ref: 5732d1d2674573ce96b2203aec512e57533e64d1
dir: /grid.c/
/* * (c) Lambros Lambrou 2008 * * Code for working with general grids, which can be any planar graph * with faces, edges and vertices (dots). Includes generators for a few * types of grid, including square, hexagonal, triangular and others. */ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <assert.h> #include <ctype.h> #include <math.h> #include <float.h> #include "puzzles.h" #include "tree234.h" #include "grid.h" #include "penrose.h" /* Debugging options */ /* #define DEBUG_GRID */ /* ---------------------------------------------------------------------- * Deallocate or dereference a grid */ void grid_free(grid *g) { assert(g->refcount); g->refcount--; if (g->refcount == 0) { int i; for (i = 0; i < g->num_faces; i++) { sfree(g->faces[i].dots); sfree(g->faces[i].edges); } for (i = 0; i < g->num_dots; i++) { sfree(g->dots[i].faces); sfree(g->dots[i].edges); } sfree(g->faces); sfree(g->edges); sfree(g->dots); sfree(g); } } /* Used by the other grid generators. Create a brand new grid with nothing * initialised (all lists are NULL) */ static grid *grid_empty(void) { grid *g = snew(grid); g->faces = NULL; g->edges = NULL; g->dots = NULL; g->num_faces = g->num_edges = g->num_dots = 0; g->refcount = 1; g->lowest_x = g->lowest_y = g->highest_x = g->highest_y = 0; return g; } /* Helper function to calculate perpendicular distance from * a point P to a line AB. A and B mustn't be equal here. * * Well-known formula for area A of a triangle: * / 1 1 1 \ * 2A = determinant of matrix | px ax bx | * \ py ay by / * * Also well-known: 2A = base * height * = perpendicular distance * line-length. * * Combining gives: distance = determinant / line-length(a,b) */ static double point_line_distance(long px, long py, long ax, long ay, long bx, long by) { long det = ax*by - bx*ay + bx*py - px*by + px*ay - ax*py; double len; det = max(det, -det); len = sqrt(SQ(ax - bx) + SQ(ay - by)); return det / len; } /* Determine nearest edge to where the user clicked. * (x, y) is the clicked location, converted to grid coordinates. * Returns the nearest edge, or NULL if no edge is reasonably * near the position. * * Just judging edges by perpendicular distance is not quite right - * the edge might be "off to one side". So we insist that the triangle * with (x,y) has acute angles at the edge's dots. * * edge1 * *---------*------ * | * | *(x,y) * edge2 | * | edge2 is OK, but edge1 is not, even though * | edge1 is perpendicularly closer to (x,y) * * * */ grid_edge *grid_nearest_edge(grid *g, int x, int y) { grid_edge *best_edge; double best_distance = 0; int i; best_edge = NULL; for (i = 0; i < g->num_edges; i++) { grid_edge *e = &g->edges[i]; long e2; /* squared length of edge */ long a2, b2; /* squared lengths of other sides */ double dist; /* See if edge e is eligible - the triangle must have acute angles * at the edge's dots. * Pythagoras formula h^2 = a^2 + b^2 detects right-angles, * so detect acute angles by testing for h^2 < a^2 + b^2 */ e2 = SQ((long)e->dot1->x - (long)e->dot2->x) + SQ((long)e->dot1->y - (long)e->dot2->y); a2 = SQ((long)e->dot1->x - (long)x) + SQ((long)e->dot1->y - (long)y); b2 = SQ((long)e->dot2->x - (long)x) + SQ((long)e->dot2->y - (long)y); if (a2 >= e2 + b2) continue; if (b2 >= e2 + a2) continue; /* e is eligible so far. Now check the edge is reasonably close * to where the user clicked. Don't want to toggle an edge if the * click was way off the grid. * There is room for experimentation here. We could check the * perpendicular distance is within a certain fraction of the length * of the edge. That amounts to testing a rectangular region around * the edge. * Alternatively, we could check that the angle at the point is obtuse. * That would amount to testing a circular region with the edge as * diameter. */ dist = point_line_distance((long)x, (long)y, (long)e->dot1->x, (long)e->dot1->y, (long)e->dot2->x, (long)e->dot2->y); /* Is dist more than half edge length ? */ if (4 * SQ(dist) > e2) continue; if (best_edge == NULL || dist < best_distance) { best_edge = e; best_distance = dist; } } return best_edge; } /* ---------------------------------------------------------------------- * Grid generation */ #ifdef SVG_GRID #define SVG_DOTS 1 #define SVG_EDGES 2 #define SVG_FACES 4 #define FACE_COLOUR "red" #define EDGE_COLOUR "blue" #define DOT_COLOUR "black" static void grid_output_svg(FILE *fp, grid *g, int which) { int i, j; fprintf(fp,"\ <?xml version=\"1.0\" encoding=\"UTF-8\" standalone=\"no\"?>\n\ <!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 20010904//EN\"\n\ \"http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd\">\n\ \n\ <svg xmlns=\"http://www.w3.org/2000/svg\"\n\ xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n\n"); if (which & SVG_FACES) { fprintf(fp, "<g>\n"); for (i = 0; i < g->num_faces; i++) { grid_face *f = g->faces + i; fprintf(fp, "<polygon points=\""); for (j = 0; j < f->order; j++) { grid_dot *d = f->dots[j]; fprintf(fp, "%s%d,%d", (j == 0) ? "" : " ", d->x, d->y); } fprintf(fp, "\" style=\"fill: %s; fill-opacity: 0.2; stroke: %s\" />\n", FACE_COLOUR, FACE_COLOUR); } fprintf(fp, "</g>\n"); } if (which & SVG_EDGES) { fprintf(fp, "<g>\n"); for (i = 0; i < g->num_edges; i++) { grid_edge *e = g->edges + i; grid_dot *d1 = e->dot1, *d2 = e->dot2; fprintf(fp, "<line x1=\"%d\" y1=\"%d\" x2=\"%d\" y2=\"%d\" " "style=\"stroke: %s\" />\n", d1->x, d1->y, d2->x, d2->y, EDGE_COLOUR); } fprintf(fp, "</g>\n"); } if (which & SVG_DOTS) { fprintf(fp, "<g>\n"); for (i = 0; i < g->num_dots; i++) { grid_dot *d = g->dots + i; fprintf(fp, "<ellipse cx=\"%d\" cy=\"%d\" rx=\"%d\" ry=\"%d\" fill=\"%s\" />", d->x, d->y, g->tilesize/20, g->tilesize/20, DOT_COLOUR); } fprintf(fp, "</g>\n"); } fprintf(fp, "</svg>\n"); } #endif #ifdef SVG_GRID #include <errno.h> static void grid_try_svg(grid *g, int which) { char *svg = getenv("PUZZLES_SVG_GRID"); if (svg) { FILE *svgf = fopen(svg, "w"); if (svgf) { grid_output_svg(svgf, g, which); fclose(svgf); } else { fprintf(stderr, "Unable to open file `%s': %s", svg, strerror(errno)); } } } #endif /* Show the basic grid information, before doing grid_make_consistent */ static void grid_debug_basic(grid *g) { /* TODO: Maybe we should generate an SVG image of the dots and lines * of the grid here, before grid_make_consistent. * Would help with debugging grid generation. */ #ifdef DEBUG_GRID int i; printf("--- Basic Grid Data ---\n"); for (i = 0; i < g->num_faces; i++) { grid_face *f = g->faces + i; printf("Face %d: dots[", i); int j; for (j = 0; j < f->order; j++) { grid_dot *d = f->dots[j]; printf("%s%d", j ? "," : "", (int)(d - g->dots)); } printf("]\n"); } #endif #ifdef SVG_GRID grid_try_svg(g, SVG_FACES); #endif } /* Show the derived grid information, computed by grid_make_consistent */ static void grid_debug_derived(grid *g) { #ifdef DEBUG_GRID /* edges */ int i; printf("--- Derived Grid Data ---\n"); for (i = 0; i < g->num_edges; i++) { grid_edge *e = g->edges + i; printf("Edge %d: dots[%d,%d] faces[%d,%d]\n", i, (int)(e->dot1 - g->dots), (int)(e->dot2 - g->dots), e->face1 ? (int)(e->face1 - g->faces) : -1, e->face2 ? (int)(e->face2 - g->faces) : -1); } /* faces */ for (i = 0; i < g->num_faces; i++) { grid_face *f = g->faces + i; int j; printf("Face %d: faces[", i); for (j = 0; j < f->order; j++) { grid_edge *e = f->edges[j]; grid_face *f2 = (e->face1 == f) ? e->face2 : e->face1; printf("%s%d", j ? "," : "", f2 ? (int)(f2 - g->faces) : -1); } printf("]\n"); } /* dots */ for (i = 0; i < g->num_dots; i++) { grid_dot *d = g->dots + i; int j; printf("Dot %d: dots[", i); for (j = 0; j < d->order; j++) { grid_edge *e = d->edges[j]; grid_dot *d2 = (e->dot1 == d) ? e->dot2 : e->dot1; printf("%s%d", j ? "," : "", (int)(d2 - g->dots)); } printf("] faces["); for (j = 0; j < d->order; j++) { grid_face *f = d->faces[j]; printf("%s%d", j ? "," : "", f ? (int)(f - g->faces) : -1); } printf("]\n"); } #endif #ifdef SVG_GRID grid_try_svg(g, SVG_DOTS | SVG_EDGES | SVG_FACES); #endif } /* Helper function for building incomplete-edges list in * grid_make_consistent() */ static int grid_edge_bydots_cmpfn(void *v1, void *v2) { grid_edge *a = v1; grid_edge *b = v2; grid_dot *da, *db; /* Pointer subtraction is valid here, because all dots point into the * same dot-list (g->dots). * Edges are not "normalised" - the 2 dots could be stored in any order, * so we need to take this into account when comparing edges. */ /* Compare first dots */ da = (a->dot1 < a->dot2) ? a->dot1 : a->dot2; db = (b->dot1 < b->dot2) ? b->dot1 : b->dot2; if (da != db) return db - da; /* Compare last dots */ da = (a->dot1 < a->dot2) ? a->dot2 : a->dot1; db = (b->dot1 < b->dot2) ? b->dot2 : b->dot1; if (da != db) return db - da; return 0; } /* * 'Vigorously trim' a grid, by which I mean deleting any isolated or * uninteresting faces. By which, in turn, I mean: ensure that the * grid is composed solely of faces adjacent to at least one * 'landlocked' dot (i.e. one not in contact with the infinite * exterior face), and that all those dots are in a single connected * component. * * This function operates on, and returns, a grid satisfying the * preconditions to grid_make_consistent() rather than the * postconditions. (So call it first.) */ static void grid_trim_vigorously(grid *g) { int *dotpairs, *faces, *dots; int *dsf; int i, j, k, size, newfaces, newdots; /* * First construct a matrix in which each ordered pair of dots is * mapped to the index of the face in which those dots occur in * that order. */ dotpairs = snewn(g->num_dots * g->num_dots, int); for (i = 0; i < g->num_dots; i++) for (j = 0; j < g->num_dots; j++) dotpairs[i*g->num_dots+j] = -1; for (i = 0; i < g->num_faces; i++) { grid_face *f = g->faces + i; int dot0 = f->dots[f->order-1] - g->dots; for (j = 0; j < f->order; j++) { int dot1 = f->dots[j] - g->dots; dotpairs[dot0 * g->num_dots + dot1] = i; dot0 = dot1; } } /* * Now we can identify landlocked dots: they're the ones all of * whose edges have a mirror-image counterpart in this matrix. */ dots = snewn(g->num_dots, int); for (i = 0; i < g->num_dots; i++) { dots[i] = TRUE; for (j = 0; j < g->num_dots; j++) { if ((dotpairs[i*g->num_dots+j] >= 0) ^ (dotpairs[j*g->num_dots+i] >= 0)) dots[i] = FALSE; /* non-duplicated edge: coastal dot */ } } /* * Now identify connected pairs of landlocked dots, and form a dsf * unifying them. */ dsf = snew_dsf(g->num_dots); for (i = 0; i < g->num_dots; i++) for (j = 0; j < i; j++) if (dots[i] && dots[j] && dotpairs[i*g->num_dots+j] >= 0 && dotpairs[j*g->num_dots+i] >= 0) dsf_merge(dsf, i, j); /* * Now look for the largest component. */ size = 0; j = -1; for (i = 0; i < g->num_dots; i++) { int newsize; if (dots[i] && dsf_canonify(dsf, i) == i && (newsize = dsf_size(dsf, i)) > size) { j = i; size = newsize; } } /* * Work out which faces we're going to keep (precisely those with * at least one dot in the same connected component as j) and * which dots (those required by any face we're keeping). * * At this point we reuse the 'dots' array to indicate the dots * we're keeping, rather than the ones that are landlocked. */ faces = snewn(g->num_faces, int); for (i = 0; i < g->num_faces; i++) faces[i] = 0; for (i = 0; i < g->num_dots; i++) dots[i] = 0; for (i = 0; i < g->num_faces; i++) { grid_face *f = g->faces + i; int keep = FALSE; for (k = 0; k < f->order; k++) if (dsf_canonify(dsf, f->dots[k] - g->dots) == j) keep = TRUE; if (keep) { faces[i] = TRUE; for (k = 0; k < f->order; k++) dots[f->dots[k]-g->dots] = TRUE; } } /* * Work out the new indices of those faces and dots, when we * compact the arrays containing them. */ for (i = newfaces = 0; i < g->num_faces; i++) faces[i] = (faces[i] ? newfaces++ : -1); for (i = newdots = 0; i < g->num_dots; i++) dots[i] = (dots[i] ? newdots++ : -1); /* * Free the dynamically allocated 'dots' pointer lists in faces * we're going to discard. */ for (i = 0; i < g->num_faces; i++) if (faces[i] < 0) sfree(g->faces[i].dots); /* * Go through and compact the arrays. */ for (i = 0; i < g->num_dots; i++) if (dots[i] >= 0) { grid_dot *dnew = g->dots + dots[i], *dold = g->dots + i; *dnew = *dold; /* structure copy */ } for (i = 0; i < g->num_faces; i++) if (faces[i] >= 0) { grid_face *fnew = g->faces + faces[i], *fold = g->faces + i; *fnew = *fold; /* structure copy */ for (j = 0; j < fnew->order; j++) { /* * Reindex the dots in this face. */ k = fnew->dots[j] - g->dots; fnew->dots[j] = g->dots + dots[k]; } } g->num_faces = newfaces; g->num_dots = newdots; sfree(dotpairs); sfree(dsf); sfree(dots); sfree(faces); } /* Input: grid has its dots and faces initialised: * - dots have (optionally) x and y coordinates, but no edges or faces * (pointers are NULL). * - edges not initialised at all * - faces initialised and know which dots they have (but no edges yet). The * dots around each face are assumed to be clockwise. * * Output: grid is complete and valid with all relationships defined. */ static void grid_make_consistent(grid *g) { int i; tree234 *incomplete_edges; grid_edge *next_new_edge; /* Where new edge will go into g->edges */ grid_debug_basic(g); /* ====== Stage 1 ====== * Generate edges */ /* We know how many dots and faces there are, so we can find the exact * number of edges from Euler's polyhedral formula: F + V = E + 2 . * We use "-1", not "-2" here, because Euler's formula includes the * infinite face, which we don't count. */ g->num_edges = g->num_faces + g->num_dots - 1; g->edges = snewn(g->num_edges, grid_edge); next_new_edge = g->edges; /* Iterate over faces, and over each face's dots, generating edges as we * go. As we find each new edge, we can immediately fill in the edge's * dots, but only one of the edge's faces. Later on in the iteration, we * will find the same edge again (unless it's on the border), but we will * know the other face. * For efficiency, maintain a list of the incomplete edges, sorted by * their dots. */ incomplete_edges = newtree234(grid_edge_bydots_cmpfn); for (i = 0; i < g->num_faces; i++) { grid_face *f = g->faces + i; int j; for (j = 0; j < f->order; j++) { grid_edge e; /* fake edge for searching */ grid_edge *edge_found; int j2 = j + 1; if (j2 == f->order) j2 = 0; e.dot1 = f->dots[j]; e.dot2 = f->dots[j2]; /* Use del234 instead of find234, because we always want to * remove the edge if found */ edge_found = del234(incomplete_edges, &e); if (edge_found) { /* This edge already added, so fill out missing face. * Edge is already removed from incomplete_edges. */ edge_found->face2 = f; } else { assert(next_new_edge - g->edges < g->num_edges); next_new_edge->dot1 = e.dot1; next_new_edge->dot2 = e.dot2; next_new_edge->face1 = f; next_new_edge->face2 = NULL; /* potentially infinite face */ add234(incomplete_edges, next_new_edge); ++next_new_edge; } } } freetree234(incomplete_edges); /* ====== Stage 2 ====== * For each face, build its edge list. */ /* Allocate space for each edge list. Can do this, because each face's * edge-list is the same size as its dot-list. */ for (i = 0; i < g->num_faces; i++) { grid_face *f = g->faces + i; int j; f->edges = snewn(f->order, grid_edge*); /* Preload with NULLs, to help detect potential bugs. */ for (j = 0; j < f->order; j++) f->edges[j] = NULL; } /* Iterate over each edge, and over both its faces. Add this edge to * the face's edge-list, after finding where it should go in the * sequence. */ for (i = 0; i < g->num_edges; i++) { grid_edge *e = g->edges + i; int j; for (j = 0; j < 2; j++) { grid_face *f = j ? e->face2 : e->face1; int k, k2; if (f == NULL) continue; /* Find one of the dots around the face */ for (k = 0; k < f->order; k++) { if (f->dots[k] == e->dot1) break; /* found dot1 */ } assert(k != f->order); /* Must find the dot around this face */ /* Labelling scheme: as we walk clockwise around the face, * starting at dot0 (f->dots[0]), we hit: * (dot0), edge0, dot1, edge1, dot2,... * * 0 * 0-----1 * | * |1 * | * 3-----2 * 2 * * Therefore, edgeK joins dotK and dot{K+1} */ /* Around this face, either the next dot or the previous dot * must be e->dot2. Otherwise the edge is wrong. */ k2 = k + 1; if (k2 == f->order) k2 = 0; if (f->dots[k2] == e->dot2) { /* dot1(k) and dot2(k2) go clockwise around this face, so add * this edge at position k (see diagram). */ assert(f->edges[k] == NULL); f->edges[k] = e; continue; } /* Try previous dot */ k2 = k - 1; if (k2 == -1) k2 = f->order - 1; if (f->dots[k2] == e->dot2) { /* dot1(k) and dot2(k2) go anticlockwise around this face. */ assert(f->edges[k2] == NULL); f->edges[k2] = e; continue; } assert(!"Grid broken: bad edge-face relationship"); } } /* ====== Stage 3 ====== * For each dot, build its edge-list and face-list. */ /* We don't know how many edges/faces go around each dot, so we can't * allocate the right space for these lists. Pre-compute the sizes by * iterating over each edge and recording a tally against each dot. */ for (i = 0; i < g->num_dots; i++) { g->dots[i].order = 0; } for (i = 0; i < g->num_edges; i++) { grid_edge *e = g->edges + i; ++(e->dot1->order); ++(e->dot2->order); } /* Now we have the sizes, pre-allocate the edge and face lists. */ for (i = 0; i < g->num_dots; i++) { grid_dot *d = g->dots + i; int j; assert(d->order >= 2); /* sanity check */ d->edges = snewn(d->order, grid_edge*); d->faces = snewn(d->order, grid_face*); for (j = 0; j < d->order; j++) { d->edges[j] = NULL; d->faces[j] = NULL; } } /* For each dot, need to find a face that touches it, so we can seed * the edge-face-edge-face process around each dot. */ for (i = 0; i < g->num_faces; i++) { grid_face *f = g->faces + i; int j; for (j = 0; j < f->order; j++) { grid_dot *d = f->dots[j]; d->faces[0] = f; } } /* Each dot now has a face in its first slot. Generate the remaining * faces and edges around the dot, by searching both clockwise and * anticlockwise from the first face. Need to do both directions, * because of the possibility of hitting the infinite face, which * blocks progress. But there's only one such face, so we will * succeed in finding every edge and face this way. */ for (i = 0; i < g->num_dots; i++) { grid_dot *d = g->dots + i; int current_face1 = 0; /* ascends clockwise */ int current_face2 = 0; /* descends anticlockwise */ /* Labelling scheme: as we walk clockwise around the dot, starting * at face0 (d->faces[0]), we hit: * (face0), edge0, face1, edge1, face2,... * * 0 * | * 0 | 1 * | * -----d-----1 * | * | 2 * | * 2 * * So, for example, face1 should be joined to edge0 and edge1, * and those edges should appear in an anticlockwise sense around * that face (see diagram). */ /* clockwise search */ while (TRUE) { grid_face *f = d->faces[current_face1]; grid_edge *e; int j; assert(f != NULL); /* find dot around this face */ for (j = 0; j < f->order; j++) { if (f->dots[j] == d) break; } assert(j != f->order); /* must find dot */ /* Around f, required edge is anticlockwise from the dot. See * the other labelling scheme higher up, for why we subtract 1 * from j. */ j--; if (j == -1) j = f->order - 1; e = f->edges[j]; d->edges[current_face1] = e; /* set edge */ current_face1++; if (current_face1 == d->order) break; else { /* set face */ d->faces[current_face1] = (e->face1 == f) ? e->face2 : e->face1; if (d->faces[current_face1] == NULL) break; /* cannot progress beyond infinite face */ } } /* If the clockwise search made it all the way round, don't need to * bother with the anticlockwise search. */ if (current_face1 == d->order) continue; /* this dot is complete, move on to next dot */ /* anticlockwise search */ while (TRUE) { grid_face *f = d->faces[current_face2]; grid_edge *e; int j; assert(f != NULL); /* find dot around this face */ for (j = 0; j < f->order; j++) { if (f->dots[j] == d) break; } assert(j != f->order); /* must find dot */ /* Around f, required edge is clockwise from the dot. */ e = f->edges[j]; current_face2--; if (current_face2 == -1) current_face2 = d->order - 1; d->edges[current_face2] = e; /* set edge */ /* set face */ if (current_face2 == current_face1) break; d->faces[current_face2] = (e->face1 == f) ? e->face2 : e->face1; /* There's only 1 infinite face, so we must get all the way * to current_face1 before we hit it. */ assert(d->faces[current_face2]); } } /* ====== Stage 4 ====== * Compute other grid settings */ /* Bounding rectangle */ for (i = 0; i < g->num_dots; i++) { grid_dot *d = g->dots + i; if (i == 0) { g->lowest_x = g->highest_x = d->x; g->lowest_y = g->highest_y = d->y; } else { g->lowest_x = min(g->lowest_x, d->x); g->highest_x = max(g->highest_x, d->x); g->lowest_y = min(g->lowest_y, d->y); g->highest_y = max(g->highest_y, d->y); } } grid_debug_derived(g); } /* Helpers for making grid-generation easier. These functions are only * intended for use during grid generation. */ /* Comparison function for the (tree234) sorted dot list */ static int grid_point_cmp_fn(void *v1, void *v2) { grid_dot *p1 = v1; grid_dot *p2 = v2; if (p1->y != p2->y) return p2->y - p1->y; else return p2->x - p1->x; } /* Add a new face to the grid, with its dot list allocated. * Assumes there's enough space allocated for the new face in grid->faces */ static void grid_face_add_new(grid *g, int face_size) { int i; grid_face *new_face = g->faces + g->num_faces; new_face->order = face_size; new_face->dots = snewn(face_size, grid_dot*); for (i = 0; i < face_size; i++) new_face->dots[i] = NULL; new_face->edges = NULL; new_face->has_incentre = FALSE; g->num_faces++; } /* Assumes dot list has enough space */ static grid_dot *grid_dot_add_new(grid *g, int x, int y) { grid_dot *new_dot = g->dots + g->num_dots; new_dot->order = 0; new_dot->edges = NULL; new_dot->faces = NULL; new_dot->x = x; new_dot->y = y; g->num_dots++; return new_dot; } /* Retrieve a dot with these (x,y) coordinates. Either return an existing dot * in the dot_list, or add a new dot to the grid (and the dot_list) and * return that. * Assumes g->dots has enough capacity allocated */ static grid_dot *grid_get_dot(grid *g, tree234 *dot_list, int x, int y) { grid_dot test, *ret; test.order = 0; test.edges = NULL; test.faces = NULL; test.x = x; test.y = y; ret = find234(dot_list, &test, NULL); if (ret) return ret; ret = grid_dot_add_new(g, x, y); add234(dot_list, ret); return ret; } /* Sets the last face of the grid to include this dot, at this position * around the face. Assumes num_faces is at least 1 (a new face has * previously been added, with the required number of dots allocated) */ static void grid_face_set_dot(grid *g, grid_dot *d, int position) { grid_face *last_face = g->faces + g->num_faces - 1; last_face->dots[position] = d; } /* * Helper routines for grid_find_incentre. */ static int solve_2x2_matrix(double mx[4], double vin[2], double vout[2]) { double inv[4]; double det; det = (mx[0]*mx[3] - mx[1]*mx[2]); if (det == 0) return FALSE; inv[0] = mx[3] / det; inv[1] = -mx[1] / det; inv[2] = -mx[2] / det; inv[3] = mx[0] / det; vout[0] = inv[0]*vin[0] + inv[1]*vin[1]; vout[1] = inv[2]*vin[0] + inv[3]*vin[1]; return TRUE; } static int solve_3x3_matrix(double mx[9], double vin[3], double vout[3]) { double inv[9]; double det; det = (mx[0]*mx[4]*mx[8] + mx[1]*mx[5]*mx[6] + mx[2]*mx[3]*mx[7] - mx[0]*mx[5]*mx[7] - mx[1]*mx[3]*mx[8] - mx[2]*mx[4]*mx[6]); if (det == 0) return FALSE; inv[0] = (mx[4]*mx[8] - mx[5]*mx[7]) / det; inv[1] = (mx[2]*mx[7] - mx[1]*mx[8]) / det; inv[2] = (mx[1]*mx[5] - mx[2]*mx[4]) / det; inv[3] = (mx[5]*mx[6] - mx[3]*mx[8]) / det; inv[4] = (mx[0]*mx[8] - mx[2]*mx[6]) / det; inv[5] = (mx[2]*mx[3] - mx[0]*mx[5]) / det; inv[6] = (mx[3]*mx[7] - mx[4]*mx[6]) / det; inv[7] = (mx[1]*mx[6] - mx[0]*mx[7]) / det; inv[8] = (mx[0]*mx[4] - mx[1]*mx[3]) / det; vout[0] = inv[0]*vin[0] + inv[1]*vin[1] + inv[2]*vin[2]; vout[1] = inv[3]*vin[0] + inv[4]*vin[1] + inv[5]*vin[2]; vout[2] = inv[6]*vin[0] + inv[7]*vin[1] + inv[8]*vin[2]; return TRUE; } void grid_find_incentre(grid_face *f) { double xbest, ybest, bestdist; int i, j, k, m; grid_dot *edgedot1[3], *edgedot2[3]; grid_dot *dots[3]; int nedges, ndots; if (f->has_incentre) return; /* * Find the point in the polygon with the maximum distance to any * edge or corner. * * Such a point must exist which is in contact with at least three * edges and/or vertices. (Proof: if it's only in contact with two * edges and/or vertices, it can't even be at a _local_ maximum - * any such circle can always be expanded in some direction.) So * we iterate through all 3-subsets of the combined set of edges * and vertices; for each subset we generate one or two candidate * points that might be the incentre, and then we vet each one to * see if it's inside the polygon and what its maximum radius is. * * (There's one case which this algorithm will get noticeably * wrong, and that's when a continuum of equally good answers * exists due to parallel edges. Consider a long thin rectangle, * for instance, or a parallelogram. This algorithm will pick a * point near one end, and choose the end arbitrarily; obviously a * nicer point to choose would be in the centre. To fix this I * would have to introduce a special-case system which detected * parallel edges in advance, set aside all candidate points * generated using both edges in a parallel pair, and generated * some additional candidate points half way between them. Also, * of course, I'd have to cope with rounding error making such a * point look worse than one of its endpoints. So I haven't done * this for the moment, and will cross it if necessary when I come * to it.) * * We don't actually iterate literally over _edges_, in the sense * of grid_edge structures. Instead, we fill in edgedot1[] and * edgedot2[] with a pair of dots adjacent in the face's list of * vertices. This ensures that we get the edges in consistent * orientation, which we could not do from the grid structure * alone. (A moment's consideration of an order-3 vertex should * make it clear that if a notional arrow was written on each * edge, _at least one_ of the three faces bordering that vertex * would have to have the two arrows tip-to-tip or tail-to-tail * rather than tip-to-tail.) */ nedges = ndots = 0; bestdist = 0; xbest = ybest = 0; for (i = 0; i+2 < 2*f->order; i++) { if (i < f->order) { edgedot1[nedges] = f->dots[i]; edgedot2[nedges++] = f->dots[(i+1)%f->order]; } else dots[ndots++] = f->dots[i - f->order]; for (j = i+1; j+1 < 2*f->order; j++) { if (j < f->order) { edgedot1[nedges] = f->dots[j]; edgedot2[nedges++] = f->dots[(j+1)%f->order]; } else dots[ndots++] = f->dots[j - f->order]; for (k = j+1; k < 2*f->order; k++) { double cx[2], cy[2]; /* candidate positions */ int cn = 0; /* number of candidates */ if (k < f->order) { edgedot1[nedges] = f->dots[k]; edgedot2[nedges++] = f->dots[(k+1)%f->order]; } else dots[ndots++] = f->dots[k - f->order]; /* * Find a point, or pair of points, equidistant from * all the specified edges and/or vertices. */ if (nedges == 3) { /* * Three edges. This is a linear matrix equation: * each row of the matrix represents the fact that * the point (x,y) we seek is at distance r from * that edge, and we solve three of those * simultaneously to obtain x,y,r. (We ignore r.) */ double matrix[9], vector[3], vector2[3]; int m; for (m = 0; m < 3; m++) { int x1 = edgedot1[m]->x, x2 = edgedot2[m]->x; int y1 = edgedot1[m]->y, y2 = edgedot2[m]->y; int dx = x2-x1, dy = y2-y1; /* * ((x,y) - (x1,y1)) . (dy,-dx) = r |(dx,dy)| * * => x dy - y dx - r |(dx,dy)| = (x1 dy - y1 dx) */ matrix[3*m+0] = dy; matrix[3*m+1] = -dx; matrix[3*m+2] = -sqrt((double)dx*dx+(double)dy*dy); vector[m] = (double)x1*dy - (double)y1*dx; } if (solve_3x3_matrix(matrix, vector, vector2)) { cx[cn] = vector2[0]; cy[cn] = vector2[1]; cn++; } } else if (nedges == 2) { /* * Two edges and a dot. This will end up in a * quadratic equation. * * First, look at the two edges. Having our point * be some distance r from both of them gives rise * to a pair of linear equations in x,y,r of the * form * * (x-x1) dy - (y-y1) dx = r sqrt(dx^2+dy^2) * * We eliminate r between those equations to give * us a single linear equation in x,y describing * the locus of points equidistant from both lines * - i.e. the angle bisector. * * We then choose one of x,y to be a parameter t, * and derive linear formulae for x,y,r in terms * of t. This enables us to write down the * circular equation (x-xd)^2+(y-yd)^2=r^2 as a * quadratic in t; solving that and substituting * in for x,y gives us two candidate points. */ double eqs[2][4]; /* a,b,c,d : ax+by+cr=d */ double eq[3]; /* a,b,c: ax+by=c */ double xt[2], yt[2], rt[2]; /* a,b: {x,y,r}=at+b */ double q[3]; /* a,b,c: at^2+bt+c=0 */ double disc; /* Find equations of the two input lines. */ for (m = 0; m < 2; m++) { int x1 = edgedot1[m]->x, x2 = edgedot2[m]->x; int y1 = edgedot1[m]->y, y2 = edgedot2[m]->y; int dx = x2-x1, dy = y2-y1; eqs[m][0] = dy; eqs[m][1] = -dx; eqs[m][2] = -sqrt(dx*dx+dy*dy); eqs[m][3] = x1*dy - y1*dx; } /* Derive the angle bisector by eliminating r. */ eq[0] = eqs[0][0]*eqs[1][2] - eqs[1][0]*eqs[0][2]; eq[1] = eqs[0][1]*eqs[1][2] - eqs[1][1]*eqs[0][2]; eq[2] = eqs[0][3]*eqs[1][2] - eqs[1][3]*eqs[0][2]; /* Parametrise x and y in terms of some t. */ if (abs(eq[0]) < abs(eq[1])) { /* Parameter is x. */ xt[0] = 1; xt[1] = 0; yt[0] = -eq[0]/eq[1]; yt[1] = eq[2]/eq[1]; } else { /* Parameter is y. */ yt[0] = 1; yt[1] = 0; xt[0] = -eq[1]/eq[0]; xt[1] = eq[2]/eq[0]; } /* Find a linear representation of r using eqs[0]. */ rt[0] = -(eqs[0][0]*xt[0] + eqs[0][1]*yt[0])/eqs[0][2]; rt[1] = (eqs[0][3] - eqs[0][0]*xt[1] - eqs[0][1]*yt[1])/eqs[0][2]; /* Construct the quadratic equation. */ q[0] = -rt[0]*rt[0]; q[1] = -2*rt[0]*rt[1]; q[2] = -rt[1]*rt[1]; q[0] += xt[0]*xt[0]; q[1] += 2*xt[0]*(xt[1]-dots[0]->x); q[2] += (xt[1]-dots[0]->x)*(xt[1]-dots[0]->x); q[0] += yt[0]*yt[0]; q[1] += 2*yt[0]*(yt[1]-dots[0]->y); q[2] += (yt[1]-dots[0]->y)*(yt[1]-dots[0]->y); /* And solve it. */ disc = q[1]*q[1] - 4*q[0]*q[2]; if (disc >= 0) { double t; disc = sqrt(disc); t = (-q[1] + disc) / (2*q[0]); cx[cn] = xt[0]*t + xt[1]; cy[cn] = yt[0]*t + yt[1]; cn++; t = (-q[1] - disc) / (2*q[0]); cx[cn] = xt[0]*t + xt[1]; cy[cn] = yt[0]*t + yt[1]; cn++; } } else if (nedges == 1) { /* * Two dots and an edge. This one's another * quadratic equation. * * The point we want must lie on the perpendicular * bisector of the two dots; that much is obvious. * So we can construct a parametrisation of that * bisecting line, giving linear formulae for x,y * in terms of t. We can also express the distance * from the edge as such a linear formula. * * Then we set that equal to the radius of the * circle passing through the two points, which is * a Pythagoras exercise; that gives rise to a * quadratic in t, which we solve. */ double xt[2], yt[2], rt[2]; /* a,b: {x,y,r}=at+b */ double q[3]; /* a,b,c: at^2+bt+c=0 */ double disc; double halfsep; /* Find parametric formulae for x,y. */ { int x1 = dots[0]->x, x2 = dots[1]->x; int y1 = dots[0]->y, y2 = dots[1]->y; int dx = x2-x1, dy = y2-y1; double d = sqrt((double)dx*dx + (double)dy*dy); xt[1] = (x1+x2)/2.0; yt[1] = (y1+y2)/2.0; /* It's convenient if we have t at standard scale. */ xt[0] = -dy/d; yt[0] = dx/d; /* Also note down half the separation between * the dots, for use in computing the circle radius. */ halfsep = 0.5*d; } /* Find a parametric formula for r. */ { int x1 = edgedot1[0]->x, x2 = edgedot2[0]->x; int y1 = edgedot1[0]->y, y2 = edgedot2[0]->y; int dx = x2-x1, dy = y2-y1; double d = sqrt((double)dx*dx + (double)dy*dy); rt[0] = (xt[0]*dy - yt[0]*dx) / d; rt[1] = ((xt[1]-x1)*dy - (yt[1]-y1)*dx) / d; } /* Construct the quadratic equation. */ q[0] = rt[0]*rt[0]; q[1] = 2*rt[0]*rt[1]; q[2] = rt[1]*rt[1]; q[0] -= 1; q[2] -= halfsep*halfsep; /* And solve it. */ disc = q[1]*q[1] - 4*q[0]*q[2]; if (disc >= 0) { double t; disc = sqrt(disc); t = (-q[1] + disc) / (2*q[0]); cx[cn] = xt[0]*t + xt[1]; cy[cn] = yt[0]*t + yt[1]; cn++; t = (-q[1] - disc) / (2*q[0]); cx[cn] = xt[0]*t + xt[1]; cy[cn] = yt[0]*t + yt[1]; cn++; } } else if (nedges == 0) { /* * Three dots. This is another linear matrix * equation, this time with each row of the matrix * representing the perpendicular bisector between * two of the points. Of course we only need two * such lines to find their intersection, so we * need only solve a 2x2 matrix equation. */ double matrix[4], vector[2], vector2[2]; int m; for (m = 0; m < 2; m++) { int x1 = dots[m]->x, x2 = dots[m+1]->x; int y1 = dots[m]->y, y2 = dots[m+1]->y; int dx = x2-x1, dy = y2-y1; /* * ((x,y) - (x1,y1)) . (dx,dy) = 1/2 |(dx,dy)|^2 * * => 2x dx + 2y dy = dx^2+dy^2 + (2 x1 dx + 2 y1 dy) */ matrix[2*m+0] = 2*dx; matrix[2*m+1] = 2*dy; vector[m] = ((double)dx*dx + (double)dy*dy + 2.0*x1*dx + 2.0*y1*dy); } if (solve_2x2_matrix(matrix, vector, vector2)) { cx[cn] = vector2[0]; cy[cn] = vector2[1]; cn++; } } /* * Now go through our candidate points and see if any * of them are better than what we've got so far. */ for (m = 0; m < cn; m++) { double x = cx[m], y = cy[m]; /* * First, disqualify the point if it's not inside * the polygon, which we work out by counting the * edges to the right of the point. (For * tiebreaking purposes when edges start or end on * our y-coordinate or go right through it, we * consider our point to be offset by a small * _positive_ epsilon in both the x- and * y-direction.) */ int e, in = 0; for (e = 0; e < f->order; e++) { int xs = f->edges[e]->dot1->x; int xe = f->edges[e]->dot2->x; int ys = f->edges[e]->dot1->y; int ye = f->edges[e]->dot2->y; if ((y >= ys && y < ye) || (y >= ye && y < ys)) { /* * The line goes past our y-position. Now we need * to know if its x-coordinate when it does so is * to our right. * * The x-coordinate in question is mathematically * (y - ys) * (xe - xs) / (ye - ys), and we want * to know whether (x - xs) >= that. Of course we * avoid the division, so we can work in integers; * to do this we must multiply both sides of the * inequality by ye - ys, which means we must * first check that's not negative. */ int num = xe - xs, denom = ye - ys; if (denom < 0) { num = -num; denom = -denom; } if ((x - xs) * denom >= (y - ys) * num) in ^= 1; } } if (in) { #ifdef HUGE_VAL double mindist = HUGE_VAL; #else #ifdef DBL_MAX double mindist = DBL_MAX; #else #error No way to get maximum floating-point number. #endif #endif int e, d; /* * This point is inside the polygon, so now we check * its minimum distance to every edge and corner. * First the corners ... */ for (d = 0; d < f->order; d++) { int xp = f->dots[d]->x; int yp = f->dots[d]->y; double dx = x - xp, dy = y - yp; double dist = dx*dx + dy*dy; if (mindist > dist) mindist = dist; } /* * ... and now also check the perpendicular distance * to every edge, if the perpendicular lies between * the edge's endpoints. */ for (e = 0; e < f->order; e++) { int xs = f->edges[e]->dot1->x; int xe = f->edges[e]->dot2->x; int ys = f->edges[e]->dot1->y; int ye = f->edges[e]->dot2->y; /* * If s and e are our endpoints, and p our * candidate circle centre, the foot of a * perpendicular from p to the line se lies * between s and e if and only if (p-s).(e-s) lies * strictly between 0 and (e-s).(e-s). */ int edx = xe - xs, edy = ye - ys; double pdx = x - xs, pdy = y - ys; double pde = pdx * edx + pdy * edy; long ede = (long)edx * edx + (long)edy * edy; if (0 < pde && pde < ede) { /* * Yes, the nearest point on this edge is * closer than either endpoint, so we must * take it into account by measuring the * perpendicular distance to the edge and * checking its square against mindist. */ double pdre = pdx * edy - pdy * edx; double sqlen = pdre * pdre / ede; if (mindist > sqlen) mindist = sqlen; } } /* * Right. Now we know the biggest circle around this * point, so we can check it against bestdist. */ if (bestdist < mindist) { bestdist = mindist; xbest = x; ybest = y; } } } if (k < f->order) nedges--; else ndots--; } if (j < f->order) nedges--; else ndots--; } if (i < f->order) nedges--; else ndots--; } assert(bestdist > 0); f->has_incentre = TRUE; f->ix = xbest + 0.5; /* round to nearest */ f->iy = ybest + 0.5; } /* ------ Generate various types of grid ------ */ /* General method is to generate faces, by calculating their dot coordinates. * As new faces are added, we keep track of all the dots so we can tell when * a new face reuses an existing dot. For example, two squares touching at an * edge would generate six unique dots: four dots from the first face, then * two additional dots for the second face, because we detect the other two * dots have already been taken up. This list is stored in a tree234 * called "points". No extra memory-allocation needed here - we store the * actual grid_dot* pointers, which all point into the g->dots list. * For this reason, we have to calculate coordinates in such a way as to * eliminate any rounding errors, so we can detect when a dot on one * face precisely lands on a dot of a different face. No floating-point * arithmetic here! */ #define SQUARE_TILESIZE 20 static void grid_size_square(int width, int height, int *tilesize, int *xextent, int *yextent) { int a = SQUARE_TILESIZE; *tilesize = a; *xextent = width * a; *yextent = height * a; } static grid *grid_new_square(int width, int height, const char *desc) { int x, y; /* Side length */ int a = SQUARE_TILESIZE; /* Upper bounds - don't have to be exact */ int max_faces = width * height; int max_dots = (width + 1) * (height + 1); tree234 *points; grid *g = grid_empty(); g->tilesize = a; g->faces = snewn(max_faces, grid_face); g->dots = snewn(max_dots, grid_dot); points = newtree234(grid_point_cmp_fn); /* generate square faces */ for (y = 0; y < height; y++) { for (x = 0; x < width; x++) { grid_dot *d; /* face position */ int px = a * x; int py = a * y; grid_face_add_new(g, 4); d = grid_get_dot(g, points, px, py); grid_face_set_dot(g, d, 0); d = grid_get_dot(g, points, px + a, py); grid_face_set_dot(g, d, 1); d = grid_get_dot(g, points, px + a, py + a); grid_face_set_dot(g, d, 2); d = grid_get_dot(g, points, px, py + a); grid_face_set_dot(g, d, 3); } } freetree234(points); assert(g->num_faces <= max_faces); assert(g->num_dots <= max_dots); grid_make_consistent(g); return g; } #define HONEY_TILESIZE 45 /* Vector for side of hexagon - ratio is close to sqrt(3) */ #define HONEY_A 15 #define HONEY_B 26 static void grid_size_honeycomb(int width, int height, int *tilesize, int *xextent, int *yextent) { int a = HONEY_A; int b = HONEY_B; *tilesize = HONEY_TILESIZE; *xextent = (3 * a * (width-1)) + 4*a; *yextent = (2 * b * (height-1)) + 3*b; } static grid *grid_new_honeycomb(int width, int height, const char *desc) { int x, y; int a = HONEY_A; int b = HONEY_B; /* Upper bounds - don't have to be exact */ int max_faces = width * height; int max_dots = 2 * (width + 1) * (height + 1); tree234 *points; grid *g = grid_empty(); g->tilesize = HONEY_TILESIZE; g->faces = snewn(max_faces, grid_face); g->dots = snewn(max_dots, grid_dot); points = newtree234(grid_point_cmp_fn); /* generate hexagonal faces */ for (y = 0; y < height; y++) { for (x = 0; x < width; x++) { grid_dot *d; /* face centre */ int cx = 3 * a * x; int cy = 2 * b * y; if (x % 2) cy += b; grid_face_add_new(g, 6); d = grid_get_dot(g, points, cx - a, cy - b); grid_face_set_dot(g, d, 0); d = grid_get_dot(g, points, cx + a, cy - b); grid_face_set_dot(g, d, 1); d = grid_get_dot(g, points, cx + 2*a, cy); grid_face_set_dot(g, d, 2); d = grid_get_dot(g, points, cx + a, cy + b); grid_face_set_dot(g, d, 3); d = grid_get_dot(g, points, cx - a, cy + b); grid_face_set_dot(g, d, 4); d = grid_get_dot(g, points, cx - 2*a, cy); grid_face_set_dot(g, d, 5); } } freetree234(points); assert(g->num_faces <= max_faces); assert(g->num_dots <= max_dots); grid_make_consistent(g); return g; } #define TRIANGLE_TILESIZE 18 /* Vector for side of triangle - ratio is close to sqrt(3) */ #define TRIANGLE_VEC_X 15 #define TRIANGLE_VEC_Y 26 static void grid_size_triangular(int width, int height, int *tilesize, int *xextent, int *yextent) { int vec_x = TRIANGLE_VEC_X; int vec_y = TRIANGLE_VEC_Y; *tilesize = TRIANGLE_TILESIZE; *xextent = (width+1) * 2 * vec_x; *yextent = height * vec_y; } static char *grid_validate_desc_triangular(grid_type type, int width, int height, const char *desc) { /* * Triangular grids: an absent description is valid (indicating * the old-style approach which had 'ears', i.e. triangles * connected to only one other face, at some grid corners), and so * is a description reading just "0" (indicating the new-style * approach in which those ears are trimmed off). Anything else is * illegal. */ if (!desc || !strcmp(desc, "0")) return NULL; return "Unrecognised grid description."; } /* Doesn't use the previous method of generation, it pre-dates it! * A triangular grid is just about simple enough to do by "brute force" */ static grid *grid_new_triangular(int width, int height, const char *desc) { int x,y; int version = (desc == NULL ? -1 : atoi(desc)); /* Vector for side of triangle - ratio is close to sqrt(3) */ int vec_x = TRIANGLE_VEC_X; int vec_y = TRIANGLE_VEC_Y; int index; /* convenient alias */ int w = width + 1; grid *g = grid_empty(); g->tilesize = TRIANGLE_TILESIZE; if (version == -1) { /* * Old-style triangular grid generation, preserved as-is for * backwards compatibility with old game ids, in which it's * just a little asymmetric and there are 'ears' (faces linked * to only one other face) at two grid corners. * * Example old-style game ids, which should still work, and in * which you should see the ears in the TL/BR corners on the * first one and in the TL/BL corners on the second: * * 5x5t1:2c2a1a2a201a1a1a1112a1a2b1211f0b21a2a2a0a * 5x6t1:a022a212h1a1d1a12c2b11a012b1a20d1a0a12e */ g->num_faces = width * height * 2; g->num_dots = (width + 1) * (height + 1); g->faces = snewn(g->num_faces, grid_face); g->dots = snewn(g->num_dots, grid_dot); /* generate dots */ index = 0; for (y = 0; y <= height; y++) { for (x = 0; x <= width; x++) { grid_dot *d = g->dots + index; /* odd rows are offset to the right */ d->order = 0; d->edges = NULL; d->faces = NULL; d->x = x * 2 * vec_x + ((y % 2) ? vec_x : 0); d->y = y * vec_y; index++; } } /* generate faces */ index = 0; for (y = 0; y < height; y++) { for (x = 0; x < width; x++) { /* initialise two faces for this (x,y) */ grid_face *f1 = g->faces + index; grid_face *f2 = f1 + 1; f1->edges = NULL; f1->order = 3; f1->dots = snewn(f1->order, grid_dot*); f1->has_incentre = FALSE; f2->edges = NULL; f2->order = 3; f2->dots = snewn(f2->order, grid_dot*); f2->has_incentre = FALSE; /* face descriptions depend on whether the row-number is * odd or even */ if (y % 2) { f1->dots[0] = g->dots + y * w + x; f1->dots[1] = g->dots + (y + 1) * w + x + 1; f1->dots[2] = g->dots + (y + 1) * w + x; f2->dots[0] = g->dots + y * w + x; f2->dots[1] = g->dots + y * w + x + 1; f2->dots[2] = g->dots + (y + 1) * w + x + 1; } else { f1->dots[0] = g->dots + y * w + x; f1->dots[1] = g->dots + y * w + x + 1; f1->dots[2] = g->dots + (y + 1) * w + x; f2->dots[0] = g->dots + y * w + x + 1; f2->dots[1] = g->dots + (y + 1) * w + x + 1; f2->dots[2] = g->dots + (y + 1) * w + x; } index += 2; } } } else { /* * New-style approach, in which there are never any 'ears', * and if height is even then the grid is nicely 4-way * symmetric. * * Example new-style grids: * * 5x5t1:0_21120b11a1a01a1a00c1a0b211021c1h1a2a1a0a * 5x6t1:0_a1212c22c2a02a2f22a0c12a110d0e1c0c0a101121a1 */ tree234 *points = newtree234(grid_point_cmp_fn); /* Upper bounds - don't have to be exact */ int max_faces = height * (2*width+1); int max_dots = (height+1) * (width+1) * 4; g->faces = snewn(max_faces, grid_face); g->dots = snewn(max_dots, grid_dot); for (y = 0; y < height; y++) { /* * Each row contains (width+1) triangles one way up, and * (width) triangles the other way up. Which way up is * which varies with parity of y. Also, the dots around * each face will flip direction with parity of y, so we * set up n1 and n2 to cope with that easily. */ int y0, y1, n1, n2; y0 = y1 = y * vec_y; if (y % 2) { y1 += vec_y; n1 = 2; n2 = 1; } else { y0 += vec_y; n1 = 1; n2 = 2; } for (x = 0; x <= width; x++) { int x0 = 2*x * vec_x, x1 = x0 + vec_x, x2 = x1 + vec_x; /* * If the grid has odd height, then we skip the first * and last triangles on this row, otherwise they'll * end up as ears. */ if (height % 2 == 1 && y == height-1 && (x == 0 || x == width)) continue; grid_face_add_new(g, 3); grid_face_set_dot(g, grid_get_dot(g, points, x0, y0), 0); grid_face_set_dot(g, grid_get_dot(g, points, x1, y1), n1); grid_face_set_dot(g, grid_get_dot(g, points, x2, y0), n2); } for (x = 0; x < width; x++) { int x0 = (2*x+1) * vec_x, x1 = x0 + vec_x, x2 = x1 + vec_x; grid_face_add_new(g, 3); grid_face_set_dot(g, grid_get_dot(g, points, x0, y1), 0); grid_face_set_dot(g, grid_get_dot(g, points, x1, y0), n2); grid_face_set_dot(g, grid_get_dot(g, points, x2, y1), n1); } } freetree234(points); assert(g->num_faces <= max_faces); assert(g->num_dots <= max_dots); } grid_make_consistent(g); return g; } #define SNUBSQUARE_TILESIZE 18 /* Vector for side of triangle - ratio is close to sqrt(3) */ #define SNUBSQUARE_A 15 #define SNUBSQUARE_B 26 static void grid_size_snubsquare(int width, int height, int *tilesize, int *xextent, int *yextent) { int a = SNUBSQUARE_A; int b = SNUBSQUARE_B; *tilesize = SNUBSQUARE_TILESIZE; *xextent = (a+b) * (width-1) + a + b; *yextent = (a+b) * (height-1) + a + b; } static grid *grid_new_snubsquare(int width, int height, const char *desc) { int x, y; int a = SNUBSQUARE_A; int b = SNUBSQUARE_B; /* Upper bounds - don't have to be exact */ int max_faces = 3 * width * height; int max_dots = 2 * (width + 1) * (height + 1); tree234 *points; grid *g = grid_empty(); g->tilesize = SNUBSQUARE_TILESIZE; g->faces = snewn(max_faces, grid_face); g->dots = snewn(max_dots, grid_dot); points = newtree234(grid_point_cmp_fn); for (y = 0; y < height; y++) { for (x = 0; x < width; x++) { grid_dot *d; /* face position */ int px = (a + b) * x; int py = (a + b) * y; /* generate square faces */ grid_face_add_new(g, 4); if ((x + y) % 2) { d = grid_get_dot(g, points, px + a, py); grid_face_set_dot(g, d, 0); d = grid_get_dot(g, points, px + a + b, py + a); grid_face_set_dot(g, d, 1); d = grid_get_dot(g, points, px + b, py + a + b); grid_face_set_dot(g, d, 2); d = grid_get_dot(g, points, px, py + b); grid_face_set_dot(g, d, 3); } else { d = grid_get_dot(g, points, px + b, py); grid_face_set_dot(g, d, 0); d = grid_get_dot(g, points, px + a + b, py + b); grid_face_set_dot(g, d, 1); d = grid_get_dot(g, points, px + a, py + a + b); grid_face_set_dot(g, d, 2); d = grid_get_dot(g, points, px, py + a); grid_face_set_dot(g, d, 3); } /* generate up/down triangles */ if (x > 0) { grid_face_add_new(g, 3); if ((x + y) % 2) { d = grid_get_dot(g, points, px + a, py); grid_face_set_dot(g, d, 0); d = grid_get_dot(g, points, px, py + b); grid_face_set_dot(g, d, 1); d = grid_get_dot(g, points, px - a, py); grid_face_set_dot(g, d, 2); } else { d = grid_get_dot(g, points, px, py + a); grid_face_set_dot(g, d, 0); d = grid_get_dot(g, points, px + a, py + a + b); grid_face_set_dot(g, d, 1); d = grid_get_dot(g, points, px - a, py + a + b); grid_face_set_dot(g, d, 2); } } /* generate left/right triangles */ if (y > 0) { grid_face_add_new(g, 3); if ((x + y) % 2) { d = grid_get_dot(g, points, px + a, py); grid_face_set_dot(g, d, 0); d = grid_get_dot(g, points, px + a + b, py - a); grid_face_set_dot(g, d, 1); d = grid_get_dot(g, points, px + a + b, py + a); grid_face_set_dot(g, d, 2); } else { d = grid_get_dot(g, points, px, py - a); grid_face_set_dot(g, d, 0); d = grid_get_dot(g, points, px + b, py); grid_face_set_dot(g, d, 1); d = grid_get_dot(g, points, px, py + a); grid_face_set_dot(g, d, 2); } } } } freetree234(points); assert(g->num_faces <= max_faces); assert(g->num_dots <= max_dots); grid_make_consistent(g); return g; } #define CAIRO_TILESIZE 40 /* Vector for side of pentagon - ratio is close to (4+sqrt(7))/3 */ #define CAIRO_A 14 #define CAIRO_B 31 static void grid_size_cairo(int width, int height, int *tilesize, int *xextent, int *yextent) { int b = CAIRO_B; /* a unused in determining grid size. */ *tilesize = CAIRO_TILESIZE; *xextent = 2*b*(width-1) + 2*b; *yextent = 2*b*(height-1) + 2*b; } static grid *grid_new_cairo(int width, int height, const char *desc) { int x, y; int a = CAIRO_A; int b = CAIRO_B; /* Upper bounds - don't have to be exact */ int max_faces = 2 * width * height; int max_dots = 3 * (width + 1) * (height + 1); tree234 *points; grid *g = grid_empty(); g->tilesize = CAIRO_TILESIZE; g->faces = snewn(max_faces, grid_face); g->dots = snewn(max_dots, grid_dot); points = newtree234(grid_point_cmp_fn); for (y = 0; y < height; y++) { for (x = 0; x < width; x++) { grid_dot *d; /* cell position */ int px = 2 * b * x; int py = 2 * b * y; /* horizontal pentagons */ if (y > 0) { grid_face_add_new(g, 5); if ((x + y) % 2) { d = grid_get_dot(g, points, px + a, py - b); grid_face_set_dot(g, d, 0); d = grid_get_dot(g, points, px + 2*b - a, py - b); grid_face_set_dot(g, d, 1); d = grid_get_dot(g, points, px + 2*b, py); grid_face_set_dot(g, d, 2); d = grid_get_dot(g, points, px + b, py + a); grid_face_set_dot(g, d, 3); d = grid_get_dot(g, points, px, py); grid_face_set_dot(g, d, 4); } else { d = grid_get_dot(g, points, px, py); grid_face_set_dot(g, d, 0); d = grid_get_dot(g, points, px + b, py - a); grid_face_set_dot(g, d, 1); d = grid_get_dot(g, points, px + 2*b, py); grid_face_set_dot(g, d, 2); d = grid_get_dot(g, points, px + 2*b - a, py + b); grid_face_set_dot(g, d, 3); d = grid_get_dot(g, points, px + a, py + b); grid_face_set_dot(g, d, 4); } } /* vertical pentagons */ if (x > 0) { grid_face_add_new(g, 5); if ((x + y) % 2) { d = grid_get_dot(g, points, px, py); grid_face_set_dot(g, d, 0); d = grid_get_dot(g, points, px + b, py + a); grid_face_set_dot(g, d, 1); d = grid_get_dot(g, points, px + b, py + 2*b - a); grid_face_set_dot(g, d, 2); d = grid_get_dot(g, points, px, py + 2*b); grid_face_set_dot(g, d, 3); d = grid_get_dot(g, points, px - a, py + b); grid_face_set_dot(g, d, 4); } else { d = grid_get_dot(g, points, px, py); grid_face_set_dot(g, d, 0); d = grid_get_dot(g, points, px + a, py + b); grid_face_set_dot(g, d, 1); d = grid_get_dot(g, points, px, py + 2*b); grid_face_set_dot(g, d, 2); d = grid_get_dot(g, points, px - b, py + 2*b - a); grid_face_set_dot(g, d, 3); d = grid_get_dot(g, points, px - b, py + a); grid_face_set_dot(g, d, 4); } } } } freetree234(points); assert(g->num_faces <= max_faces); assert(g->num_dots <= max_dots); grid_make_consistent(g); return g; } #define GREATHEX_TILESIZE 18 /* Vector for side of triangle - ratio is close to sqrt(3) */ #define GREATHEX_A 15 #define GREATHEX_B 26 static void grid_size_greathexagonal(int width, int height, int *tilesize, int *xextent, int *yextent) { int a = GREATHEX_A; int b = GREATHEX_B; *tilesize = GREATHEX_TILESIZE; *xextent = (3*a + b) * (width-1) + 4*a; *yextent = (2*a + 2*b) * (height-1) + 3*b + a; } static grid *grid_new_greathexagonal(int width, int height, const char *desc) { int x, y; int a = GREATHEX_A; int b = GREATHEX_B; /* Upper bounds - don't have to be exact */ int max_faces = 6 * (width + 1) * (height + 1); int max_dots = 6 * width * height; tree234 *points; grid *g = grid_empty(); g->tilesize = GREATHEX_TILESIZE; g->faces = snewn(max_faces, grid_face); g->dots = snewn(max_dots, grid_dot); points = newtree234(grid_point_cmp_fn); for (y = 0; y < height; y++) { for (x = 0; x < width; x++) { grid_dot *d; /* centre of hexagon */ int px = (3*a + b) * x; int py = (2*a + 2*b) * y; if (x % 2) py += a + b; /* hexagon */ grid_face_add_new(g, 6); d = grid_get_dot(g, points, px - a, py - b); grid_face_set_dot(g, d, 0); d = grid_get_dot(g, points, px + a, py - b); grid_face_set_dot(g, d, 1); d = grid_get_dot(g, points, px + 2*a, py); grid_face_set_dot(g, d, 2); d = grid_get_dot(g, points, px + a, py + b); grid_face_set_dot(g, d, 3); d = grid_get_dot(g, points, px - a, py + b); grid_face_set_dot(g, d, 4); d = grid_get_dot(g, points, px - 2*a, py); grid_face_set_dot(g, d, 5); /* square below hexagon */ if (y < height - 1) { grid_face_add_new(g, 4); d = grid_get_dot(g, points, px - a, py + b); grid_face_set_dot(g, d, 0); d = grid_get_dot(g, points, px + a, py + b); grid_face_set_dot(g, d, 1); d = grid_get_dot(g, points, px + a, py + 2*a + b); grid_face_set_dot(g, d, 2); d = grid_get_dot(g, points, px - a, py + 2*a + b); grid_face_set_dot(g, d, 3); } /* square below right */ if ((x < width - 1) && (((x % 2) == 0) || (y < height - 1))) { grid_face_add_new(g, 4); d = grid_get_dot(g, points, px + 2*a, py); grid_face_set_dot(g, d, 0); d = grid_get_dot(g, points, px + 2*a + b, py + a); grid_face_set_dot(g, d, 1); d = grid_get_dot(g, points, px + a + b, py + a + b); grid_face_set_dot(g, d, 2); d = grid_get_dot(g, points, px + a, py + b); grid_face_set_dot(g, d, 3); } /* square below left */ if ((x > 0) && (((x % 2) == 0) || (y < height - 1))) { grid_face_add_new(g, 4); d = grid_get_dot(g, points, px - 2*a, py); grid_face_set_dot(g, d, 0); d = grid_get_dot(g, points, px - a, py + b); grid_face_set_dot(g, d, 1); d = grid_get_dot(g, points, px - a - b, py + a + b); grid_face_set_dot(g, d, 2); d = grid_get_dot(g, points, px - 2*a - b, py + a); grid_face_set_dot(g, d, 3); } /* Triangle below right */ if ((x < width - 1) && (y < height - 1)) { grid_face_add_new(g, 3); d = grid_get_dot(g, points, px + a, py + b); grid_face_set_dot(g, d, 0); d = grid_get_dot(g, points, px + a + b, py + a + b); grid_face_set_dot(g, d, 1); d = grid_get_dot(g, points, px + a, py + 2*a + b); grid_face_set_dot(g, d, 2); } /* Triangle below left */ if ((x > 0) && (y < height - 1)) { grid_face_add_new(g, 3); d = grid_get_dot(g, points, px - a, py + b); grid_face_set_dot(g, d, 0); d = grid_get_dot(g, points, px - a, py + 2*a + b); grid_face_set_dot(g, d, 1); d = grid_get_dot(g, points, px - a - b, py + a + b); grid_face_set_dot(g, d, 2); } } } freetree234(points); assert(g->num_faces <= max_faces); assert(g->num_dots <= max_dots); grid_make_consistent(g); return g; } #define OCTAGONAL_TILESIZE 40 /* b/a approx sqrt(2) */ #define OCTAGONAL_A 29 #define OCTAGONAL_B 41 static void grid_size_octagonal(int width, int height, int *tilesize, int *xextent, int *yextent) { int a = OCTAGONAL_A; int b = OCTAGONAL_B; *tilesize = OCTAGONAL_TILESIZE; *xextent = (2*a + b) * width; *yextent = (2*a + b) * height; } static grid *grid_new_octagonal(int width, int height, const char *desc) { int x, y; int a = OCTAGONAL_A; int b = OCTAGONAL_B; /* Upper bounds - don't have to be exact */ int max_faces = 2 * width * height; int max_dots = 4 * (width + 1) * (height + 1); tree234 *points; grid *g = grid_empty(); g->tilesize = OCTAGONAL_TILESIZE; g->faces = snewn(max_faces, grid_face); g->dots = snewn(max_dots, grid_dot); points = newtree234(grid_point_cmp_fn); for (y = 0; y < height; y++) { for (x = 0; x < width; x++) { grid_dot *d; /* cell position */ int px = (2*a + b) * x; int py = (2*a + b) * y; /* octagon */ grid_face_add_new(g, 8); d = grid_get_dot(g, points, px + a, py); grid_face_set_dot(g, d, 0); d = grid_get_dot(g, points, px + a + b, py); grid_face_set_dot(g, d, 1); d = grid_get_dot(g, points, px + 2*a + b, py + a); grid_face_set_dot(g, d, 2); d = grid_get_dot(g, points, px + 2*a + b, py + a + b); grid_face_set_dot(g, d, 3); d = grid_get_dot(g, points, px + a + b, py + 2*a + b); grid_face_set_dot(g, d, 4); d = grid_get_dot(g, points, px + a, py + 2*a + b); grid_face_set_dot(g, d, 5); d = grid_get_dot(g, points, px, py + a + b); grid_face_set_dot(g, d, 6); d = grid_get_dot(g, points, px, py + a); grid_face_set_dot(g, d, 7); /* diamond */ if ((x > 0) && (y > 0)) { grid_face_add_new(g, 4); d = grid_get_dot(g, points, px, py - a); grid_face_set_dot(g, d, 0); d = grid_get_dot(g, points, px + a, py); grid_face_set_dot(g, d, 1); d = grid_get_dot(g, points, px, py + a); grid_face_set_dot(g, d, 2); d = grid_get_dot(g, points, px - a, py); grid_face_set_dot(g, d, 3); } } } freetree234(points); assert(g->num_faces <= max_faces); assert(g->num_dots <= max_dots); grid_make_consistent(g); return g; } #define KITE_TILESIZE 40 /* b/a approx sqrt(3) */ #define KITE_A 15 #define KITE_B 26 static void grid_size_kites(int width, int height, int *tilesize, int *xextent, int *yextent) { int a = KITE_A; int b = KITE_B; *tilesize = KITE_TILESIZE; *xextent = 4*b * width + 2*b; *yextent = 6*a * (height-1) + 8*a; } static grid *grid_new_kites(int width, int height, const char *desc) { int x, y; int a = KITE_A; int b = KITE_B; /* Upper bounds - don't have to be exact */ int max_faces = 6 * width * height; int max_dots = 6 * (width + 1) * (height + 1); tree234 *points; grid *g = grid_empty(); g->tilesize = KITE_TILESIZE; g->faces = snewn(max_faces, grid_face); g->dots = snewn(max_dots, grid_dot); points = newtree234(grid_point_cmp_fn); for (y = 0; y < height; y++) { for (x = 0; x < width; x++) { grid_dot *d; /* position of order-6 dot */ int px = 4*b * x; int py = 6*a * y; if (y % 2) px += 2*b; /* kite pointing up-left */ grid_face_add_new(g, 4); d = grid_get_dot(g, points, px, py); grid_face_set_dot(g, d, 0); d = grid_get_dot(g, points, px + 2*b, py); grid_face_set_dot(g, d, 1); d = grid_get_dot(g, points, px + 2*b, py + 2*a); grid_face_set_dot(g, d, 2); d = grid_get_dot(g, points, px + b, py + 3*a); grid_face_set_dot(g, d, 3); /* kite pointing up */ grid_face_add_new(g, 4); d = grid_get_dot(g, points, px, py); grid_face_set_dot(g, d, 0); d = grid_get_dot(g, points, px + b, py + 3*a); grid_face_set_dot(g, d, 1); d = grid_get_dot(g, points, px, py + 4*a); grid_face_set_dot(g, d, 2); d = grid_get_dot(g, points, px - b, py + 3*a); grid_face_set_dot(g, d, 3); /* kite pointing up-right */ grid_face_add_new(g, 4); d = grid_get_dot(g, points, px, py); grid_face_set_dot(g, d, 0); d = grid_get_dot(g, points, px - b, py + 3*a); grid_face_set_dot(g, d, 1); d = grid_get_dot(g, points, px - 2*b, py + 2*a); grid_face_set_dot(g, d, 2); d = grid_get_dot(g, points, px - 2*b, py); grid_face_set_dot(g, d, 3); /* kite pointing down-right */ grid_face_add_new(g, 4); d = grid_get_dot(g, points, px, py); grid_face_set_dot(g, d, 0); d = grid_get_dot(g, points, px - 2*b, py); grid_face_set_dot(g, d, 1); d = grid_get_dot(g, points, px - 2*b, py - 2*a); grid_face_set_dot(g, d, 2); d = grid_get_dot(g, points, px - b, py - 3*a); grid_face_set_dot(g, d, 3); /* kite pointing down */ grid_face_add_new(g, 4); d = grid_get_dot(g, points, px, py); grid_face_set_dot(g, d, 0); d = grid_get_dot(g, points, px - b, py - 3*a); grid_face_set_dot(g, d, 1); d = grid_get_dot(g, points, px, py - 4*a); grid_face_set_dot(g, d, 2); d = grid_get_dot(g, points, px + b, py - 3*a); grid_face_set_dot(g, d, 3); /* kite pointing down-left */ grid_face_add_new(g, 4); d = grid_get_dot(g, points, px, py); grid_face_set_dot(g, d, 0); d = grid_get_dot(g, points, px + b, py - 3*a); grid_face_set_dot(g, d, 1); d = grid_get_dot(g, points, px + 2*b, py - 2*a); grid_face_set_dot(g, d, 2); d = grid_get_dot(g, points, px + 2*b, py); grid_face_set_dot(g, d, 3); } } freetree234(points); assert(g->num_faces <= max_faces); assert(g->num_dots <= max_dots); grid_make_consistent(g); return g; } #define FLORET_TILESIZE 150 /* -py/px is close to tan(30 - atan(sqrt(3)/9)) * using py=26 makes everything lean to the left, rather than right */ #define FLORET_PX 75 #define FLORET_PY -26 static void grid_size_floret(int width, int height, int *tilesize, int *xextent, int *yextent) { int px = FLORET_PX, py = FLORET_PY; /* |( 75, -26)| = 79.43 */ int qx = 4*px/5, qy = -py*2; /* |( 60, 52)| = 79.40 */ int ry = qy-py; /* rx unused in determining grid size. */ *tilesize = FLORET_TILESIZE; *xextent = (6*px+3*qx)/2 * (width-1) + 4*qx + 2*px; *yextent = (5*qy-4*py) * (height-1) + 4*qy + 2*ry; } static grid *grid_new_floret(int width, int height, const char *desc) { int x, y; /* Vectors for sides; weird numbers needed to keep puzzle aligned with window * -py/px is close to tan(30 - atan(sqrt(3)/9)) * using py=26 makes everything lean to the left, rather than right */ int px = FLORET_PX, py = FLORET_PY; /* |( 75, -26)| = 79.43 */ int qx = 4*px/5, qy = -py*2; /* |( 60, 52)| = 79.40 */ int rx = qx-px, ry = qy-py; /* |(-15, 78)| = 79.38 */ /* Upper bounds - don't have to be exact */ int max_faces = 6 * width * height; int max_dots = 9 * (width + 1) * (height + 1); tree234 *points; grid *g = grid_empty(); g->tilesize = FLORET_TILESIZE; g->faces = snewn(max_faces, grid_face); g->dots = snewn(max_dots, grid_dot); points = newtree234(grid_point_cmp_fn); /* generate pentagonal faces */ for (y = 0; y < height; y++) { for (x = 0; x < width; x++) { grid_dot *d; /* face centre */ int cx = (6*px+3*qx)/2 * x; int cy = (4*py-5*qy) * y; if (x % 2) cy -= (4*py-5*qy)/2; else if (y && y == height-1) continue; /* make better looking grids? try 3x3 for instance */ grid_face_add_new(g, 5); d = grid_get_dot(g, points, cx , cy ); grid_face_set_dot(g, d, 0); d = grid_get_dot(g, points, cx+2*rx , cy+2*ry ); grid_face_set_dot(g, d, 1); d = grid_get_dot(g, points, cx+2*rx+qx, cy+2*ry+qy); grid_face_set_dot(g, d, 2); d = grid_get_dot(g, points, cx+2*qx+rx, cy+2*qy+ry); grid_face_set_dot(g, d, 3); d = grid_get_dot(g, points, cx+2*qx , cy+2*qy ); grid_face_set_dot(g, d, 4); grid_face_add_new(g, 5); d = grid_get_dot(g, points, cx , cy ); grid_face_set_dot(g, d, 0); d = grid_get_dot(g, points, cx+2*qx , cy+2*qy ); grid_face_set_dot(g, d, 1); d = grid_get_dot(g, points, cx+2*qx+px, cy+2*qy+py); grid_face_set_dot(g, d, 2); d = grid_get_dot(g, points, cx+2*px+qx, cy+2*py+qy); grid_face_set_dot(g, d, 3); d = grid_get_dot(g, points, cx+2*px , cy+2*py ); grid_face_set_dot(g, d, 4); grid_face_add_new(g, 5); d = grid_get_dot(g, points, cx , cy ); grid_face_set_dot(g, d, 0); d = grid_get_dot(g, points, cx+2*px , cy+2*py ); grid_face_set_dot(g, d, 1); d = grid_get_dot(g, points, cx+2*px-rx, cy+2*py-ry); grid_face_set_dot(g, d, 2); d = grid_get_dot(g, points, cx-2*rx+px, cy-2*ry+py); grid_face_set_dot(g, d, 3); d = grid_get_dot(g, points, cx-2*rx , cy-2*ry ); grid_face_set_dot(g, d, 4); grid_face_add_new(g, 5); d = grid_get_dot(g, points, cx , cy ); grid_face_set_dot(g, d, 0); d = grid_get_dot(g, points, cx-2*rx , cy-2*ry ); grid_face_set_dot(g, d, 1); d = grid_get_dot(g, points, cx-2*rx-qx, cy-2*ry-qy); grid_face_set_dot(g, d, 2); d = grid_get_dot(g, points, cx-2*qx-rx, cy-2*qy-ry); grid_face_set_dot(g, d, 3); d = grid_get_dot(g, points, cx-2*qx , cy-2*qy ); grid_face_set_dot(g, d, 4); grid_face_add_new(g, 5); d = grid_get_dot(g, points, cx , cy ); grid_face_set_dot(g, d, 0); d = grid_get_dot(g, points, cx-2*qx , cy-2*qy ); grid_face_set_dot(g, d, 1); d = grid_get_dot(g, points, cx-2*qx-px, cy-2*qy-py); grid_face_set_dot(g, d, 2); d = grid_get_dot(g, points, cx-2*px-qx, cy-2*py-qy); grid_face_set_dot(g, d, 3); d = grid_get_dot(g, points, cx-2*px , cy-2*py ); grid_face_set_dot(g, d, 4); grid_face_add_new(g, 5); d = grid_get_dot(g, points, cx , cy ); grid_face_set_dot(g, d, 0); d = grid_get_dot(g, points, cx-2*px , cy-2*py ); grid_face_set_dot(g, d, 1); d = grid_get_dot(g, points, cx-2*px+rx, cy-2*py+ry); grid_face_set_dot(g, d, 2); d = grid_get_dot(g, points, cx+2*rx-px, cy+2*ry-py); grid_face_set_dot(g, d, 3); d = grid_get_dot(g, points, cx+2*rx , cy+2*ry ); grid_face_set_dot(g, d, 4); } } freetree234(points); assert(g->num_faces <= max_faces); assert(g->num_dots <= max_dots); grid_make_consistent(g); return g; } /* DODEC_* are used for dodecagonal and great-dodecagonal grids. */ #define DODEC_TILESIZE 26 /* Vector for side of triangle - ratio is close to sqrt(3) */ #define DODEC_A 15 #define DODEC_B 26 static void grid_size_dodecagonal(int width, int height, int *tilesize, int *xextent, int *yextent) { int a = DODEC_A; int b = DODEC_B; *tilesize = DODEC_TILESIZE; *xextent = (4*a + 2*b) * (width-1) + 3*(2*a + b); *yextent = (3*a + 2*b) * (height-1) + 2*(2*a + b); } static grid *grid_new_dodecagonal(int width, int height, const char *desc) { int x, y; int a = DODEC_A; int b = DODEC_B; /* Upper bounds - don't have to be exact */ int max_faces = 3 * width * height; int max_dots = 14 * width * height; tree234 *points; grid *g = grid_empty(); g->tilesize = DODEC_TILESIZE; g->faces = snewn(max_faces, grid_face); g->dots = snewn(max_dots, grid_dot); points = newtree234(grid_point_cmp_fn); for (y = 0; y < height; y++) { for (x = 0; x < width; x++) { grid_dot *d; /* centre of dodecagon */ int px = (4*a + 2*b) * x; int py = (3*a + 2*b) * y; if (y % 2) px += 2*a + b; /* dodecagon */ grid_face_add_new(g, 12); d = grid_get_dot(g, points, px + ( a ), py - (2*a + b)); grid_face_set_dot(g, d, 0); d = grid_get_dot(g, points, px + ( a + b), py - ( a + b)); grid_face_set_dot(g, d, 1); d = grid_get_dot(g, points, px + (2*a + b), py - ( a )); grid_face_set_dot(g, d, 2); d = grid_get_dot(g, points, px + (2*a + b), py + ( a )); grid_face_set_dot(g, d, 3); d = grid_get_dot(g, points, px + ( a + b), py + ( a + b)); grid_face_set_dot(g, d, 4); d = grid_get_dot(g, points, px + ( a ), py + (2*a + b)); grid_face_set_dot(g, d, 5); d = grid_get_dot(g, points, px - ( a ), py + (2*a + b)); grid_face_set_dot(g, d, 6); d = grid_get_dot(g, points, px - ( a + b), py + ( a + b)); grid_face_set_dot(g, d, 7); d = grid_get_dot(g, points, px - (2*a + b), py + ( a )); grid_face_set_dot(g, d, 8); d = grid_get_dot(g, points, px - (2*a + b), py - ( a )); grid_face_set_dot(g, d, 9); d = grid_get_dot(g, points, px - ( a + b), py - ( a + b)); grid_face_set_dot(g, d, 10); d = grid_get_dot(g, points, px - ( a ), py - (2*a + b)); grid_face_set_dot(g, d, 11); /* triangle below dodecagon */ if ((y < height - 1 && (x < width - 1 || !(y % 2)) && (x > 0 || (y % 2)))) { grid_face_add_new(g, 3); d = grid_get_dot(g, points, px + a, py + (2*a + b)); grid_face_set_dot(g, d, 0); d = grid_get_dot(g, points, px , py + (2*a + 2*b)); grid_face_set_dot(g, d, 1); d = grid_get_dot(g, points, px - a, py + (2*a + b)); grid_face_set_dot(g, d, 2); } /* triangle above dodecagon */ if ((y && (x < width - 1 || !(y % 2)) && (x > 0 || (y % 2)))) { grid_face_add_new(g, 3); d = grid_get_dot(g, points, px - a, py - (2*a + b)); grid_face_set_dot(g, d, 0); d = grid_get_dot(g, points, px , py - (2*a + 2*b)); grid_face_set_dot(g, d, 1); d = grid_get_dot(g, points, px + a, py - (2*a + b)); grid_face_set_dot(g, d, 2); } } } freetree234(points); assert(g->num_faces <= max_faces); assert(g->num_dots <= max_dots); grid_make_consistent(g); return g; } static void grid_size_greatdodecagonal(int width, int height, int *tilesize, int *xextent, int *yextent) { int a = DODEC_A; int b = DODEC_B; *tilesize = DODEC_TILESIZE; *xextent = (6*a + 2*b) * (width-1) + 2*(2*a + b) + 3*a + b; *yextent = (3*a + 3*b) * (height-1) + 2*(2*a + b); } static grid *grid_new_greatdodecagonal(int width, int height, const char *desc) { int x, y; /* Vector for side of triangle - ratio is close to sqrt(3) */ int a = DODEC_A; int b = DODEC_B; /* Upper bounds - don't have to be exact */ int max_faces = 30 * width * height; int max_dots = 200 * width * height; tree234 *points; grid *g = grid_empty(); g->tilesize = DODEC_TILESIZE; g->faces = snewn(max_faces, grid_face); g->dots = snewn(max_dots, grid_dot); points = newtree234(grid_point_cmp_fn); for (y = 0; y < height; y++) { for (x = 0; x < width; x++) { grid_dot *d; /* centre of dodecagon */ int px = (6*a + 2*b) * x; int py = (3*a + 3*b) * y; if (y % 2) px += 3*a + b; /* dodecagon */ grid_face_add_new(g, 12); d = grid_get_dot(g, points, px + ( a ), py - (2*a + b)); grid_face_set_dot(g, d, 0); d = grid_get_dot(g, points, px + ( a + b), py - ( a + b)); grid_face_set_dot(g, d, 1); d = grid_get_dot(g, points, px + (2*a + b), py - ( a )); grid_face_set_dot(g, d, 2); d = grid_get_dot(g, points, px + (2*a + b), py + ( a )); grid_face_set_dot(g, d, 3); d = grid_get_dot(g, points, px + ( a + b), py + ( a + b)); grid_face_set_dot(g, d, 4); d = grid_get_dot(g, points, px + ( a ), py + (2*a + b)); grid_face_set_dot(g, d, 5); d = grid_get_dot(g, points, px - ( a ), py + (2*a + b)); grid_face_set_dot(g, d, 6); d = grid_get_dot(g, points, px - ( a + b), py + ( a + b)); grid_face_set_dot(g, d, 7); d = grid_get_dot(g, points, px - (2*a + b), py + ( a )); grid_face_set_dot(g, d, 8); d = grid_get_dot(g, points, px - (2*a + b), py - ( a )); grid_face_set_dot(g, d, 9); d = grid_get_dot(g, points, px - ( a + b), py - ( a + b)); grid_face_set_dot(g, d, 10); d = grid_get_dot(g, points, px - ( a ), py - (2*a + b)); grid_face_set_dot(g, d, 11); /* hexagon below dodecagon */ if (y < height - 1 && (x < width - 1 || !(y % 2)) && (x > 0 || (y % 2))) { grid_face_add_new(g, 6); d = grid_get_dot(g, points, px + a, py + (2*a + b)); grid_face_set_dot(g, d, 0); d = grid_get_dot(g, points, px + 2*a, py + (2*a + 2*b)); grid_face_set_dot(g, d, 1); d = grid_get_dot(g, points, px + a, py + (2*a + 3*b)); grid_face_set_dot(g, d, 2); d = grid_get_dot(g, points, px - a, py + (2*a + 3*b)); grid_face_set_dot(g, d, 3); d = grid_get_dot(g, points, px - 2*a, py + (2*a + 2*b)); grid_face_set_dot(g, d, 4); d = grid_get_dot(g, points, px - a, py + (2*a + b)); grid_face_set_dot(g, d, 5); } /* hexagon above dodecagon */ if (y && (x < width - 1 || !(y % 2)) && (x > 0 || (y % 2))) { grid_face_add_new(g, 6); d = grid_get_dot(g, points, px - a, py - (2*a + b)); grid_face_set_dot(g, d, 0); d = grid_get_dot(g, points, px - 2*a, py - (2*a + 2*b)); grid_face_set_dot(g, d, 1); d = grid_get_dot(g, points, px - a, py - (2*a + 3*b)); grid_face_set_dot(g, d, 2); d = grid_get_dot(g, points, px + a, py - (2*a + 3*b)); grid_face_set_dot(g, d, 3); d = grid_get_dot(g, points, px + 2*a, py - (2*a + 2*b)); grid_face_set_dot(g, d, 4); d = grid_get_dot(g, points, px + a, py - (2*a + b)); grid_face_set_dot(g, d, 5); } /* square on right of dodecagon */ if (x < width - 1) { grid_face_add_new(g, 4); d = grid_get_dot(g, points, px + 2*a + b, py - a); grid_face_set_dot(g, d, 0); d = grid_get_dot(g, points, px + 4*a + b, py - a); grid_face_set_dot(g, d, 1); d = grid_get_dot(g, points, px + 4*a + b, py + a); grid_face_set_dot(g, d, 2); d = grid_get_dot(g, points, px + 2*a + b, py + a); grid_face_set_dot(g, d, 3); } /* square on top right of dodecagon */ if (y && (x < width - 1 || !(y % 2))) { grid_face_add_new(g, 4); d = grid_get_dot(g, points, px + ( a ), py - (2*a + b)); grid_face_set_dot(g, d, 0); d = grid_get_dot(g, points, px + (2*a ), py - (2*a + 2*b)); grid_face_set_dot(g, d, 1); d = grid_get_dot(g, points, px + (2*a + b), py - ( a + 2*b)); grid_face_set_dot(g, d, 2); d = grid_get_dot(g, points, px + ( a + b), py - ( a + b)); grid_face_set_dot(g, d, 3); } /* square on top left of dodecagon */ if (y && (x || (y % 2))) { grid_face_add_new(g, 4); d = grid_get_dot(g, points, px - ( a + b), py - ( a + b)); grid_face_set_dot(g, d, 0); d = grid_get_dot(g, points, px - (2*a + b), py - ( a + 2*b)); grid_face_set_dot(g, d, 1); d = grid_get_dot(g, points, px - (2*a ), py - (2*a + 2*b)); grid_face_set_dot(g, d, 2); d = grid_get_dot(g, points, px - ( a ), py - (2*a + b)); grid_face_set_dot(g, d, 3); } } } freetree234(points); assert(g->num_faces <= max_faces); assert(g->num_dots <= max_dots); grid_make_consistent(g); return g; } typedef struct setface_ctx { int xmin, xmax, ymin, ymax; grid *g; tree234 *points; } setface_ctx; static double round_int_nearest_away(double r) { return (r > 0.0) ? floor(r + 0.5) : ceil(r - 0.5); } static int set_faces(penrose_state *state, vector *vs, int n, int depth) { setface_ctx *sf_ctx = (setface_ctx *)state->ctx; int i; int xs[4], ys[4]; if (depth < state->max_depth) return 0; #ifdef DEBUG_PENROSE if (n != 4) return 0; /* triangles are sent as debugging. */ #endif for (i = 0; i < n; i++) { double tx = v_x(vs, i), ty = v_y(vs, i); xs[i] = (int)round_int_nearest_away(tx); ys[i] = (int)round_int_nearest_away(ty); if (xs[i] < sf_ctx->xmin || xs[i] > sf_ctx->xmax) return 0; if (ys[i] < sf_ctx->ymin || ys[i] > sf_ctx->ymax) return 0; } grid_face_add_new(sf_ctx->g, n); debug(("penrose: new face l=%f gen=%d...", penrose_side_length(state->start_size, depth), depth)); for (i = 0; i < n; i++) { grid_dot *d = grid_get_dot(sf_ctx->g, sf_ctx->points, xs[i], ys[i]); grid_face_set_dot(sf_ctx->g, d, i); debug((" ... dot 0x%x (%d,%d) (was %2.2f,%2.2f)", d, d->x, d->y, v_x(vs, i), v_y(vs, i))); } return 0; } #define PENROSE_TILESIZE 100 static void grid_size_penrose(int width, int height, int *tilesize, int *xextent, int *yextent) { int l = PENROSE_TILESIZE; *tilesize = l; *xextent = l * width; *yextent = l * height; } static grid *grid_new_penrose(int width, int height, int which, const char *desc); /* forward reference */ static char *grid_new_desc_penrose(grid_type type, int width, int height, random_state *rs) { int tilesize = PENROSE_TILESIZE, startsz, depth, xoff, yoff, aoff; double outer_radius; int inner_radius; char gd[255]; int which = (type == GRID_PENROSE_P2 ? PENROSE_P2 : PENROSE_P3); grid *g; while (1) { /* We want to produce a random bit of penrose tiling, so we * calculate a random offset (within the patch that penrose.c * calculates for us) and an angle (multiple of 36) to rotate * the patch. */ penrose_calculate_size(which, tilesize, width, height, &outer_radius, &startsz, &depth); /* Calculate radius of (circumcircle of) patch, subtract from * radius calculated. */ inner_radius = (int)(outer_radius - sqrt(width*width + height*height)); /* Pick a random offset (the easy way: choose within outer * square, discarding while it's outside the circle) */ do { xoff = random_upto(rs, 2*inner_radius) - inner_radius; yoff = random_upto(rs, 2*inner_radius) - inner_radius; } while (sqrt(xoff*xoff+yoff*yoff) > inner_radius); aoff = random_upto(rs, 360/36) * 36; debug(("grid_desc: ts %d, %dx%d patch, orad %2.2f irad %d", tilesize, width, height, outer_radius, inner_radius)); debug((" -> xoff %d yoff %d aoff %d", xoff, yoff, aoff)); sprintf(gd, "G%d,%d,%d", xoff, yoff, aoff); /* * Now test-generate our grid, to make sure it actually * produces something. */ g = grid_new_penrose(width, height, which, gd); if (g) { grid_free(g); break; } /* If not, go back to the top of this while loop and try again * with a different random offset. */ } return dupstr(gd); } static char *grid_validate_desc_penrose(grid_type type, int width, int height, const char *desc) { int tilesize = PENROSE_TILESIZE, startsz, depth, xoff, yoff, aoff, inner_radius; double outer_radius; int which = (type == GRID_PENROSE_P2 ? PENROSE_P2 : PENROSE_P3); grid *g; if (!desc) return "Missing grid description string."; penrose_calculate_size(which, tilesize, width, height, &outer_radius, &startsz, &depth); inner_radius = (int)(outer_radius - sqrt(width*width + height*height)); if (sscanf(desc, "G%d,%d,%d", &xoff, &yoff, &aoff) != 3) return "Invalid format grid description string."; if (sqrt(xoff*xoff + yoff*yoff) > inner_radius) return "Patch offset out of bounds."; if ((aoff % 36) != 0 || aoff < 0 || aoff >= 360) return "Angle offset out of bounds."; /* * Test-generate to ensure these parameters don't end us up with * no grid at all. */ g = grid_new_penrose(width, height, which, desc); if (!g) return "Patch coordinates do not identify a usable grid fragment"; grid_free(g); return NULL; } /* * We're asked for a grid of a particular size, and we generate enough * of the tiling so we can be sure to have enough random grid from which * to pick. */ static grid *grid_new_penrose(int width, int height, int which, const char *desc) { int max_faces, max_dots, tilesize = PENROSE_TILESIZE; int xsz, ysz, xoff, yoff, aoff; double rradius; tree234 *points; grid *g; penrose_state ps; setface_ctx sf_ctx; penrose_calculate_size(which, tilesize, width, height, &rradius, &ps.start_size, &ps.max_depth); debug(("penrose: w%d h%d, tile size %d, start size %d, depth %d", width, height, tilesize, ps.start_size, ps.max_depth)); ps.new_tile = set_faces; ps.ctx = &sf_ctx; max_faces = (width*3) * (height*3); /* somewhat paranoid... */ max_dots = max_faces * 4; /* ditto... */ g = grid_empty(); g->tilesize = tilesize; g->faces = snewn(max_faces, grid_face); g->dots = snewn(max_dots, grid_dot); points = newtree234(grid_point_cmp_fn); memset(&sf_ctx, 0, sizeof(sf_ctx)); sf_ctx.g = g; sf_ctx.points = points; if (desc != NULL) { if (sscanf(desc, "G%d,%d,%d", &xoff, &yoff, &aoff) != 3) assert(!"Invalid grid description."); } else { xoff = yoff = aoff = 0; } xsz = width * tilesize; ysz = height * tilesize; sf_ctx.xmin = xoff - xsz/2; sf_ctx.xmax = xoff + xsz/2; sf_ctx.ymin = yoff - ysz/2; sf_ctx.ymax = yoff + ysz/2; debug(("penrose: centre (%f, %f) xsz %f ysz %f", 0.0, 0.0, xsz, ysz)); debug(("penrose: x range (%f --> %f), y range (%f --> %f)", sf_ctx.xmin, sf_ctx.xmax, sf_ctx.ymin, sf_ctx.ymax)); penrose(&ps, which, aoff); freetree234(points); assert(g->num_faces <= max_faces); assert(g->num_dots <= max_dots); debug(("penrose: %d faces total (equivalent to %d wide by %d high)", g->num_faces, g->num_faces/height, g->num_faces/width)); /* * Return NULL if we ended up with an empty grid, either because * the initial generation was over too small a rectangle to * encompass any face or because grid_trim_vigorously ended up * removing absolutely everything. */ if (g->num_faces == 0 || g->num_dots == 0) { grid_free(g); return NULL; } grid_trim_vigorously(g); if (g->num_faces == 0 || g->num_dots == 0) { grid_free(g); return NULL; } grid_make_consistent(g); /* * Centre the grid in its originally promised rectangle. */ g->lowest_x -= ((sf_ctx.xmax - sf_ctx.xmin) - (g->highest_x - g->lowest_x)) / 2; g->highest_x = g->lowest_x + (sf_ctx.xmax - sf_ctx.xmin); g->lowest_y -= ((sf_ctx.ymax - sf_ctx.ymin) - (g->highest_y - g->lowest_y)) / 2; g->highest_y = g->lowest_y + (sf_ctx.ymax - sf_ctx.ymin); return g; } static void grid_size_penrose_p2_kite(int width, int height, int *tilesize, int *xextent, int *yextent) { grid_size_penrose(width, height, tilesize, xextent, yextent); } static void grid_size_penrose_p3_thick(int width, int height, int *tilesize, int *xextent, int *yextent) { grid_size_penrose(width, height, tilesize, xextent, yextent); } static grid *grid_new_penrose_p2_kite(int width, int height, const char *desc) { return grid_new_penrose(width, height, PENROSE_P2, desc); } static grid *grid_new_penrose_p3_thick(int width, int height, const char *desc) { return grid_new_penrose(width, height, PENROSE_P3, desc); } /* ----------- End of grid generators ------------- */ #define FNNEW(upper,lower) &grid_new_ ## lower, #define FNSZ(upper,lower) &grid_size_ ## lower, static grid *(*(grid_news[]))(int, int, const char*) = { GRIDGEN_LIST(FNNEW) }; static void(*(grid_sizes[]))(int, int, int*, int*, int*) = { GRIDGEN_LIST(FNSZ) }; char *grid_new_desc(grid_type type, int width, int height, random_state *rs) { if (type == GRID_PENROSE_P2 || type == GRID_PENROSE_P3) { return grid_new_desc_penrose(type, width, height, rs); } else if (type == GRID_TRIANGULAR) { return dupstr("0"); /* up-to-date version of triangular grid */ } else { return NULL; } } char *grid_validate_desc(grid_type type, int width, int height, const char *desc) { if (type == GRID_PENROSE_P2 || type == GRID_PENROSE_P3) { return grid_validate_desc_penrose(type, width, height, desc); } else if (type == GRID_TRIANGULAR) { return grid_validate_desc_triangular(type, width, height, desc); } else { if (desc != NULL) return "Grid description strings not used with this grid type"; return NULL; } } grid *grid_new(grid_type type, int width, int height, const char *desc) { char *err = grid_validate_desc(type, width, height, desc); if (err) assert(!"Invalid grid description."); return grid_news[type](width, height, desc); } void grid_compute_size(grid_type type, int width, int height, int *tilesize, int *xextent, int *yextent) { grid_sizes[type](width, height, tilesize, xextent, yextent); } /* ----------- End of grid helpers ------------- */ /* vim: set shiftwidth=4 tabstop=8: */