ref: 0e68ad82a9f514a987c1d56efac6387792d2ec07
dir: /dominosa.c/
/* * dominosa.c: Domino jigsaw puzzle. Aim to place one of every * possible domino within a rectangle in such a way that the number * on each square matches the provided clue. */ /* * TODO: * * - improve solver so as to use more interesting forms of * deduction * * * rule out a domino placement if it would divide an unfilled * region such that at least one resulting region had an odd * area * + use b.f.s. to determine the area of an unfilled region * + a square is unfilled iff it has at least two possible * placements, and two adjacent unfilled squares are part * of the same region iff the domino placement joining * them is possible * * * perhaps set analysis * + look at all unclaimed squares containing a given number * + for each one, find the set of possible numbers that it * can connect to (i.e. each neighbouring tile such that * the placement between it and that neighbour has not yet * been ruled out) * + now proceed similarly to Solo set analysis: try to find * a subset of the squares such that the union of their * possible numbers is the same size as the subset. If so, * rule out those possible numbers for all other squares. * * important wrinkle: the double dominoes complicate * matters. Connecting a number to itself uses up _two_ * of the unclaimed squares containing a number. Thus, * when finding the initial subset we must never * include two adjacent squares; and also, when ruling * things out after finding the subset, we must be * careful that we don't rule out precisely the domino * placement that was _included_ in our set! */ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <assert.h> #include <ctype.h> #include <math.h> #include "puzzles.h" /* nth triangular number */ #define TRI(n) ( (n) * ((n) + 1) / 2 ) /* number of dominoes for value n */ #define DCOUNT(n) TRI((n)+1) /* map a pair of numbers to a unique domino index from 0 upwards. */ #define DINDEX(n1,n2) ( TRI(max(n1,n2)) + min(n1,n2) ) #define FLASH_TIME 0.13F enum { COL_BACKGROUND, COL_TEXT, COL_DOMINO, COL_DOMINOCLASH, COL_DOMINOTEXT, COL_EDGE, NCOLOURS }; struct game_params { int n; int unique; }; struct game_numbers { int refcount; int *numbers; /* h x w */ }; #define EDGE_L 0x100 #define EDGE_R 0x200 #define EDGE_T 0x400 #define EDGE_B 0x800 struct game_state { game_params params; int w, h; struct game_numbers *numbers; int *grid; unsigned short *edges; /* h x w */ int completed, cheated; }; static game_params *default_params(void) { game_params *ret = snew(game_params); ret->n = 6; ret->unique = TRUE; return ret; } static int game_fetch_preset(int i, char **name, game_params **params) { game_params *ret; int n; char buf[80]; switch (i) { case 0: n = 3; break; case 1: n = 6; break; case 2: n = 9; break; default: return FALSE; } sprintf(buf, "Up to double-%d", n); *name = dupstr(buf); *params = ret = snew(game_params); ret->n = n; ret->unique = TRUE; return TRUE; } static void free_params(game_params *params) { sfree(params); } static game_params *dup_params(game_params *params) { game_params *ret = snew(game_params); *ret = *params; /* structure copy */ return ret; } static void decode_params(game_params *params, char const *string) { params->n = atoi(string); while (*string && isdigit((unsigned char)*string)) string++; if (*string == 'a') params->unique = FALSE; } static char *encode_params(game_params *params, int full) { char buf[80]; sprintf(buf, "%d", params->n); if (full && !params->unique) strcat(buf, "a"); return dupstr(buf); } static config_item *game_configure(game_params *params) { config_item *ret; char buf[80]; ret = snewn(3, config_item); ret[0].name = "Maximum number on dominoes"; ret[0].type = C_STRING; sprintf(buf, "%d", params->n); ret[0].sval = dupstr(buf); ret[0].ival = 0; ret[1].name = "Ensure unique solution"; ret[1].type = C_BOOLEAN; ret[1].sval = NULL; ret[1].ival = params->unique; ret[2].name = NULL; ret[2].type = C_END; ret[2].sval = NULL; ret[2].ival = 0; return ret; } static game_params *custom_params(config_item *cfg) { game_params *ret = snew(game_params); ret->n = atoi(cfg[0].sval); ret->unique = cfg[1].ival; return ret; } static char *validate_params(game_params *params, int full) { if (params->n < 1) return "Maximum face number must be at least one"; return NULL; } /* ---------------------------------------------------------------------- * Solver. */ static int find_overlaps(int w, int h, int placement, int *set) { int x, y, n; n = 0; /* number of returned placements */ x = placement / 2; y = x / w; x %= w; if (placement & 1) { /* * Horizontal domino, indexed by its left end. */ if (x > 0) set[n++] = placement-2; /* horizontal domino to the left */ if (y > 0) set[n++] = placement-2*w-1;/* vertical domino above left side */ if (y+1 < h) set[n++] = placement-1; /* vertical domino below left side */ if (x+2 < w) set[n++] = placement+2; /* horizontal domino to the right */ if (y > 0) set[n++] = placement-2*w+2-1;/* vertical domino above right side */ if (y+1 < h) set[n++] = placement+2-1; /* vertical domino below right side */ } else { /* * Vertical domino, indexed by its top end. */ if (y > 0) set[n++] = placement-2*w; /* vertical domino above */ if (x > 0) set[n++] = placement-2+1; /* horizontal domino left of top */ if (x+1 < w) set[n++] = placement+1; /* horizontal domino right of top */ if (y+2 < h) set[n++] = placement+2*w; /* vertical domino below */ if (x > 0) set[n++] = placement-2+2*w+1;/* horizontal domino left of bottom */ if (x+1 < w) set[n++] = placement+2*w+1;/* horizontal domino right of bottom */ } return n; } /* * Returns 0, 1 or 2 for number of solutions. 2 means `any number * more than one', or more accurately `we were unable to prove * there was only one'. * * Outputs in a `placements' array, indexed the same way as the one * within this function (see below); entries in there are <0 for a * placement ruled out, 0 for an uncertain placement, and 1 for a * definite one. */ static int solver(int w, int h, int n, int *grid, int *output) { int wh = w*h, dc = DCOUNT(n); int *placements, *heads; int i, j, x, y, ret; /* * This array has one entry for every possible domino * placement. Vertical placements are indexed by their top * half, at (y*w+x)*2; horizontal placements are indexed by * their left half at (y*w+x)*2+1. * * This array is used to link domino placements together into * linked lists, so that we can track all the possible * placements of each different domino. It's also used as a * quick means of looking up an individual placement to see * whether we still think it's possible. Actual values stored * in this array are -2 (placement not possible at all), -1 * (end of list), or the array index of the next item. * * Oh, and -3 for `not even valid', used for array indices * which don't even represent a plausible placement. */ placements = snewn(2*wh, int); for (i = 0; i < 2*wh; i++) placements[i] = -3; /* not even valid */ /* * This array has one entry for every domino, and it is an * index into `placements' denoting the head of the placement * list for that domino. */ heads = snewn(dc, int); for (i = 0; i < dc; i++) heads[i] = -1; /* * Set up the initial possibility lists by scanning the grid. */ for (y = 0; y < h-1; y++) for (x = 0; x < w; x++) { int di = DINDEX(grid[y*w+x], grid[(y+1)*w+x]); placements[(y*w+x)*2] = heads[di]; heads[di] = (y*w+x)*2; } for (y = 0; y < h; y++) for (x = 0; x < w-1; x++) { int di = DINDEX(grid[y*w+x], grid[y*w+(x+1)]); placements[(y*w+x)*2+1] = heads[di]; heads[di] = (y*w+x)*2+1; } #ifdef SOLVER_DIAGNOSTICS printf("before solver:\n"); for (i = 0; i <= n; i++) for (j = 0; j <= i; j++) { int k, m; m = 0; printf("%2d [%d %d]:", DINDEX(i, j), i, j); for (k = heads[DINDEX(i,j)]; k >= 0; k = placements[k]) printf(" %3d [%d,%d,%c]", k, k/2%w, k/2/w, k%2?'h':'v'); printf("\n"); } #endif while (1) { int done_something = FALSE; /* * For each domino, look at its possible placements, and * for each placement consider the placements (of any * domino) it overlaps. Any placement overlapped by all * placements of this domino can be ruled out. * * Each domino placement overlaps only six others, so we * need not do serious set theory to work this out. */ for (i = 0; i < dc; i++) { int permset[6], permlen = 0, p; if (heads[i] == -1) { /* no placement for this domino */ ret = 0; /* therefore puzzle is impossible */ goto done; } for (j = heads[i]; j >= 0; j = placements[j]) { assert(placements[j] != -2); if (j == heads[i]) { permlen = find_overlaps(w, h, j, permset); } else { int tempset[6], templen, m, n, k; templen = find_overlaps(w, h, j, tempset); /* * Pathetically primitive set intersection * algorithm, which I'm only getting away with * because I know my sets are bounded by a very * small size. */ for (m = n = 0; m < permlen; m++) { for (k = 0; k < templen; k++) if (tempset[k] == permset[m]) break; if (k < templen) permset[n++] = permset[m]; } permlen = n; } } for (p = 0; p < permlen; p++) { j = permset[p]; if (placements[j] != -2) { int p1, p2, di; done_something = TRUE; /* * Rule out this placement. First find what * domino it is... */ p1 = j / 2; p2 = (j & 1) ? p1 + 1 : p1 + w; di = DINDEX(grid[p1], grid[p2]); #ifdef SOLVER_DIAGNOSTICS printf("considering domino %d: ruling out placement %d" " for %d\n", i, j, di); #endif /* * ... then walk that domino's placement list, * removing this placement when we find it. */ if (heads[di] == j) heads[di] = placements[j]; else { int k = heads[di]; while (placements[k] != -1 && placements[k] != j) k = placements[k]; assert(placements[k] == j); placements[k] = placements[j]; } placements[j] = -2; } } } /* * For each square, look at the available placements * involving that square. If all of them are for the same * domino, then rule out any placements for that domino * _not_ involving this square. */ for (i = 0; i < wh; i++) { int list[4], k, n, adi; x = i % w; y = i / w; j = 0; if (x > 0) list[j++] = 2*(i-1)+1; if (x+1 < w) list[j++] = 2*i+1; if (y > 0) list[j++] = 2*(i-w); if (y+1 < h) list[j++] = 2*i; for (n = k = 0; k < j; k++) if (placements[list[k]] >= -1) list[n++] = list[k]; adi = -1; for (j = 0; j < n; j++) { int p1, p2, di; k = list[j]; p1 = k / 2; p2 = (k & 1) ? p1 + 1 : p1 + w; di = DINDEX(grid[p1], grid[p2]); if (adi == -1) adi = di; if (adi != di) break; } if (j == n) { int nn; assert(adi >= 0); /* * We've found something. All viable placements * involving this square are for domino `adi'. If * the current placement list for that domino is * longer than n, reduce it to precisely this * placement list and we've done something. */ nn = 0; for (k = heads[adi]; k >= 0; k = placements[k]) nn++; if (nn > n) { done_something = TRUE; #ifdef SOLVER_DIAGNOSTICS printf("considering square %d,%d: reducing placements " "of domino %d\n", x, y, adi); #endif /* * Set all other placements on the list to * impossible. */ k = heads[adi]; while (k >= 0) { int tmp = placements[k]; placements[k] = -2; k = tmp; } /* * Set up the new list. */ heads[adi] = list[0]; for (k = 0; k < n; k++) placements[list[k]] = (k+1 == n ? -1 : list[k+1]); } } } if (!done_something) break; } #ifdef SOLVER_DIAGNOSTICS printf("after solver:\n"); for (i = 0; i <= n; i++) for (j = 0; j <= i; j++) { int k, m; m = 0; printf("%2d [%d %d]:", DINDEX(i, j), i, j); for (k = heads[DINDEX(i,j)]; k >= 0; k = placements[k]) printf(" %3d [%d,%d,%c]", k, k/2%w, k/2/w, k%2?'h':'v'); printf("\n"); } #endif ret = 1; for (i = 0; i < wh*2; i++) { if (placements[i] == -2) { if (output) output[i] = -1; /* ruled out */ } else if (placements[i] != -3) { int p1, p2, di; p1 = i / 2; p2 = (i & 1) ? p1 + 1 : p1 + w; di = DINDEX(grid[p1], grid[p2]); if (i == heads[di] && placements[i] == -1) { if (output) output[i] = 1; /* certain */ } else { if (output) output[i] = 0; /* uncertain */ ret = 2; } } } done: /* * Free working data. */ sfree(placements); sfree(heads); return ret; } /* ---------------------------------------------------------------------- * End of solver code. */ static char *new_game_desc(game_params *params, random_state *rs, char **aux, int interactive) { int n = params->n, w = n+2, h = n+1, wh = w*h; int *grid, *grid2, *list; int i, j, k, m, todo, done, len; char *ret; /* * Allocate space in which to lay the grid out. */ grid = snewn(wh, int); grid2 = snewn(wh, int); list = snewn(2*wh, int); /* * I haven't been able to think of any particularly clever * techniques for generating instances of Dominosa with a * unique solution. Many of the deductions used in this puzzle * are based on information involving half the grid at a time * (`of all the 6s, exactly one is next to a 3'), so a strategy * of partially solving the grid and then perturbing the place * where the solver got stuck seems particularly likely to * accidentally destroy the information which the solver had * used in getting that far. (Contrast with, say, Mines, in * which most deductions are local so this is an excellent * strategy.) * * Therefore I resort to the basest of brute force methods: * generate a random grid, see if it's solvable, throw it away * and try again if not. My only concession to sophistication * and cleverness is to at least _try_ not to generate obvious * 2x2 ambiguous sections (see comment below in the domino- * flipping section). * * During tests performed on 2005-07-15, I found that the brute * force approach without that tweak had to throw away about 87 * grids on average (at the default n=6) before finding a * unique one, or a staggering 379 at n=9; good job the * generator and solver are fast! When I added the * ambiguous-section avoidance, those numbers came down to 19 * and 26 respectively, which is a lot more sensible. */ do { /* * To begin with, set grid[i] = i for all i to indicate * that all squares are currently singletons. Later we'll * set grid[i] to be the index of the other end of the * domino on i. */ for (i = 0; i < wh; i++) grid[i] = i; /* * Now prepare a list of the possible domino locations. There * are w*(h-1) possible vertical locations, and (w-1)*h * horizontal ones, for a total of 2*wh - h - w. * * I'm going to denote the vertical domino placement with * its top in square i as 2*i, and the horizontal one with * its left half in square i as 2*i+1. */ k = 0; for (j = 0; j < h-1; j++) for (i = 0; i < w; i++) list[k++] = 2 * (j*w+i); /* vertical positions */ for (j = 0; j < h; j++) for (i = 0; i < w-1; i++) list[k++] = 2 * (j*w+i) + 1; /* horizontal positions */ assert(k == 2*wh - h - w); /* * Shuffle the list. */ shuffle(list, k, sizeof(*list), rs); /* * Work down the shuffled list, placing a domino everywhere * we can. */ for (i = 0; i < k; i++) { int horiz, xy, xy2; horiz = list[i] % 2; xy = list[i] / 2; xy2 = xy + (horiz ? 1 : w); if (grid[xy] == xy && grid[xy2] == xy2) { /* * We can place this domino. Do so. */ grid[xy] = xy2; grid[xy2] = xy; } } #ifdef GENERATION_DIAGNOSTICS printf("generated initial layout\n"); #endif /* * Now we've placed as many dominoes as we can immediately * manage. There will be squares remaining, but they'll be * singletons. So loop round and deal with the singletons * two by two. */ while (1) { #ifdef GENERATION_DIAGNOSTICS for (j = 0; j < h; j++) { for (i = 0; i < w; i++) { int xy = j*w+i; int v = grid[xy]; int c = (v == xy+1 ? '[' : v == xy-1 ? ']' : v == xy+w ? 'n' : v == xy-w ? 'U' : '.'); putchar(c); } putchar('\n'); } putchar('\n'); #endif /* * Our strategy is: * * First find a singleton square. * * Then breadth-first search out from the starting * square. From that square (and any others we reach on * the way), examine all four neighbours of the square. * If one is an end of a domino, we move to the _other_ * end of that domino before looking at neighbours * again. When we encounter another singleton on this * search, stop. * * This will give us a path of adjacent squares such * that all but the two ends are covered in dominoes. * So we can now shuffle every domino on the path up by * one. * * (Chessboard colours are mathematically important * here: we always end up pairing each singleton with a * singleton of the other colour. However, we never * have to track this manually, since it's * automatically taken care of by the fact that we * always make an even number of orthogonal moves.) */ for (i = 0; i < wh; i++) if (grid[i] == i) break; if (i == wh) break; /* no more singletons; we're done. */ #ifdef GENERATION_DIAGNOSTICS printf("starting b.f.s. at singleton %d\n", i); #endif /* * Set grid2 to -1 everywhere. It will hold our * distance-from-start values, and also our * backtracking data, during the b.f.s. */ for (j = 0; j < wh; j++) grid2[j] = -1; grid2[i] = 0; /* starting square has distance zero */ /* * Start our to-do list of squares. It'll live in * `list'; since the b.f.s can cover every square at * most once there is no need for it to be circular. * We'll just have two counters tracking the end of the * list and the squares we've already dealt with. */ done = 0; todo = 1; list[0] = i; /* * Now begin the b.f.s. loop. */ while (done < todo) { int d[4], nd, x, y; i = list[done++]; #ifdef GENERATION_DIAGNOSTICS printf("b.f.s. iteration from %d\n", i); #endif x = i % w; y = i / w; nd = 0; if (x > 0) d[nd++] = i - 1; if (x+1 < w) d[nd++] = i + 1; if (y > 0) d[nd++] = i - w; if (y+1 < h) d[nd++] = i + w; /* * To avoid directional bias, process the * neighbours of this square in a random order. */ shuffle(d, nd, sizeof(*d), rs); for (j = 0; j < nd; j++) { k = d[j]; if (grid[k] == k) { #ifdef GENERATION_DIAGNOSTICS printf("found neighbouring singleton %d\n", k); #endif grid2[k] = i; break; /* found a target singleton! */ } /* * We're moving through a domino here, so we * have two entries in grid2 to fill with * useful data. In grid[k] - the square * adjacent to where we came from - I'm going * to put the address _of_ the square we came * from. In the other end of the domino - the * square from which we will continue the * search - I'm going to put the distance. */ m = grid[k]; if (grid2[m] < 0 || grid2[m] > grid2[i]+1) { #ifdef GENERATION_DIAGNOSTICS printf("found neighbouring domino %d/%d\n", k, m); #endif grid2[m] = grid2[i]+1; grid2[k] = i; /* * And since we've now visited a new * domino, add m to the to-do list. */ assert(todo < wh); list[todo++] = m; } } if (j < nd) { i = k; #ifdef GENERATION_DIAGNOSTICS printf("terminating b.f.s. loop, i = %d\n", i); #endif break; } i = -1; /* just in case the loop terminates */ } /* * We expect this b.f.s. to have found us a target * square. */ assert(i >= 0); /* * Now we can follow the trail back to our starting * singleton, re-laying dominoes as we go. */ while (1) { j = grid2[i]; assert(j >= 0 && j < wh); k = grid[j]; grid[i] = j; grid[j] = i; #ifdef GENERATION_DIAGNOSTICS printf("filling in domino %d/%d (next %d)\n", i, j, k); #endif if (j == k) break; /* we've reached the other singleton */ i = k; } #ifdef GENERATION_DIAGNOSTICS printf("fixup path completed\n"); #endif } /* * Now we have a complete layout covering the whole * rectangle with dominoes. So shuffle the actual domino * values and fill the rectangle with numbers. */ k = 0; for (i = 0; i <= params->n; i++) for (j = 0; j <= i; j++) { list[k++] = i; list[k++] = j; } shuffle(list, k/2, 2*sizeof(*list), rs); j = 0; for (i = 0; i < wh; i++) if (grid[i] > i) { /* Optionally flip the domino round. */ int flip = -1; if (params->unique) { int t1, t2; /* * If we're after a unique solution, we can do * something here to improve the chances. If * we're placing a domino so that it forms a * 2x2 rectangle with one we've already placed, * and if that domino and this one share a * number, we can try not to put them so that * the identical numbers are diagonally * separated, because that automatically causes * non-uniqueness: * * +---+ +-+-+ * |2 3| |2|3| * +---+ -> | | | * |4 2| |4|2| * +---+ +-+-+ */ t1 = i; t2 = grid[i]; if (t2 == t1 + w) { /* this domino is vertical */ if (t1 % w > 0 &&/* and not on the left hand edge */ grid[t1-1] == t2-1 &&/* alongside one to left */ (grid2[t1-1] == list[j] || /* and has a number */ grid2[t1-1] == list[j+1] || /* in common */ grid2[t2-1] == list[j] || grid2[t2-1] == list[j+1])) { if (grid2[t1-1] == list[j] || grid2[t2-1] == list[j+1]) flip = 0; else flip = 1; } } else { /* this domino is horizontal */ if (t1 / w > 0 &&/* and not on the top edge */ grid[t1-w] == t2-w &&/* alongside one above */ (grid2[t1-w] == list[j] || /* and has a number */ grid2[t1-w] == list[j+1] || /* in common */ grid2[t2-w] == list[j] || grid2[t2-w] == list[j+1])) { if (grid2[t1-w] == list[j] || grid2[t2-w] == list[j+1]) flip = 0; else flip = 1; } } } if (flip < 0) flip = random_upto(rs, 2); grid2[i] = list[j + flip]; grid2[grid[i]] = list[j + 1 - flip]; j += 2; } assert(j == k); } while (params->unique && solver(w, h, n, grid2, NULL) > 1); #ifdef GENERATION_DIAGNOSTICS for (j = 0; j < h; j++) { for (i = 0; i < w; i++) { putchar('0' + grid2[j*w+i]); } putchar('\n'); } putchar('\n'); #endif /* * Encode the resulting game state. * * Our encoding is a string of digits. Any number greater than * 9 is represented by a decimal integer within square * brackets. We know there are n+2 of every number (it's paired * with each number from 0 to n inclusive, and one of those is * itself so that adds another occurrence), so we can work out * the string length in advance. */ /* * To work out the total length of the decimal encodings of all * the numbers from 0 to n inclusive: * - every number has a units digit; total is n+1. * - all numbers above 9 have a tens digit; total is max(n+1-10,0). * - all numbers above 99 have a hundreds digit; total is max(n+1-100,0). * - and so on. */ len = n+1; for (i = 10; i <= n; i *= 10) len += max(n + 1 - i, 0); /* Now add two square brackets for each number above 9. */ len += 2 * max(n + 1 - 10, 0); /* And multiply by n+2 for the repeated occurrences of each number. */ len *= n+2; /* * Now actually encode the string. */ ret = snewn(len+1, char); j = 0; for (i = 0; i < wh; i++) { k = grid2[i]; if (k < 10) ret[j++] = '0' + k; else j += sprintf(ret+j, "[%d]", k); assert(j <= len); } assert(j == len); ret[j] = '\0'; /* * Encode the solved state as an aux_info. */ { char *auxinfo = snewn(wh+1, char); for (i = 0; i < wh; i++) { int v = grid[i]; auxinfo[i] = (v == i+1 ? 'L' : v == i-1 ? 'R' : v == i+w ? 'T' : v == i-w ? 'B' : '.'); } auxinfo[wh] = '\0'; *aux = auxinfo; } sfree(list); sfree(grid2); sfree(grid); return ret; } static char *validate_desc(game_params *params, char *desc) { int n = params->n, w = n+2, h = n+1, wh = w*h; int *occurrences; int i, j; char *ret; ret = NULL; occurrences = snewn(n+1, int); for (i = 0; i <= n; i++) occurrences[i] = 0; for (i = 0; i < wh; i++) { if (!*desc) { ret = ret ? ret : "Game description is too short"; } else { if (*desc >= '0' && *desc <= '9') j = *desc++ - '0'; else if (*desc == '[') { desc++; j = atoi(desc); while (*desc && isdigit((unsigned char)*desc)) desc++; if (*desc != ']') ret = ret ? ret : "Missing ']' in game description"; else desc++; } else { j = -1; ret = ret ? ret : "Invalid syntax in game description"; } if (j < 0 || j > n) ret = ret ? ret : "Number out of range in game description"; else occurrences[j]++; } } if (*desc) ret = ret ? ret : "Game description is too long"; if (!ret) { for (i = 0; i <= n; i++) if (occurrences[i] != n+2) ret = "Incorrect number balance in game description"; } sfree(occurrences); return ret; } static game_state *new_game(midend_data *me, game_params *params, char *desc) { int n = params->n, w = n+2, h = n+1, wh = w*h; game_state *state = snew(game_state); int i, j; state->params = *params; state->w = w; state->h = h; state->grid = snewn(wh, int); for (i = 0; i < wh; i++) state->grid[i] = i; state->edges = snewn(wh, unsigned short); for (i = 0; i < wh; i++) state->edges[i] = 0; state->numbers = snew(struct game_numbers); state->numbers->refcount = 1; state->numbers->numbers = snewn(wh, int); for (i = 0; i < wh; i++) { assert(*desc); if (*desc >= '0' && *desc <= '9') j = *desc++ - '0'; else { assert(*desc == '['); desc++; j = atoi(desc); while (*desc && isdigit((unsigned char)*desc)) desc++; assert(*desc == ']'); desc++; } assert(j >= 0 && j <= n); state->numbers->numbers[i] = j; } state->completed = state->cheated = FALSE; return state; } static game_state *dup_game(game_state *state) { int n = state->params.n, w = n+2, h = n+1, wh = w*h; game_state *ret = snew(game_state); ret->params = state->params; ret->w = state->w; ret->h = state->h; ret->grid = snewn(wh, int); memcpy(ret->grid, state->grid, wh * sizeof(int)); ret->edges = snewn(wh, unsigned short); memcpy(ret->edges, state->edges, wh * sizeof(unsigned short)); ret->numbers = state->numbers; ret->numbers->refcount++; ret->completed = state->completed; ret->cheated = state->cheated; return ret; } static void free_game(game_state *state) { sfree(state->grid); sfree(state->edges); if (--state->numbers->refcount <= 0) { sfree(state->numbers->numbers); sfree(state->numbers); } sfree(state); } static char *solve_game(game_state *state, game_state *currstate, char *aux, char **error) { int n = state->params.n, w = n+2, h = n+1, wh = w*h; int *placements; char *ret; int retlen, retsize; int i, v; char buf[80]; int extra; if (aux) { retsize = 256; ret = snewn(retsize, char); retlen = sprintf(ret, "S"); for (i = 0; i < wh; i++) { if (aux[i] == 'L') extra = sprintf(buf, ";D%d,%d", i, i+1); else if (aux[i] == 'T') extra = sprintf(buf, ";D%d,%d", i, i+w); else continue; if (retlen + extra + 1 >= retsize) { retsize = retlen + extra + 256; ret = sresize(ret, retsize, char); } strcpy(ret + retlen, buf); retlen += extra; } } else { placements = snewn(wh*2, int); for (i = 0; i < wh*2; i++) placements[i] = -3; solver(w, h, n, state->numbers->numbers, placements); /* * First make a pass putting in edges for -1, then make a pass * putting in dominoes for +1. */ retsize = 256; ret = snewn(retsize, char); retlen = sprintf(ret, "S"); for (v = -1; v <= +1; v += 2) for (i = 0; i < wh*2; i++) if (placements[i] == v) { int p1 = i / 2; int p2 = (i & 1) ? p1+1 : p1+w; extra = sprintf(buf, ";%c%d,%d", (int)(v==-1 ? 'E' : 'D'), p1, p2); if (retlen + extra + 1 >= retsize) { retsize = retlen + extra + 256; ret = sresize(ret, retsize, char); } strcpy(ret + retlen, buf); retlen += extra; } sfree(placements); } return ret; } static char *game_text_format(game_state *state) { return NULL; } static game_ui *new_ui(game_state *state) { return NULL; } static void free_ui(game_ui *ui) { } static char *encode_ui(game_ui *ui) { return NULL; } static void decode_ui(game_ui *ui, char *encoding) { } static void game_changed_state(game_ui *ui, game_state *oldstate, game_state *newstate) { } #define PREFERRED_TILESIZE 32 #define TILESIZE (ds->tilesize) #define BORDER (TILESIZE * 3 / 4) #define DOMINO_GUTTER (TILESIZE / 16) #define DOMINO_RADIUS (TILESIZE / 8) #define DOMINO_COFFSET (DOMINO_GUTTER + DOMINO_RADIUS) #define COORD(x) ( (x) * TILESIZE + BORDER ) #define FROMCOORD(x) ( ((x) - BORDER + TILESIZE) / TILESIZE - 1 ) struct game_drawstate { int started; int w, h, tilesize; unsigned long *visible; }; static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds, int x, int y, int button) { int w = state->w, h = state->h; char buf[80]; /* * A left-click between two numbers toggles a domino covering * them. A right-click toggles an edge. */ if (button == LEFT_BUTTON || button == RIGHT_BUTTON) { int tx = FROMCOORD(x), ty = FROMCOORD(y), t = ty*w+tx; int dx, dy; int d1, d2; if (tx < 0 || tx >= w || ty < 0 || ty >= h) return NULL; /* * Now we know which square the click was in, decide which * edge of the square it was closest to. */ dx = 2 * (x - COORD(tx)) - TILESIZE; dy = 2 * (y - COORD(ty)) - TILESIZE; if (abs(dx) > abs(dy) && dx < 0 && tx > 0) d1 = t - 1, d2 = t; /* clicked in right side of domino */ else if (abs(dx) > abs(dy) && dx > 0 && tx+1 < w) d1 = t, d2 = t + 1; /* clicked in left side of domino */ else if (abs(dy) > abs(dx) && dy < 0 && ty > 0) d1 = t - w, d2 = t; /* clicked in bottom half of domino */ else if (abs(dy) > abs(dx) && dy > 0 && ty+1 < h) d1 = t, d2 = t + w; /* clicked in top half of domino */ else return NULL; /* * We can't mark an edge next to any domino. */ if (button == RIGHT_BUTTON && (state->grid[d1] != d1 || state->grid[d2] != d2)) return NULL; sprintf(buf, "%c%d,%d", (int)(button == RIGHT_BUTTON ? 'E' : 'D'), d1, d2); return dupstr(buf); } return NULL; } static game_state *execute_move(game_state *state, char *move) { int n = state->params.n, w = n+2, h = n+1, wh = w*h; int d1, d2, d3, p; game_state *ret = dup_game(state); while (*move) { if (move[0] == 'S') { int i; ret->cheated = TRUE; /* * Clear the existing edges and domino placements. We * expect the S to be followed by other commands. */ for (i = 0; i < wh; i++) { ret->grid[i] = i; ret->edges[i] = 0; } move++; } else if (move[0] == 'D' && sscanf(move+1, "%d,%d%n", &d1, &d2, &p) == 2 && d1 >= 0 && d1 < wh && d2 >= 0 && d2 < wh && d1 < d2) { /* * Toggle domino presence between d1 and d2. */ if (ret->grid[d1] == d2) { assert(ret->grid[d2] == d1); ret->grid[d1] = d1; ret->grid[d2] = d2; } else { /* * Erase any dominoes that might overlap the new one. */ d3 = ret->grid[d1]; if (d3 != d1) ret->grid[d3] = d3; d3 = ret->grid[d2]; if (d3 != d2) ret->grid[d3] = d3; /* * Place the new one. */ ret->grid[d1] = d2; ret->grid[d2] = d1; /* * Destroy any edges lurking around it. */ if (ret->edges[d1] & EDGE_L) { assert(d1 - 1 >= 0); ret->edges[d1 - 1] &= ~EDGE_R; } if (ret->edges[d1] & EDGE_R) { assert(d1 + 1 < wh); ret->edges[d1 + 1] &= ~EDGE_L; } if (ret->edges[d1] & EDGE_T) { assert(d1 - w >= 0); ret->edges[d1 - w] &= ~EDGE_B; } if (ret->edges[d1] & EDGE_B) { assert(d1 + 1 < wh); ret->edges[d1 + w] &= ~EDGE_T; } ret->edges[d1] = 0; if (ret->edges[d2] & EDGE_L) { assert(d2 - 1 >= 0); ret->edges[d2 - 1] &= ~EDGE_R; } if (ret->edges[d2] & EDGE_R) { assert(d2 + 1 < wh); ret->edges[d2 + 1] &= ~EDGE_L; } if (ret->edges[d2] & EDGE_T) { assert(d2 - w >= 0); ret->edges[d2 - w] &= ~EDGE_B; } if (ret->edges[d2] & EDGE_B) { assert(d2 + 1 < wh); ret->edges[d2 + w] &= ~EDGE_T; } ret->edges[d2] = 0; } move += p+1; } else if (move[0] == 'E' && sscanf(move+1, "%d,%d%n", &d1, &d2, &p) == 2 && d1 >= 0 && d1 < wh && d2 >= 0 && d2 < wh && d1 < d2 && ret->grid[d1] == d1 && ret->grid[d2] == d2) { /* * Toggle edge presence between d1 and d2. */ if (d2 == d1 + 1) { ret->edges[d1] ^= EDGE_R; ret->edges[d2] ^= EDGE_L; } else { ret->edges[d1] ^= EDGE_B; ret->edges[d2] ^= EDGE_T; } move += p+1; } else { free_game(ret); return NULL; } if (*move) { if (*move != ';') { free_game(ret); return NULL; } move++; } } /* * After modifying the grid, check completion. */ if (!ret->completed) { int i, ok = 0; unsigned char *used = snewn(TRI(n+1), unsigned char); memset(used, 0, TRI(n+1)); for (i = 0; i < wh; i++) if (ret->grid[i] > i) { int n1, n2, di; n1 = ret->numbers->numbers[i]; n2 = ret->numbers->numbers[ret->grid[i]]; di = DINDEX(n1, n2); assert(di >= 0 && di < TRI(n+1)); if (!used[di]) { used[di] = 1; ok++; } } sfree(used); if (ok == DCOUNT(n)) ret->completed = TRUE; } return ret; } /* ---------------------------------------------------------------------- * Drawing routines. */ static void game_compute_size(game_params *params, int tilesize, int *x, int *y) { int n = params->n, w = n+2, h = n+1; /* Ick: fake up `ds->tilesize' for macro expansion purposes */ struct { int tilesize; } ads, *ds = &ads; ads.tilesize = tilesize; *x = w * TILESIZE + 2*BORDER; *y = h * TILESIZE + 2*BORDER; } static void game_set_size(game_drawstate *ds, game_params *params, int tilesize) { ds->tilesize = tilesize; } static float *game_colours(frontend *fe, game_state *state, int *ncolours) { float *ret = snewn(3 * NCOLOURS, float); frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]); ret[COL_TEXT * 3 + 0] = 0.0F; ret[COL_TEXT * 3 + 1] = 0.0F; ret[COL_TEXT * 3 + 2] = 0.0F; ret[COL_DOMINO * 3 + 0] = 0.0F; ret[COL_DOMINO * 3 + 1] = 0.0F; ret[COL_DOMINO * 3 + 2] = 0.0F; ret[COL_DOMINOCLASH * 3 + 0] = 0.5F; ret[COL_DOMINOCLASH * 3 + 1] = 0.0F; ret[COL_DOMINOCLASH * 3 + 2] = 0.0F; ret[COL_DOMINOTEXT * 3 + 0] = 1.0F; ret[COL_DOMINOTEXT * 3 + 1] = 1.0F; ret[COL_DOMINOTEXT * 3 + 2] = 1.0F; ret[COL_EDGE * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] * 2 / 3; ret[COL_EDGE * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] * 2 / 3; ret[COL_EDGE * 3 + 2] = ret[COL_BACKGROUND * 3 + 2] * 2 / 3; *ncolours = NCOLOURS; return ret; } static game_drawstate *game_new_drawstate(game_state *state) { struct game_drawstate *ds = snew(struct game_drawstate); int i; ds->started = FALSE; ds->w = state->w; ds->h = state->h; ds->visible = snewn(ds->w * ds->h, unsigned long); ds->tilesize = 0; /* not decided yet */ for (i = 0; i < ds->w * ds->h; i++) ds->visible[i] = 0xFFFF; return ds; } static void game_free_drawstate(game_drawstate *ds) { sfree(ds->visible); sfree(ds); } enum { TYPE_L, TYPE_R, TYPE_T, TYPE_B, TYPE_BLANK, TYPE_MASK = 0x0F }; static void draw_tile(frontend *fe, game_drawstate *ds, game_state *state, int x, int y, int type) { int w = state->w /*, h = state->h */; int cx = COORD(x), cy = COORD(y); int nc; char str[80]; int flags; draw_rect(fe, cx, cy, TILESIZE, TILESIZE, COL_BACKGROUND); flags = type &~ TYPE_MASK; type &= TYPE_MASK; if (type != TYPE_BLANK) { int i, bg; /* * Draw one end of a domino. This is composed of: * * - two filled circles (rounded corners) * - two rectangles * - a slight shift in the number */ if (flags & 0x80) bg = COL_DOMINOCLASH; else bg = COL_DOMINO; nc = COL_DOMINOTEXT; if (flags & 0x40) { int tmp = nc; nc = bg; bg = tmp; } if (type == TYPE_L || type == TYPE_T) draw_circle(fe, cx+DOMINO_COFFSET, cy+DOMINO_COFFSET, DOMINO_RADIUS, bg, bg); if (type == TYPE_R || type == TYPE_T) draw_circle(fe, cx+TILESIZE-1-DOMINO_COFFSET, cy+DOMINO_COFFSET, DOMINO_RADIUS, bg, bg); if (type == TYPE_L || type == TYPE_B) draw_circle(fe, cx+DOMINO_COFFSET, cy+TILESIZE-1-DOMINO_COFFSET, DOMINO_RADIUS, bg, bg); if (type == TYPE_R || type == TYPE_B) draw_circle(fe, cx+TILESIZE-1-DOMINO_COFFSET, cy+TILESIZE-1-DOMINO_COFFSET, DOMINO_RADIUS, bg, bg); for (i = 0; i < 2; i++) { int x1, y1, x2, y2; x1 = cx + (i ? DOMINO_GUTTER : DOMINO_COFFSET); y1 = cy + (i ? DOMINO_COFFSET : DOMINO_GUTTER); x2 = cx + TILESIZE-1 - (i ? DOMINO_GUTTER : DOMINO_COFFSET); y2 = cy + TILESIZE-1 - (i ? DOMINO_COFFSET : DOMINO_GUTTER); if (type == TYPE_L) x2 = cx + TILESIZE-1; else if (type == TYPE_R) x1 = cx; else if (type == TYPE_T) y2 = cy + TILESIZE-1; else if (type == TYPE_B) y1 = cy; draw_rect(fe, x1, y1, x2-x1+1, y2-y1+1, bg); } } else { if (flags & EDGE_T) draw_rect(fe, cx+DOMINO_GUTTER, cy, TILESIZE-2*DOMINO_GUTTER, 1, COL_EDGE); if (flags & EDGE_B) draw_rect(fe, cx+DOMINO_GUTTER, cy+TILESIZE-1, TILESIZE-2*DOMINO_GUTTER, 1, COL_EDGE); if (flags & EDGE_L) draw_rect(fe, cx, cy+DOMINO_GUTTER, 1, TILESIZE-2*DOMINO_GUTTER, COL_EDGE); if (flags & EDGE_R) draw_rect(fe, cx+TILESIZE-1, cy+DOMINO_GUTTER, 1, TILESIZE-2*DOMINO_GUTTER, COL_EDGE); nc = COL_TEXT; } sprintf(str, "%d", state->numbers->numbers[y*w+x]); draw_text(fe, cx+TILESIZE/2, cy+TILESIZE/2, FONT_VARIABLE, TILESIZE/2, ALIGN_HCENTRE | ALIGN_VCENTRE, nc, str); draw_update(fe, cx, cy, TILESIZE, TILESIZE); } static void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate, game_state *state, int dir, game_ui *ui, float animtime, float flashtime) { int n = state->params.n, w = state->w, h = state->h, wh = w*h; int x, y, i; unsigned char *used; if (!ds->started) { int pw, ph; game_compute_size(&state->params, TILESIZE, &pw, &ph); draw_rect(fe, 0, 0, pw, ph, COL_BACKGROUND); draw_update(fe, 0, 0, pw, ph); ds->started = TRUE; } /* * See how many dominoes of each type there are, so we can * highlight clashes in red. */ used = snewn(TRI(n+1), unsigned char); memset(used, 0, TRI(n+1)); for (i = 0; i < wh; i++) if (state->grid[i] > i) { int n1, n2, di; n1 = state->numbers->numbers[i]; n2 = state->numbers->numbers[state->grid[i]]; di = DINDEX(n1, n2); assert(di >= 0 && di < TRI(n+1)); if (used[di] < 2) used[di]++; } for (y = 0; y < h; y++) for (x = 0; x < w; x++) { int n = y*w+x; int n1, n2, di; unsigned long c; if (state->grid[n] == n-1) c = TYPE_R; else if (state->grid[n] == n+1) c = TYPE_L; else if (state->grid[n] == n-w) c = TYPE_B; else if (state->grid[n] == n+w) c = TYPE_T; else c = TYPE_BLANK; if (c != TYPE_BLANK) { n1 = state->numbers->numbers[n]; n2 = state->numbers->numbers[state->grid[n]]; di = DINDEX(n1, n2); if (used[di] > 1) c |= 0x80; /* highlight a clash */ } else { c |= state->edges[n]; } if (flashtime != 0) c |= 0x40; /* we're flashing */ if (ds->visible[n] != c) { draw_tile(fe, ds, state, x, y, c); ds->visible[n] = c; } } sfree(used); } static float game_anim_length(game_state *oldstate, game_state *newstate, int dir, game_ui *ui) { return 0.0F; } static float game_flash_length(game_state *oldstate, game_state *newstate, int dir, game_ui *ui) { if (!oldstate->completed && newstate->completed && !oldstate->cheated && !newstate->cheated) return FLASH_TIME; return 0.0F; } static int game_wants_statusbar(void) { return FALSE; } static int game_timing_state(game_state *state, game_ui *ui) { return TRUE; } #ifdef COMBINED #define thegame dominosa #endif const struct game thegame = { "Dominosa", "games.dominosa", default_params, game_fetch_preset, decode_params, encode_params, free_params, dup_params, TRUE, game_configure, custom_params, validate_params, new_game_desc, validate_desc, new_game, dup_game, free_game, TRUE, solve_game, FALSE, game_text_format, new_ui, free_ui, encode_ui, decode_ui, game_changed_state, interpret_move, execute_move, PREFERRED_TILESIZE, game_compute_size, game_set_size, game_colours, game_new_drawstate, game_free_drawstate, game_redraw, game_anim_length, game_flash_length, game_wants_statusbar, FALSE, game_timing_state, 0, /* mouse_priorities */ };