ref: e7bcbc39c4f129efff26c394a02b9f24c62a167a
dir: /src/stats.c/
/* libSoX effect: stats (c) 2009 robs@users.sourceforge.net
*
* This library is free software; you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2.1 of the License, or (at
* your option) any later version.
*
* This library is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser
* General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "sox_i.h"
#include <ctype.h>
#include <string.h>
typedef struct {
int scale_bits, hex_bits;
double time_constant, scale;
double last, sigma_x, sigma_x2, avg_sigma_x2, min_sigma_x2, max_sigma_x2;
double min, max, mult, min_run, min_runs, max_run, max_runs;
off_t num_samples, tc_samples, min_count, max_count;
uint32_t mask;
} priv_t;
static int getopts(sox_effect_t * effp, int argc, char **argv)
{
priv_t * p = (priv_t *)effp->priv;
int c;
lsx_getopt_t optstate;
lsx_getopt_init(argc, argv, "+x:b:w:s:", NULL, lsx_getopt_flag_none, 1, &optstate);
p->time_constant = .05;
p->scale = 1;
while ((c = lsx_getopt(&optstate)) != -1) switch (c) {
GETOPT_NUMERIC(optstate, 'x', hex_bits , 2 , 32)
GETOPT_NUMERIC(optstate, 'b', scale_bits , 2 , 32)
GETOPT_NUMERIC(optstate, 'w', time_constant , .01 , 10)
GETOPT_NUMERIC(optstate, 's', scale , -99, 99)
default: lsx_fail("invalid option `-%c'", optstate.opt); return lsx_usage(effp);
}
if (p->hex_bits)
p->scale_bits = p->hex_bits;
return optstate.ind != argc? lsx_usage(effp) : SOX_SUCCESS;
}
static int start(sox_effect_t * effp)
{
priv_t * p = (priv_t *)effp->priv;
p->last = 0;
p->mult = exp((-1 / p->time_constant / effp->in_signal.rate));
p->tc_samples = 5 * p->time_constant * effp->in_signal.rate + .5;
p->sigma_x = p->sigma_x2 = p->avg_sigma_x2 = p->max_sigma_x2 = 0;
p->min = p->min_sigma_x2 = 2;
p->max = -p->min;
p->num_samples = 0;
p->mask = 0;
return SOX_SUCCESS;
}
static int flow(sox_effect_t * effp, const sox_sample_t * ibuf,
sox_sample_t * obuf, size_t * ilen, size_t * olen)
{
priv_t * p = (priv_t *)effp->priv;
size_t len = *ilen = *olen = min(*ilen, *olen);
memcpy(obuf, ibuf, len * sizeof(*obuf));
for (; len--; ++ibuf, ++p->num_samples) {
double d = SOX_SAMPLE_TO_FLOAT_64BIT(*ibuf,);
if (d < p->min)
p->min = d, p->min_count = 1, p->min_run = 1, p->min_runs = 0;
else if (d == p->min) {
++p->min_count;
p->min_run = d == p->last? p->min_run + 1 : 1;
}
else if (p->last == p->min)
p->min_runs += sqr(p->min_run);
if (d > p->max)
p->max = d, p->max_count = 1, p->max_run = 1, p->max_runs = 0;
else if (d == p->max) {
++p->max_count;
p->max_run = d == p->last? p->max_run + 1 : 1;
}
else if (p->last == p->max)
p->max_runs += sqr(p->max_run);
p->sigma_x += d;
p->sigma_x2 += sqr(d);
p->avg_sigma_x2 = p->avg_sigma_x2 * p->mult + (1 - p->mult) * sqr(d);
if (p->num_samples >= p->tc_samples) {
if (p->avg_sigma_x2 > p->max_sigma_x2)
p->max_sigma_x2 = p->avg_sigma_x2;
if (p->avg_sigma_x2 < p->min_sigma_x2)
p->min_sigma_x2 = p->avg_sigma_x2;
}
p->last = d;
p->mask |= *ibuf;
}
return SOX_SUCCESS;
}
static int drain(sox_effect_t * effp, sox_sample_t * obuf, size_t * olen)
{
priv_t * p = (priv_t *)effp->priv;
if (p->last == p->min)
p->min_runs += sqr(p->min_run);
if (p->last == p->max)
p->max_runs += sqr(p->max_run);
(void)obuf, *olen = 0;
return SOX_SUCCESS;
}
static unsigned bit_depth(uint32_t mask, double min, double max, unsigned * x)
{
SOX_SAMPLE_LOCALS;
unsigned result = 32, dummy = 0;
for (; result && !(mask & 1); --result, mask >>= 1);
if (x)
*x = result;
mask = SOX_FLOAT_64BIT_TO_SAMPLE(max, dummy);
if (min < 0)
mask |= ~(SOX_FLOAT_64BIT_TO_SAMPLE(min, dummy) << 1);
for (; result && !(mask & SOX_SAMPLE_MIN); --result, mask <<= 1);
return result;
}
static void output(priv_t const * p, double x)
{
if (p->scale_bits) {
unsigned mult = 1 << (p->scale_bits - 1);
int i;
x = floor(x * mult + .5);
i = min(x, mult - 1.);
if (p->hex_bits)
if (x < 0) {
char buf[30];
sprintf(buf, "%x", -i);
fprintf(stderr, " %*c%s", 9 - (int)strlen(buf), '-', buf);
}
else fprintf(stderr, " %9x", i);
else fprintf(stderr, " %9i", i);
}
else fprintf(stderr, " %9.*f", fabs(p->scale) < 10 ? 6 : 5, p->scale * x);
}
static int stop(sox_effect_t * effp)
{
priv_t * p = (priv_t *)effp->priv;
if (!effp->flow) {
double min_runs = 0, max_count = 0, min = 2, max = -2, max_sigma_x = 0, sigma_x = 0, sigma_x2 = 0, min_sigma_x2 = 2, max_sigma_x2 = 0, avg_peak = 0;
off_t num_samples = 0, min_count = 0, max_runs = 0;
uint32_t mask = 0;
unsigned b1, b2, i, n = effp->flows > 1 ? effp->flows : 0;
for (i = 0; i < effp->flows; ++i) {
priv_t * q = (priv_t *)(effp - effp->flow + i)->priv;
min = min(min, q->min);
max = max(max, q->max);
if (q->num_samples < q->tc_samples)
q->min_sigma_x2 = q->max_sigma_x2 = q->sigma_x2 / q->num_samples;
min_sigma_x2 = min(min_sigma_x2, q->min_sigma_x2);
max_sigma_x2 = max(max_sigma_x2, q->max_sigma_x2);
sigma_x += q->sigma_x;
sigma_x2 += q->sigma_x2;
num_samples += q->num_samples;
mask |= q->mask;
if (fabs(q->sigma_x) > fabs(max_sigma_x))
max_sigma_x = q->sigma_x;
min_count += q->min_count;
min_runs += q->min_runs;
max_count += q->max_count;
max_runs += q->max_runs;
avg_peak += max(-q->min, q->max);
}
avg_peak /= effp->flows;
if (!num_samples) {
lsx_warn("no audio");
return SOX_SUCCESS;
}
if (n == 2)
fprintf(stderr, " Overall Left Right\n");
else if (n) {
fprintf(stderr, " Overall");
for (i = 0; i < n; ++i)
fprintf(stderr, " Ch%-3i", i + 1);
fprintf(stderr, "\n");
}
fprintf(stderr, "DC offset ");
output(p, max_sigma_x / p->num_samples);
for (i = 0; i < n; ++i) {
priv_t * q = (priv_t *)(effp - effp->flow + i)->priv;
output(p, q->sigma_x / q->num_samples);
}
fprintf(stderr, "\nMin level ");
output(p, min);
for (i = 0; i < n; ++i) {
priv_t * q = (priv_t *)(effp - effp->flow + i)->priv;
output(p, q->min);
}
fprintf(stderr, "\nMax level ");
output(p, max);
for (i = 0; i < n; ++i) {
priv_t * q = (priv_t *)(effp - effp->flow + i)->priv;
output(p, q->max);
}
fprintf(stderr, "\nPk lev dB %10.2f", linear_to_dB(max(-min, max)));
for (i = 0; i < n; ++i) {
priv_t * q = (priv_t *)(effp - effp->flow + i)->priv;
fprintf(stderr, "%10.2f", linear_to_dB(max(-q->min, q->max)));
}
fprintf(stderr, "\nRMS lev dB%10.2f", linear_to_dB(sqrt(sigma_x2 / num_samples)));
for (i = 0; i < n; ++i) {
priv_t * q = (priv_t *)(effp - effp->flow + i)->priv;
fprintf(stderr, "%10.2f", linear_to_dB(sqrt(q->sigma_x2 / q->num_samples)));
}
fprintf(stderr, "\nRMS Pk dB %10.2f", linear_to_dB(sqrt(max_sigma_x2)));
for (i = 0; i < n; ++i) {
priv_t * q = (priv_t *)(effp - effp->flow + i)->priv;
fprintf(stderr, "%10.2f", linear_to_dB(sqrt(q->max_sigma_x2)));
}
fprintf(stderr, "\nRMS Tr dB ");
if (min_sigma_x2 != 1)
fprintf(stderr, "%10.2f", linear_to_dB(sqrt(min_sigma_x2)));
else fprintf(stderr, " -");
for (i = 0; i < n; ++i) {
priv_t * q = (priv_t *)(effp - effp->flow + i)->priv;
if (q->min_sigma_x2 != 1)
fprintf(stderr, "%10.2f", linear_to_dB(sqrt(q->min_sigma_x2)));
else fprintf(stderr, " -");
}
if (effp->flows > 1)
fprintf(stderr, "\nCrest factor -");
else fprintf(stderr, "\nCrest factor %7.2f", sigma_x2 ? avg_peak / sqrt(sigma_x2 / num_samples) : 1);
for (i = 0; i < n; ++i) {
priv_t * q = (priv_t *)(effp - effp->flow + i)->priv;
fprintf(stderr, "%10.2f", q->sigma_x2? max(-q->min, q->max) / sqrt(q->sigma_x2 / q->num_samples) : 1);
}
fprintf(stderr, "\nFlat factor%9.2f", linear_to_dB((min_runs + max_runs) / (min_count + max_count)));
for (i = 0; i < n; ++i) {
priv_t * q = (priv_t *)(effp - effp->flow + i)->priv;
fprintf(stderr, " %9.2f", linear_to_dB((q->min_runs + q->max_runs) / (q->min_count + q->max_count)));
}
fprintf(stderr, "\nPk count %9s", lsx_sigfigs3((min_count + max_count) / effp->flows));
for (i = 0; i < n; ++i) {
priv_t * q = (priv_t *)(effp - effp->flow + i)->priv;
fprintf(stderr, " %9s", lsx_sigfigs3((double)(q->min_count + q->max_count)));
}
b1 = bit_depth(mask, min, max, &b2);
fprintf(stderr, "\nBit-depth %2u/%-2u", b1, b2);
for (i = 0; i < n; ++i) {
priv_t * q = (priv_t *)(effp - effp->flow + i)->priv;
b1 = bit_depth(q->mask, q->min, q->max, &b2);
fprintf(stderr, " %2u/%-2u", b1, b2);
}
fprintf(stderr, "\nNum samples%9s", lsx_sigfigs3((double)p->num_samples));
fprintf(stderr, "\nLength s %9.3f", p->num_samples / effp->in_signal.rate);
fprintf(stderr, "\nScale max ");
output(p, 1.);
fprintf(stderr, "\nWindow s %9.3f", p->time_constant);
fprintf(stderr, "\n");
}
return SOX_SUCCESS;
}
sox_effect_handler_t const * lsx_stats_effect_fn(void)
{
static sox_effect_handler_t handler = {
"stats", "[-b bits|-x bits|-s scale] [-w window-time]", SOX_EFF_MODIFY,
getopts, start, flow, drain, stop, NULL, sizeof(priv_t)};
return &handler;
}