(int n, int ntot, const char *desc) { printf("%2.1f%% (%d) %s", (double)n*100.0 / (double)ntot, n, desc); } static void start_soak(game_params *p, random_state *rs) { time_t tt_start, tt_now, tt_last; char *aux; game_state *s, *s2; int n = 0, nsolved = 0, nimpossible = 0, ntricky = 0, ret, i; long nn, nn_total = 0, nn_solved = 0, nn_tricky = 0; tt_start = tt_now = time(NULL); if (csv) printf("time, w, h, #generated, #solved, #tricky, #impossible, " "#neutral, #neutral/solved, #neutral/tricky\n"); else printf("Soak-testing a %dx%d grid.\n", p->w, p->h); s = new_state(p->w, p->h); aux = snewn(s->wh+1, char); while (1) { gen_game(s, rs); nn = 0; for (i = 0; i < s->wh; i++) { if (s->grid[i] == NEUTRAL) nn++; } generate_aux(s, aux); memset(s->grid, EMPTY, s->wh * sizeof(int)); s2 = dup_game(s); ret = solve_state(s, DIFFCOUNT); n++; nn_total += nn; if (ret > 0) { nsolved++; nn_solved += nn; if (solve_state(s2, DIFF_EASY) <= 0) { ntricky++; nn_tricky += nn; } } else if (ret < 0) { char *desc = generate_desc(s); solve_from_aux(s, aux); printf("Game considered impossible:\n %dx%d:%s\n", p->w, p->h, desc); sfree(desc); doprint(s); nimpossible++; } free_game(s2); tt_last = time(NULL); if (tt_last > tt_now) { tt_now = tt_last; if (csv) { printf("%d,%d,%d, %d,%d,%d,%d, %ld,%ld,%ld\n", (int)(tt_now - tt_start), p->w, p->h, n, nsolved, ntricky, nimpossible, nn_total, nn_solved, nn_tricky); } else { printf("%d total, %3.1f/s, ", n, (double)n / ((double)tt_now - tt_start)); pnum(nsolved, n, "solved"); printf(", "); pnum(ntricky, n, "tricky"); if (nimpossible > 0) pnum(nimpossible, n, "impossible"); printf("\n"); printf(" overall %3.1f%% neutral (%3.1f%% for solved, %3.1f%% for tricky)\n", (double)(nn_total * 100) / (double)(p->w * p->h * n), (double)(nn_solved * 100) / (double)(p->w * p->h * nsolved), (double)(nn_tricky * 100) / (double)(p->w * p->h * ntricky)); } } } free_game(s); sfree(aux); } int main(int argc, const char *argv[]) { int print = 0, soak = 0, solved = 0, ret; char *id = NULL, *desc, *desc_gen = NULL, *err, *aux = NULL; game_state *s = NULL; game_params *p = NULL; random_state *rs = NULL; time_t seed = time(NULL); setvbuf(stdout, NULL, _IONBF, 0); quis = argv[0]; while (--argc > 0) { char *p = (char*)(*++argv); if (!strcmp(p, "-v") || !strcmp(p, "--verbose")) { verbose = 1; } else if (!strcmp(p, "--csv")) { csv = 1; } else if (!strcmp(p, "-e") || !strcmp(p, "--seed")) { seed = atoi(*++argv); argc--; } else if (!strcmp(p, "-p") || !strcmp(p, "--print")) { print = 1; } else if (!strcmp(p, "-s") || !strcmp(p, "--soak")) { soak = 1; } else if (*p == '-') { fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0], p); usage(stderr); exit(1); } else { id = p; } } rs = random_new((void*)&seed, sizeof(time_t)); if (!id) { fprintf(stderr, "usage: %s [-v] [--soak] <params> | <game_id>\n", argv[0]); goto done; } desc = strchr(id, ':'); if (desc) *desc++ = '\0'; p = default_params(); decode_params(p, id); err = validate_params(p, 1); if (err) { fprintf(stderr, "%s: %s", argv[0], err); goto done; } if (soak) { if (desc) { fprintf(stderr, "%s: --soak needs parameters, not description.\n", quis); goto done; } start_soak(p, rs); goto done; } if (!desc) desc = desc_gen = new_game_desc(p, rs, &aux, 0); err = validate_desc(p, desc); if (err) { fprintf(stderr, "%s: %s\nDescription: %s\n", quis, err, desc); goto done; } s = new_game(NULL, p, desc); printf("%s:%s (seed %ld)\n", id, desc, (long)seed); if (aux) { /* We just generated this ourself. */ if (verbose || print) { doprint(s); solve_from_aux(s, aux); solved = 1; } } else { doprint(s); verbose = 1; ret = solve_state(s, DIFFCOUNT); if (ret < 0) printf("Puzzle is impossible.\n"); else if (ret == 0) printf("Puzzle is ambiguous.\n"); else printf("Puzzle was solved.\n"); verbose = 0; solved = 1; } if (solved) doprint(s); done: if (desc_gen) sfree(desc_gen); if (p) free_params(p); if (s) free_game(s); if (rs) random_free(rs); if (aux) sfree(aux); return 0; } #endif /* vim: set shiftwidth=4 tabstop=8: */