ref: 0dbbd52935b8b17b3b3ab3d9ae6271cde891f70b
dir: /random.c/
/* * random.c: Internal random number generator, guaranteed to work * the same way on all platforms. Used when generating an initial * game state from a random game seed; required to ensure that game * seeds can be exchanged between versions of a puzzle compiled for * different platforms. * * The generator is based on SHA-1. This is almost certainly * overkill, but I had the SHA-1 code kicking around and it was * easier to reuse it than to do anything else! */ #include <assert.h> #include <string.h> #include <stdio.h> #include "puzzles.h" /* ---------------------------------------------------------------------- * Core SHA algorithm: processes 16-word blocks into a message digest. */ #define rol(x,y) ( ((x) << (y)) | (((uint32)x) >> (32-y)) ) static void SHA_Core_Init(uint32 h[5]) { h[0] = 0x67452301; h[1] = 0xefcdab89; h[2] = 0x98badcfe; h[3] = 0x10325476; h[4] = 0xc3d2e1f0; } static void SHATransform(uint32 * digest, uint32 * block) { uint32 w[80]; uint32 a, b, c, d, e; int t; for (t = 0; t < 16; t++) w[t] = block[t]; for (t = 16; t < 80; t++) { uint32 tmp = w[t - 3] ^ w[t - 8] ^ w[t - 14] ^ w[t - 16]; w[t] = rol(tmp, 1); } a = digest[0]; b = digest[1]; c = digest[2]; d = digest[3]; e = digest[4]; for (t = 0; t < 20; t++) { uint32 tmp = rol(a, 5) + ((b & c) | (d & ~b)) + e + w[t] + 0x5a827999; e = d; d = c; c = rol(b, 30); b = a; a = tmp; } for (t = 20; t < 40; t++) { uint32 tmp = rol(a, 5) + (b ^ c ^ d) + e + w[t] + 0x6ed9eba1; e = d; d = c; c = rol(b, 30); b = a; a = tmp; } for (t = 40; t < 60; t++) { uint32 tmp = rol(a, 5) + ((b & c) | (b & d) | (c & d)) + e + w[t] + 0x8f1bbcdc; e = d; d = c; c = rol(b, 30); b = a; a = tmp; } for (t = 60; t < 80; t++) { uint32 tmp = rol(a, 5) + (b ^ c ^ d) + e + w[t] + 0xca62c1d6; e = d; d = c; c = rol(b, 30); b = a; a = tmp; } digest[0] += a; digest[1] += b; digest[2] += c; digest[3] += d; digest[4] += e; } /* ---------------------------------------------------------------------- * Outer SHA algorithm: take an arbitrary length byte string, * convert it into 16-word blocks with the prescribed padding at * the end, and pass those blocks to the core SHA algorithm. */ void SHA_Init(SHA_State * s) { SHA_Core_Init(s->h); s->blkused = 0; s->lenhi = s->lenlo = 0; } void SHA_Bytes(SHA_State * s, const void *p, int len) { unsigned char *q = (unsigned char *) p; uint32 wordblock[16]; uint32 lenw = len; int i; /* * Update the length field. */ s->lenlo += lenw; s->lenhi += (s->lenlo < lenw); if (s->blkused && s->blkused + len < 64) { /* * Trivial case: just add to the block. */ memcpy(s->block + s->blkused, q, len); s->blkused += len; } else { /* * We must complete and process at least one block. */ while (s->blkused + len >= 64) { memcpy(s->block + s->blkused, q, 64 - s->blkused); q += 64 - s->blkused; len -= 64 - s->blkused; /* Now process the block. Gather bytes big-endian into words */ for (i = 0; i < 16; i++) { wordblock[i] = (((uint32) s->block[i * 4 + 0]) << 24) | (((uint32) s->block[i * 4 + 1]) << 16) | (((uint32) s->block[i * 4 + 2]) << 8) | (((uint32) s->block[i * 4 + 3]) << 0); } SHATransform(s->h, wordblock); s->blkused = 0; } memcpy(s->block, q, len); s->blkused = len; } } void SHA_Final(SHA_State * s, unsigned char *output) { int i; int pad; unsigned char c[64]; uint32 lenhi, lenlo; if (s->blkused >= 56) pad = 56 + 64 - s->blkused; else pad = 56 - s->blkused; lenhi = (s->lenhi << 3) | (s->lenlo >> (32 - 3)); lenlo = (s->lenlo << 3); memset(c, 0, pad); c[0] = 0x80; SHA_Bytes(s, &c, pad); c[0] = (unsigned char)((lenhi >> 24) & 0xFF); c[1] = (unsigned char)((lenhi >> 16) & 0xFF); c[2] = (unsigned char)((lenhi >> 8) & 0xFF); c[3] = (unsigned char)((lenhi >> 0) & 0xFF); c[4] = (unsigned char)((lenlo >> 24) & 0xFF); c[5] = (unsigned char)((lenlo >> 16) & 0xFF); c[6] = (unsigned char)((lenlo >> 8) & 0xFF); c[7] = (unsigned char)((lenlo >> 0) & 0xFF); SHA_Bytes(s, &c, 8); for (i = 0; i < 5; i++) { output[i * 4] = (unsigned char)((s->h[i] >> 24) & 0xFF); output[i * 4 + 1] = (unsigned char)((s->h[i] >> 16) & 0xFF); output[i * 4 + 2] = (unsigned char)((s->h[i] >> 8) & 0xFF); output[i * 4 + 3] = (unsigned char)((s->h[i]) & 0xFF); } } void SHA_Simple(const void *p, int len, unsigned char *output) { SHA_State s; SHA_Init(&s); SHA_Bytes(&s, p, len); SHA_Final(&s, output); } /* ---------------------------------------------------------------------- * The random number generator. */ struct random_state { unsigned char seedbuf[40]; unsigned char databuf[20]; int pos; }; random_state *random_new(const char *seed, int len) { random_state *state; state = snew(random_state); SHA_Simple(seed, len, state->seedbuf); SHA_Simple(state->seedbuf, 20, state->seedbuf + 20); SHA_Simple(state->seedbuf, 40, state->databuf); state->pos = 0; return state; } random_state *random_copy(random_state *tocopy) { random_state *result; result = snew(random_state); memcpy(result->seedbuf, tocopy->seedbuf, sizeof(result->seedbuf)); memcpy(result->databuf, tocopy->databuf, sizeof(result->databuf)); result->pos = tocopy->pos; return result; } unsigned long random_bits(random_state *state, int bits) { unsigned long ret = 0; int n; for (n = 0; n < bits; n += 8) { if (state->pos >= 20) { int i; for (i = 0; i < 20; i++) { if (state->seedbuf[i] != 0xFF) { state->seedbuf[i]++; break; } else state->seedbuf[i] = 0; } SHA_Simple(state->seedbuf, 40, state->databuf); state->pos = 0; } ret = (ret << 8) | state->databuf[state->pos++]; } /* * `(1 << bits) - 1' is not good enough, since if bits==32 on a * 32-bit machine, behaviour is undefined and Intel has a nasty * habit of shifting left by zero instead. We'll shift by * bits-1 and then separately shift by one. */ ret &= (1 << (bits-1)) * 2 - 1; return ret; } unsigned long random_upto(random_state *state, unsigned long limit) { int bits = 0; unsigned long max, divisor, data; while ((limit >> bits) != 0) bits++; bits += 3; assert(bits < 32); max = 1L << bits; divisor = max / limit; max = limit * divisor; do { data = random_bits(state, bits); } while (data >= max); return data / divisor; } void random_free(random_state *state) { sfree(state); } char *random_state_encode(random_state *state) { char retbuf[256]; int len = 0, i; for (i = 0; i < lenof(state->seedbuf); i++) len += sprintf(retbuf+len, "%02x", state->seedbuf[i]); for (i = 0; i < lenof(state->databuf); i++) len += sprintf(retbuf+len, "%02x", state->databuf[i]); len += sprintf(retbuf+len, "%02x", state->pos); return dupstr(retbuf); } random_state *random_state_decode(const char *input) { random_state *state; int pos, byte, digits; state = snew(random_state); memset(state->seedbuf, 0, sizeof(state->seedbuf)); memset(state->databuf, 0, sizeof(state->databuf)); state->pos = 0; byte = digits = 0; pos = 0; while (*input) { int v = *input++; if (v >= '0' && v <= '9') v = v - '0'; else if (v >= 'A' && v <= 'F') v = v - 'A' + 10; else if (v >= 'a' && v <= 'f') v = v - 'a' + 10; else v = 0; byte = (byte << 4) | v; digits++; if (digits == 2) { /* * We have a byte. Put it somewhere. */ if (pos < lenof(state->seedbuf)) state->seedbuf[pos++] = byte; else if (pos < lenof(state->seedbuf) + lenof(state->databuf)) state->databuf[pos++ - lenof(state->seedbuf)] = byte; else if (pos == lenof(state->seedbuf) + lenof(state->databuf) && byte <= lenof(state->databuf)) state->pos = byte; byte = digits = 0; } } return state; }