ref: ceffff92190351bc83dc94fbfb72dc31a481ceea
dir: /src/rate.c/
/* Effect: change sample rate Copyright (c) 2008,12 robs@users.sourceforge.net * * This library is free software; you can redistribute it and/or modify it * under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2.1 of the License, or (at * your option) any later version. * * This library is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser * General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this library; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /* Inspired by, and builds upon some of the ideas presented in: * `The Quest For The Perfect Resampler' by Laurent De Soras; * http://ldesoras.free.fr/doc/articles/resampler-en.pdf */ #ifdef NDEBUG /* Enable assert always. */ #undef NDEBUG /* Must undef above assert.h or other that might include it. */ #endif #define _GNU_SOURCE #include "sox_i.h" #include "fft4g.h" #include "dft_filter.h" #include <assert.h> #include <string.h> #define calloc lsx_calloc #define malloc lsx_malloc #define raw_coef_t double #if 0 /* For float32 version, as used in foobar */ #define sample_t float #define num_coefs4 ((num_coefs + 3) & ~3) /* align coefs for SSE */ #define coefs4_check(i) ((i) < num_coefs) #else #define sample_t double #define num_coefs4 num_coefs #define coefs4_check(i) 1 #endif #if defined M_PIl #define hi_prec_clock_t long double /* __float128 is also a (slow) option */ #else #define hi_prec_clock_t double #endif #define coef(coef_p, interp_order, fir_len, phase_num, coef_interp_num, fir_coef_num) coef_p[(fir_len) * ((interp_order) + 1) * (phase_num) + ((interp_order) + 1) * (fir_coef_num) + (interp_order - coef_interp_num)] static sample_t * prepare_coefs(raw_coef_t const * coefs, int num_coefs, int num_phases, int interp_order, int multiplier) { int i, j, length = num_coefs4 * num_phases; sample_t * result = malloc(length * (interp_order + 1) * sizeof(*result)); double fm1 = coefs[0], f1 = 0, f2 = 0; for (i = num_coefs4 - 1; i >= 0; --i) for (j = num_phases - 1; j >= 0; --j) { double f0 = fm1, b = 0, c = 0, d = 0; /* = 0 to kill compiler warning */ int pos = i * num_phases + j - 1; fm1 = coefs4_check(i) && pos > 0 ? coefs[pos - 1] * multiplier : 0; switch (interp_order) { case 1: b = f1 - f0; break; case 2: b = f1 - (.5 * (f2+f0) - f1) - f0; c = .5 * (f2+f0) - f1; break; case 3: c=.5*(f1+fm1)-f0;d=(1/6.)*(f2-f1+fm1-f0-4*c);b=f1-f0-d-c; break; default: if (interp_order) assert(0); } #define coef_coef(x) \ coef(result, interp_order, num_coefs4, j, x, num_coefs4 - 1 - i) coef_coef(0) = f0; if (interp_order > 0) coef_coef(1) = b; if (interp_order > 1) coef_coef(2) = c; if (interp_order > 2) coef_coef(3) = d; #undef coef_coef f2 = f1, f1 = f0; } return result; } typedef struct { /* So generated filter coefs may be shared between channels */ sample_t * poly_fir_coefs; dft_filter_t dft_filter[2]; } rate_shared_t; struct stage; typedef void (* stage_fn_t)(struct stage * input, fifo_t * output); typedef struct stage { /* Common to all stage types: */ stage_fn_t fn; fifo_t fifo; int pre; /* Number of past samples to store */ int pre_post; /* pre + number of future samples to store */ int preload; /* Number of zero samples to pre-load the fifo */ double out_in_ratio; /* For buffer management. */ /* For a stage with variable (run-time generated) filter coefs: */ rate_shared_t * shared; int dft_filter_num; /* Which, if any, of the 2 DFT filters to use */ /* For a stage with variable L/M: */ union { /* 32bit.32bit fixed point arithmetic */ #if defined(WORDS_BIGENDIAN) struct {int32_t integer; uint32_t fraction;} parts; #else struct {uint32_t fraction; int32_t integer;} parts; #endif int64_t all; #define MULT32 (65536. * 65536.) hi_prec_clock_t hi_prec_clock; } at, step; sox_bool use_hi_prec_clock; int L, remL, remM; int n, phase_bits; } stage_t; #define stage_occupancy(s) max(0, fifo_occupancy(&(s)->fifo) - (s)->pre_post) #define stage_read_p(s) ((sample_t *)fifo_read_ptr(&(s)->fifo) + (s)->pre) static void cubic_stage_fn(stage_t * p, fifo_t * output_fifo) { int i, num_in = stage_occupancy(p), max_num_out = 1 + num_in*p->out_in_ratio; sample_t const * input = stage_read_p(p); sample_t * output = fifo_reserve(output_fifo, max_num_out); for (i = 0; p->at.parts.integer < num_in; ++i, p->at.all += p->step.all) { sample_t const * s = input + p->at.parts.integer; sample_t x = p->at.parts.fraction * (1 / MULT32); sample_t b = .5*(s[1]+s[-1])-*s, a = (1/6.)*(s[2]-s[1]+s[-1]-*s-4*b); sample_t c = s[1]-*s-a-b; output[i] = ((a*x + b)*x + c)*x + *s; } assert(max_num_out - i >= 0); fifo_trim_by(output_fifo, max_num_out - i); fifo_read(&p->fifo, p->at.parts.integer, NULL); p->at.parts.integer = 0; } static void dft_stage_fn(stage_t * p, fifo_t * output_fifo) { sample_t * output, tmp; int i, j, num_in = max(0, fifo_occupancy(&p->fifo)); rate_shared_t const * s = p->shared; dft_filter_t const * f = &s->dft_filter[p->dft_filter_num]; int const overlap = f->num_taps - 1; while (p->remL + p->L * num_in >= f->dft_length) { div_t divd = div(f->dft_length - overlap - p->remL + p->L - 1, p->L); sample_t const * input = fifo_read_ptr(&p->fifo); fifo_read(&p->fifo, divd.quot, NULL); num_in -= divd.quot; output = fifo_reserve(output_fifo, f->dft_length); if (lsx_is_power_of_2(p->L)) { /* F-domain */ int portion = f->dft_length / p->L; memcpy(output, input, (unsigned)portion * sizeof(*output)); lsx_safe_rdft(portion, 1, output); for (i = portion + 2; i < (portion << 1); i += 2) output[i] = output[(portion << 1) - i], output[i+1] = -output[(portion << 1) - i + 1]; output[portion] = output[1]; output[portion + 1] = 0; output[1] = output[0]; for (portion <<= 1; i < f->dft_length; i += portion, portion <<= 1) { memcpy(output + i, output, portion * sizeof(*output)); output[i + 1] = 0; } } else { if (p->L == 1) memcpy(output, input, f->dft_length * sizeof(*output)); else { memset(output, 0, f->dft_length * sizeof(*output)); for (j = 0, i = p->remL; i < f->dft_length; ++j, i += p->L) output[i] = input[j]; p->remL = p->L - 1 - divd.rem; } lsx_safe_rdft(f->dft_length, 1, output); } output[0] *= f->coefs[0]; if (p->step.parts.integer > 0) { output[1] *= f->coefs[1]; for (i = 2; i < f->dft_length; i += 2) { tmp = output[i]; output[i ] = f->coefs[i ] * tmp - f->coefs[i+1] * output[i+1]; output[i+1] = f->coefs[i+1] * tmp + f->coefs[i ] * output[i+1]; } lsx_safe_rdft(f->dft_length, -1, output); if (p->step.parts.integer != 1) { for (j = 0, i = p->remM; i < f->dft_length - overlap; ++j, i += p->step.parts.integer) output[j] = output[i]; p->remM = i - (f->dft_length - overlap); fifo_trim_by(output_fifo, f->dft_length - j); } else fifo_trim_by(output_fifo, overlap); } else { /* F-domain */ int m = -p->step.parts.integer; for (i = 2; i < (f->dft_length >> m); i += 2) { tmp = output[i]; output[i ] = f->coefs[i ] * tmp - f->coefs[i+1] * output[i+1]; output[i+1] = f->coefs[i+1] * tmp + f->coefs[i ] * output[i+1]; } output[1] = f->coefs[i] * output[i] - f->coefs[i+1] * output[i+1]; lsx_safe_rdft(f->dft_length >> m, -1, output); fifo_trim_by(output_fifo, (((1 << m) - 1) * f->dft_length + overlap) >>m); } } } static void dft_stage_init( unsigned instance, double Fp, double Fs, double Fn, double att, double phase, stage_t * stage, int L, int M) { dft_filter_t * f = &stage->shared->dft_filter[instance]; if (!f->num_taps) { int num_taps = 0, dft_length, i; int k = phase == 50 && lsx_is_power_of_2(L) && Fn == L? L << 1 : 4; double * h = lsx_design_lpf(Fp, Fs, Fn, att, &num_taps, -k, -1.); if (phase != 50) lsx_fir_to_phase(&h, &num_taps, &f->post_peak, phase); else f->post_peak = num_taps / 2; dft_length = lsx_set_dft_length(num_taps); f->coefs = calloc(dft_length, sizeof(*f->coefs)); for (i = 0; i < num_taps; ++i) f->coefs[(i + dft_length - num_taps + 1) & (dft_length - 1)] = h[i] / dft_length * 2 * L; free(h); f->num_taps = num_taps; f->dft_length = dft_length; lsx_safe_rdft(dft_length, 1, f->coefs); lsx_debug("fir_len=%i dft_length=%i Fp=%g Fs=%g Fn=%g att=%g %i/%i", num_taps, dft_length, Fp, Fs, Fn, att, L, M); } stage->fn = dft_stage_fn; stage->preload = f->post_peak / L; stage->remL = f->post_peak % L; stage->L = L; stage->step.parts.integer = abs(3-M) == 1 && Fs == 1? -M/2 : M; stage->dft_filter_num = instance; } #include "rate_filters.h" typedef struct { double factor; uint64_t samples_in, samples_out; int num_stages; stage_t * stages; } rate_t; #define pre_stage p->stages[shift] #define arb_stage p->stages[shift + have_pre_stage] #define post_stage p->stages[shift + have_pre_stage + have_arb_stage] #define have_pre_stage (preM * preL != 1) #define have_arb_stage (arbM * arbL != 1) #define have_post_stage (postM * postL != 1) #define TO_3dB(a) ((1.6e-6*a-7.5e-4)*a+.646) #define LOW_Q_BW0_PC (67 + 5 / 8.) typedef enum { rolloff_none, rolloff_small /* <= 0.01 dB */, rolloff_medium /* <= 0.35 dB */ } rolloff_t; static void rate_init( /* Private work areas (to be supplied by the client): */ rate_t * p, /* Per audio channel. */ rate_shared_t * shared, /* Between channels (undergoing same rate change)*/ /* Public parameters: Typically */ double factor, /* Input rate divided by output rate. */ double bits, /* Required bit-accuracy (pass + stop) 16|20|28 */ double phase, /* Linear/minimum etc. filter phase. 50 */ double bw_pc, /* Pass-band % (0dB pt.) to preserve. 91.3|98.4*/ double anti_aliasing_pc, /* % bandwidth without aliasing 100 */ rolloff_t rolloff, /* Pass-band roll-off small */ sox_bool maintain_3dB_pt, /* true */ /* Primarily for test/development purposes: */ sox_bool use_hi_prec_clock,/* Increase irrational ratio accuracy. false */ int interpolator, /* Force a particular coef interpolator. -1 */ int max_coefs_size, /* k bytes of coefs to try to keep below. 400 */ sox_bool noSmallIntOpt) /* Disable small integer optimisations. false */ { double att = (bits + 1) * linear_to_dB(2.), attArb = att; /* pass + stop */ double tbw0 = 1 - bw_pc / 100, Fs_a = 2 - anti_aliasing_pc / 100; double arbM = factor, tbw_tighten = 1; int n = 0, i, preL = 1, preM = 1, shift = 0, arbL = 1, postL = 1, postM = 1; sox_bool upsample = sox_false, rational = sox_false, iOpt = !noSmallIntOpt; int mode = rolloff > rolloff_small? factor > 1 || bw_pc > LOW_Q_BW0_PC : ceil(2 + (bits - 17) / 4); stage_t * s; assert(factor > 0); assert(!bits || (15 <= bits && bits <= 33)); assert(0 <= phase && phase <= 100); assert(53 <= bw_pc && bw_pc <= 100); assert(85 <= anti_aliasing_pc && anti_aliasing_pc <= 100); p->factor = factor; if (bits) while (!n++) { /* Determine stages: */ int try, L, M, x, maxL = interpolator > 0? 1 : mode? 2048 : ceil(max_coefs_size * 1000. / (U100_l * sizeof(sample_t))); double d, epsilon = 0, frac; upsample = arbM < 1; for (i = arbM * .5, shift = 0; i >>= 1; arbM *= .5, ++shift); preM = upsample || (arbM > 1.5 && arbM < 2); postM = 1 + (arbM > 1 && preM), arbM /= postM; preL = 1 + (!preM && arbM < 2) + (upsample && mode), arbM *= preL; if ((frac = arbM - (int)arbM)) epsilon = fabs((uint32_t)(frac * MULT32 + .5) / (frac * MULT32) - 1); for (i = 1, rational = !frac; i <= maxL && !rational; ++i) { d = frac * i, try = d + .5; if ((rational = fabs(try / d - 1) <= epsilon)) { /* No long doubles! */ if (try == i) arbM = ceil(arbM), shift += arbM > 2, arbM /= 1 + (arbM > 2); else arbM = i * (int)arbM + try, arbL = i; } } L = preL * arbL, M = arbM * postM, x = (L|M)&1, L >>= !x, M >>= !x; if (iOpt && postL == 1 && (d = preL * arbL / arbM) > 4 && d != 5) { for (postL = 4, i = d / 16; i >>= 1; postL <<= 1); arbM = arbM * postL / arbL / preL, arbL = 1, n = 0; } else if (rational && (max(L, M) < 3 + 2 * iOpt || L * M < 6 * iOpt)) preL = L, preM = M, arbM = arbL = postM = 1; if (!mode && (!rational || !n)) ++mode, n = 0; } p->num_stages = shift + have_pre_stage + have_arb_stage + have_post_stage; if (!p->num_stages) return; p->stages = calloc(p->num_stages + 1, sizeof(*p->stages)); for (i = 0; i < p->num_stages; ++i) p->stages[i].shared = shared; if ((n = p->num_stages) > 1) { /* Att. budget: */ if (have_arb_stage) att += linear_to_dB(2.), attArb = att, --n; att += linear_to_dB((double)n); } for (n = 0; n + 1u < array_length(half_firs) && att > half_firs[n].att; ++n); for (i = 0, s = p->stages; i < shift; ++i, ++s) { s->fn = half_firs[n].fn; s->pre_post = 4 * half_firs[n].num_coefs; s->preload = s->pre = s->pre_post >> 1; } if (have_pre_stage) { if (maintain_3dB_pt && have_post_stage) { /* Trans. bands overlapping. */ double tbw3 = tbw0 * TO_3dB(att); /* TODO: consider Fs_a. */ double x = ((2.1429e-4 - 5.2083e-7 * att) * att - .015863) * att + 3.95; x = att * pow((tbw0 - tbw3) / (postM / (factor * postL) - 1 + tbw0), x); if (x > .035) { tbw_tighten = ((4.3074e-3 - 3.9121e-4 * x) * x - .040009) * x + 1.0014; lsx_debug("x=%g tbw_tighten=%g", x, tbw_tighten); } } dft_stage_init(0, 1 - tbw0 * tbw_tighten, Fs_a, preM? max(preL, preM) : arbM / arbL, att, phase, &pre_stage, preL, max(preM, 1)); } if (!bits) { /* Quick and dirty arb stage: */ arb_stage.fn = cubic_stage_fn; arb_stage.step.all = arbM * MULT32 + .5; arb_stage.pre_post = max(3, arb_stage.step.parts.integer); arb_stage.preload = arb_stage.pre = 1; arb_stage.out_in_ratio = MULT32 * arbL / arb_stage.step.all; } else if (have_arb_stage) { /* Higher quality arb stage: */ poly_fir_t const * f = &poly_firs[6*(upsample + !!preM) + mode - !upsample]; int order, num_coefs = f->interp[0].scalar, phase_bits, phases, coefs_size; double x = .5, at, Fp, Fs, Fn, mult = upsample? 1 : arbL / arbM; poly_fir1_t const * f1; Fn = !upsample && preM? x = arbM / arbL : 1; Fp = !preM? mult : mode? .5 : 1; Fs = 2 - Fp; /* Ignore Fs_a; it would have little benefit here. */ Fp *= 1 - tbw0; if (rolloff > rolloff_small && mode) Fp = !preM? mult * .5 - .125 : mult * .05 + .1; else if (rolloff == rolloff_small) Fp = Fs - (Fs - .148 * x - Fp * .852) * (.00813 * bits + .973); i = (interpolator < 0? !rational : max(interpolator, !rational)) - 1; do { f1 = &f->interp[++i]; assert(f1->fn); if (i) arbM /= arbL, arbL = 1, rational = sox_false; phase_bits = ceil(f1->scalar + log(mult)/log(2.)); phases = !rational? (1 << phase_bits) : arbL; if (!f->interp[0].scalar) { int phases0 = max(phases, 19), n0 = 0; lsx_design_lpf(Fp, Fs, -Fn, attArb, &n0, phases0, f->beta); num_coefs = n0 / phases0 + 1, num_coefs += num_coefs & !preM; } if ((num_coefs & 1) && rational && (arbL & 1)) phases <<= 1, arbL <<= 1, arbM *= 2; at = arbL * .5 * (num_coefs & 1); order = i + (i && mode > 4); coefs_size = num_coefs4 * phases * (order + 1) * sizeof(sample_t); } while (interpolator < 0 && i < 2 && f->interp[i+1].fn && coefs_size / 1000 > max_coefs_size); if (!arb_stage.shared->poly_fir_coefs) { int num_taps = num_coefs * phases - 1; raw_coef_t * coefs = lsx_design_lpf( Fp, Fs, Fn, attArb, &num_taps, phases, f->beta); arb_stage.shared->poly_fir_coefs = prepare_coefs( coefs, num_coefs, phases, order, 1); lsx_debug("fir_len=%i phases=%i coef_interp=%i size=%s", num_coefs, phases, order, lsx_sigfigs3((double)coefs_size)); free(coefs); } arb_stage.fn = f1->fn; arb_stage.pre_post = num_coefs4 - 1; arb_stage.preload = (num_coefs - 1) >> 1; arb_stage.n = num_coefs4; arb_stage.phase_bits = phase_bits; arb_stage.L = arbL; arb_stage.use_hi_prec_clock = mode > 1 && use_hi_prec_clock && !rational; if (arb_stage.use_hi_prec_clock) { arb_stage.at.hi_prec_clock = at; arb_stage.step.hi_prec_clock = arbM; arb_stage.out_in_ratio = arbL / arb_stage.step.hi_prec_clock; } else { arb_stage.at.all = at * MULT32 + .5; arb_stage.step.all = arbM * MULT32 + .5; arb_stage.out_in_ratio = MULT32 * arbL / arb_stage.step.all; } } if (have_post_stage) dft_stage_init(1, 1 - (1 - (1 - tbw0) * (upsample? factor * postL / postM : 1)) * tbw_tighten, Fs_a, (double)max(postL, postM), att, phase, &post_stage, postL, postM); for (i = 0, s = p->stages; i < p->num_stages; ++i, ++s) { fifo_create(&s->fifo, (int)sizeof(sample_t)); memset(fifo_reserve(&s->fifo, s->preload), 0, sizeof(sample_t)*s->preload); lsx_debug("%5i|%-5i preload=%i remL=%i", s->pre, s->pre_post - s->pre, s->preload, s->remL); } fifo_create(&s->fifo, (int)sizeof(sample_t)); } static void rate_process(rate_t * p) { stage_t * stage = p->stages; int i; for (i = 0; i < p->num_stages; ++i, ++stage) stage->fn(stage, &(stage+1)->fifo); } static sample_t * rate_input(rate_t * p, sample_t const * samples, size_t n) { p->samples_in += n; return fifo_write(&p->stages[0].fifo, (int)n, samples); } static sample_t const * rate_output(rate_t * p, sample_t * samples, size_t * n) { fifo_t * fifo = &p->stages[p->num_stages].fifo; p->samples_out += *n = min(*n, (size_t)fifo_occupancy(fifo)); return fifo_read(fifo, (int)*n, samples); } static void rate_flush(rate_t * p) { fifo_t * fifo = &p->stages[p->num_stages].fifo; uint64_t samples_out = p->samples_in / p->factor + .5; size_t remaining = samples_out > p->samples_out ? (size_t)(samples_out - p->samples_out) : 0; sample_t * buff = calloc(1024, sizeof(*buff)); if (remaining > 0) { while ((size_t)fifo_occupancy(fifo) < remaining) { rate_input(p, buff, (size_t) 1024); rate_process(p); } fifo_trim_to(fifo, (int)remaining); p->samples_in = 0; } free(buff); } static void rate_close(rate_t * p) { rate_shared_t *shared; int i; if (!p->num_stages) return; shared = p->stages[0].shared; for (i = 0; i <= p->num_stages; ++i) fifo_delete(&p->stages[i].fifo); free(shared->dft_filter[0].coefs); free(shared->dft_filter[1].coefs); free(shared->poly_fir_coefs); memset(shared, 0, sizeof(*shared)); free(p->stages); } /*------------------------------- SoX Wrapper --------------------------------*/ typedef struct { sox_rate_t out_rate; int rolloff, coef_interp, max_coefs_size; double bit_depth, phase, bw_0dB_pc, anti_aliasing_pc; sox_bool use_hi_prec_clock, noIOpt, given_0dB_pt; rate_t rate; rate_shared_t shared, * shared_ptr; } priv_t; static int create(sox_effect_t * effp, int argc, char **argv) { priv_t * p = (priv_t *) effp->priv; int c, quality; char * dummy_p, * found_at; char const * opts = "+i:c:b:B:A:p:Q:R:d:MILafnost" "qlmghevu"; char const * qopts = strchr(opts, 'q'); double rej = 0, bw_3dB_pc = 0; sox_bool allow_aliasing = sox_false; lsx_getopt_t optstate; lsx_getopt_init(argc, argv, opts, NULL, lsx_getopt_flag_none, 1, &optstate); p->coef_interp = quality = -1; p->rolloff = rolloff_small; p->phase = 50; p->max_coefs_size = 400; p->shared_ptr = &p->shared; while ((c = lsx_getopt(&optstate)) != -1) switch (c) { GETOPT_NUMERIC(optstate, 'i', coef_interp, -1, 2) GETOPT_NUMERIC(optstate, 'c', max_coefs_size, 100, INT_MAX) GETOPT_NUMERIC(optstate, 'p', phase, 0, 100) GETOPT_NUMERIC(optstate, 'B', bw_0dB_pc, 53, 99.5) GETOPT_NUMERIC(optstate, 'A', anti_aliasing_pc, 85, 100) GETOPT_NUMERIC(optstate, 'd', bit_depth, 15, 33) GETOPT_LOCAL_NUMERIC(optstate, 'b', bw_3dB_pc, 74, 99.7) GETOPT_LOCAL_NUMERIC(optstate, 'R', rej, 90, 200) GETOPT_LOCAL_NUMERIC(optstate, 'Q', quality, 0, 7) case 'M': p->phase = 0; break; case 'I': p->phase = 25; break; case 'L': p->phase = 50; break; case 'a': allow_aliasing = sox_true; break; case 'f': p->rolloff = rolloff_none; break; case 'n': p->noIOpt = sox_true; break; case 's': bw_3dB_pc = 99; break; case 't': p->use_hi_prec_clock = sox_true; break; default: if ((found_at = strchr(qopts, c))) quality = found_at - qopts; else { lsx_fail("unknown option `-%c'", optstate.opt); return lsx_usage(effp); } } argc -= optstate.ind, argv += optstate.ind; if ((unsigned)quality < 2 && (p->bw_0dB_pc || bw_3dB_pc || p->phase != 50 || allow_aliasing || rej || p->bit_depth || p->anti_aliasing_pc)) { lsx_fail("override options not allowed with this quality level"); return SOX_EOF; } if (quality < 0 && rej == 0 && p->bit_depth == 0) quality = 4; if (rej) p->bit_depth = rej / linear_to_dB(2.); else { if (quality >= 0) { p->bit_depth = quality? 16 + 4 * max(quality - 3, 0) : 0; if (quality <= 2) p->rolloff = rolloff_medium; } rej = p->bit_depth * linear_to_dB(2.); } if (bw_3dB_pc && p->bw_0dB_pc) { lsx_fail("conflicting bandwidth options"); return SOX_EOF; } allow_aliasing |= p->anti_aliasing_pc != 0; if (!bw_3dB_pc && !p->bw_0dB_pc) p->bw_0dB_pc = quality == 1? LOW_Q_BW0_PC : 100 - 5 / TO_3dB(rej); else if (bw_3dB_pc && bw_3dB_pc < 85 && allow_aliasing) { lsx_fail("minimum allowed 3dB bandwidth with aliasing is %g%%", 85.); return SOX_EOF; } else if (p->bw_0dB_pc && p->bw_0dB_pc < 74 && allow_aliasing) { lsx_fail("minimum allowed bandwidth with aliasing is %g%%", 74.); return SOX_EOF; } if (bw_3dB_pc) p->bw_0dB_pc = 100 - (100 - bw_3dB_pc) / TO_3dB(rej); else { bw_3dB_pc = 100 - (100 - p->bw_0dB_pc) * TO_3dB(rej); p->given_0dB_pt = sox_true; } p->anti_aliasing_pc = p->anti_aliasing_pc? p->anti_aliasing_pc : allow_aliasing? bw_3dB_pc : 100; if (argc) { if ((p->out_rate = lsx_parse_frequency(*argv, &dummy_p)) <= 0 || *dummy_p) return lsx_usage(effp); argc--; argv++; effp->out_signal.rate = p->out_rate; } return argc? lsx_usage(effp) : SOX_SUCCESS; } static int start(sox_effect_t * effp) { priv_t * p = (priv_t *) effp->priv; double out_rate = p->out_rate != 0 ? p->out_rate : effp->out_signal.rate; if (effp->in_signal.rate == out_rate) return SOX_EFF_NULL; if (effp->in_signal.mult) *effp->in_signal.mult *= .705; /* 1/(2/sinc(pi/3)-1); see De Soras 4.1.2 */ effp->out_signal.channels = effp->in_signal.channels; effp->out_signal.rate = out_rate; rate_init(&p->rate, p->shared_ptr, effp->in_signal.rate/out_rate,p->bit_depth, p->phase, p->bw_0dB_pc, p->anti_aliasing_pc, p->rolloff, !p->given_0dB_pt, p->use_hi_prec_clock, p->coef_interp, p->max_coefs_size, p->noIOpt); if (!p->rate.num_stages) { lsx_warn("input and output rates too close, skipping resampling"); return SOX_EFF_NULL; } return SOX_SUCCESS; } static int flow(sox_effect_t * effp, const sox_sample_t * ibuf, sox_sample_t * obuf, size_t * isamp, size_t * osamp) { priv_t * p = (priv_t *)effp->priv; size_t odone = *osamp; sample_t const * s = rate_output(&p->rate, NULL, &odone); lsx_save_samples(obuf, s, odone, &effp->clips); if (*isamp && odone < *osamp) { sample_t * t = rate_input(&p->rate, NULL, *isamp); lsx_load_samples(t, ibuf, *isamp); rate_process(&p->rate); } else *isamp = 0; *osamp = odone; return SOX_SUCCESS; } static int drain(sox_effect_t * effp, sox_sample_t * obuf, size_t * osamp) { priv_t * p = (priv_t *)effp->priv; static size_t isamp = 0; rate_flush(&p->rate); return flow(effp, 0, obuf, &isamp, osamp); } static int stop(sox_effect_t * effp) { priv_t * p = (priv_t *) effp->priv; rate_close(&p->rate); return SOX_SUCCESS; } sox_effect_handler_t const * lsx_rate_effect_fn(void) { static sox_effect_handler_t handler = { "rate", 0, SOX_EFF_RATE, create, start, flow, drain, stop, 0, sizeof(priv_t) }; static char const * lines[] = { "[-q|-l|-m|-h|-v] [override-options] RATE[k]", " BAND-", " QUALITY WIDTH REJ dB TYPICAL USE", " -q quick n/a ~30 @ Fs/4 playback on ancient hardware", " -l low 80% 100 playback on old hardware", " -m medium 95% 100 audio playback", " -h high (default) 95% 125 16-bit mastering (use with dither)", " -v very high 95% 175 24-bit mastering", " OVERRIDE OPTIONS (only with -m, -h, -v)", " -M/-I/-L Phase response = minimum/intermediate/linear(default)", " -s Steep filter (band-width = 99%)", " -a Allow aliasing above the pass-band", " -b 74-99.7 Any band-width %", " -p 0-100 Any phase response (0 = minimum, 25 = intermediate,", " 50 = linear, 100 = maximum)", }; static char * usage; handler.usage = lsx_usage_lines(&usage, lines, array_length(lines)); return &handler; }