ref: ceffff92190351bc83dc94fbfb72dc31a481ceea
dir: /src/formats_i.c/
/* Implements a libSoX internal interface for use in implementing file formats. * All public functions & data are prefixed with lsx_ . * * (c) 2005-8 Chris Bagwell and SoX contributors * * This library is free software; you can redistribute it and/or modify it * under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2.1 of the License, or (at * your option) any later version. * * This library is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser * General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this library; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "sox_i.h" #include <limits.h> #include <string.h> #include <sys/stat.h> #include <stdarg.h> void lsx_fail_errno(sox_format_t * ft, int sox_errno, const char *fmt, ...) { va_list args; ft->sox_errno = sox_errno; va_start(args, fmt); #ifdef HAVE_VSNPRINTF vsnprintf(ft->sox_errstr, sizeof(ft->sox_errstr), fmt, args); #else vsprintf(ft->sox_errstr, fmt, args); #endif va_end(args); ft->sox_errstr[255] = '\0'; } void lsx_set_signal_defaults(sox_format_t * ft) { if (!ft->signal.rate ) ft->signal.rate = SOX_DEFAULT_RATE; if (!ft->signal.precision) ft->signal.precision = SOX_DEFAULT_PRECISION; if (!ft->signal.channels ) ft->signal.channels = SOX_DEFAULT_CHANNELS; if (!ft->encoding.bits_per_sample) ft->encoding.bits_per_sample = ft->signal.precision; if (ft->encoding.encoding == SOX_ENCODING_UNKNOWN) ft->encoding.encoding = SOX_ENCODING_SIGN2; } int lsx_check_read_params(sox_format_t * ft, unsigned channels, sox_rate_t rate, sox_encoding_t encoding, unsigned bits_per_sample, uint64_t num_samples, sox_bool check_length) { ft->signal.length = ft->signal.length == SOX_IGNORE_LENGTH? SOX_UNSPEC : num_samples; if (ft->seekable) ft->data_start = lsx_tell(ft); if (channels && ft->signal.channels && ft->signal.channels != channels) { lsx_warn("`%s': overriding number of channels", ft->filename); } else if (channels > SHRT_MAX) { lsx_fail_errno(ft, EINVAL, "implausibly large number of channels"); return SOX_EOF; } else { ft->signal.channels = channels; } if (rate && ft->signal.rate && ft->signal.rate != rate) lsx_warn("`%s': overriding sample rate", ft->filename); else ft->signal.rate = rate; if (encoding && ft->encoding.encoding && ft->encoding.encoding != encoding) lsx_warn("`%s': overriding encoding type", ft->filename); else ft->encoding.encoding = encoding; if (bits_per_sample && ft->encoding.bits_per_sample && ft->encoding.bits_per_sample != bits_per_sample) lsx_warn("`%s': overriding encoding size", ft->filename); ft->encoding.bits_per_sample = bits_per_sample; if (check_length && ft->encoding.bits_per_sample && lsx_filelength(ft)) { uint64_t calculated_length = div_bits(lsx_filelength(ft) - ft->data_start, ft->encoding.bits_per_sample); if (!ft->signal.length) ft->signal.length = calculated_length; else if (num_samples != calculated_length) lsx_warn("`%s': file header gives the total number of samples as %" PRIu64 " but file length indicates the number is in fact %" PRIu64, ft->filename, num_samples, calculated_length); } if (sox_precision(ft->encoding.encoding, ft->encoding.bits_per_sample)) return SOX_SUCCESS; lsx_fail_errno(ft, EINVAL, "invalid format for this file type"); return SOX_EOF; } /* Read in a buffer of data of length len bytes. * Returns number of bytes read. */ size_t lsx_readbuf(sox_format_t * ft, void *buf, size_t len) { size_t ret = fread(buf, (size_t) 1, len, (FILE*)ft->fp); if (ret != len && ferror((FILE*)ft->fp)) lsx_fail_errno(ft, errno, "lsx_readbuf"); ft->tell_off += ret; return ret; } /* Skip input without seeking. */ int lsx_skipbytes(sox_format_t * ft, size_t n) { unsigned char trash; while (n--) if (lsx_readb(ft, &trash) == SOX_EOF) return (SOX_EOF); return (SOX_SUCCESS); } /* Pad output. */ int lsx_padbytes(sox_format_t * ft, size_t n) { while (n--) if (lsx_writeb(ft, '\0') == SOX_EOF) return (SOX_EOF); return (SOX_SUCCESS); } /* Write a buffer of data of length bytes. * Returns number of bytes written. */ size_t lsx_writebuf(sox_format_t * ft, void const * buf, size_t len) { size_t ret = fwrite(buf, (size_t) 1, len, (FILE*)ft->fp); if (ret != len) { lsx_fail_errno(ft, errno, "error writing output file"); clearerr((FILE*)ft->fp); /* Allows us to seek back to write header */ } ft->tell_off += ret; return ret; } sox_uint64_t lsx_filelength(sox_format_t * ft) { struct stat st; int ret = ft->fp ? fstat(fileno((FILE*)ft->fp), &st) : 0; return (!ret && (st.st_mode & S_IFREG))? (uint64_t)st.st_size : 0; } int lsx_flush(sox_format_t * ft) { return fflush((FILE*)ft->fp); } off_t lsx_tell(sox_format_t * ft) { return ft->seekable? (off_t)ftello((FILE*)ft->fp) : (off_t)ft->tell_off; } int lsx_eof(sox_format_t * ft) { return feof((FILE*)ft->fp); } int lsx_error(sox_format_t * ft) { return ferror((FILE*)ft->fp); } void lsx_rewind(sox_format_t * ft) { rewind((FILE*)ft->fp); ft->tell_off = 0; } void lsx_clearerr(sox_format_t * ft) { clearerr((FILE*)ft->fp); ft->sox_errno = 0; } int lsx_unreadb(sox_format_t * ft, unsigned b) { return ungetc((int)b, ft->fp); } /* Implements traditional fseek() behavior. Meant to abstract out * file operations so that they could one day also work on memory * buffers. * * N.B. Can only seek forwards on non-seekable streams! */ int lsx_seeki(sox_format_t * ft, off_t offset, int whence) { if (ft->seekable == 0) { /* If a stream peel off chars else EPERM */ if (whence == SEEK_CUR) { while (offset > 0 && !feof((FILE*)ft->fp)) { getc((FILE*)ft->fp); offset--; ++ft->tell_off; } if (offset) lsx_fail_errno(ft,SOX_EOF, "offset past EOF"); else ft->sox_errno = SOX_SUCCESS; } else lsx_fail_errno(ft,SOX_EPERM, "file not seekable"); } else { if (fseeko((FILE*)ft->fp, offset, whence) == -1) lsx_fail_errno(ft,errno, "%s", strerror(errno)); else ft->sox_errno = SOX_SUCCESS; } return ft->sox_errno; } int lsx_offset_seek(sox_format_t * ft, off_t byte_offset, off_t to_sample) { double wide_sample = to_sample - (to_sample % ft->signal.channels); double to_d = wide_sample * ft->encoding.bits_per_sample / 8; off_t to = to_d; return (to != to_d)? SOX_EOF : lsx_seeki(ft, (byte_offset + to), SEEK_SET); } /* Read and write known datatypes in "machine format". Swap if indicated. * They all return SOX_EOF on error and SOX_SUCCESS on success. */ /* Read n-char string (and possibly null-terminating). * Stop reading and null-terminate string if either a 0 or \n is reached. */ int lsx_reads(sox_format_t * ft, char *c, size_t len) { char *sc; char in; sc = c; do { if (lsx_readbuf(ft, &in, (size_t)1) != 1) { *sc = 0; return (SOX_EOF); } if (in == 0 || in == '\n') break; *sc = in; sc++; } while (sc - c < (ptrdiff_t)len); *sc = 0; return(SOX_SUCCESS); } /* Write null-terminated string (without \0). */ int lsx_writes(sox_format_t * ft, char const * c) { if (lsx_writebuf(ft, c, strlen(c)) != strlen(c)) return(SOX_EOF); return(SOX_SUCCESS); } /* return swapped 32-bit float */ static void lsx_swapf(float * f) { union { uint32_t dw; float f; } u; u.f= *f; u.dw= (u.dw>>24) | ((u.dw>>8)&0xff00) | ((u.dw<<8)&0xff0000) | (u.dw<<24); *f = u.f; } static void swap(void * data, size_t len) { uint8_t * bytes = (uint8_t *)data; size_t i; for (i = 0; i < len / 2; ++i) { char tmp = bytes[i]; bytes[i] = bytes[len - 1 - i]; bytes[len - 1 - i] = tmp; } } static double lsx_swapdf(double data) { swap(&data, sizeof(data)); return data; } static uint64_t lsx_swapqw(uint64_t data) { swap(&data, sizeof(data)); return data; } /* Lookup table to reverse the bit order of a byte. ie MSB become LSB */ static uint8_t const cswap[256] = { 0x00, 0x80, 0x40, 0xC0, 0x20, 0xA0, 0x60, 0xE0, 0x10, 0x90, 0x50, 0xD0, 0x30, 0xB0, 0x70, 0xF0, 0x08, 0x88, 0x48, 0xC8, 0x28, 0xA8, 0x68, 0xE8, 0x18, 0x98, 0x58, 0xD8, 0x38, 0xB8, 0x78, 0xF8, 0x04, 0x84, 0x44, 0xC4, 0x24, 0xA4, 0x64, 0xE4, 0x14, 0x94, 0x54, 0xD4, 0x34, 0xB4, 0x74, 0xF4, 0x0C, 0x8C, 0x4C, 0xCC, 0x2C, 0xAC, 0x6C, 0xEC, 0x1C, 0x9C, 0x5C, 0xDC, 0x3C, 0xBC, 0x7C, 0xFC, 0x02, 0x82, 0x42, 0xC2, 0x22, 0xA2, 0x62, 0xE2, 0x12, 0x92, 0x52, 0xD2, 0x32, 0xB2, 0x72, 0xF2, 0x0A, 0x8A, 0x4A, 0xCA, 0x2A, 0xAA, 0x6A, 0xEA, 0x1A, 0x9A, 0x5A, 0xDA, 0x3A, 0xBA, 0x7A, 0xFA, 0x06, 0x86, 0x46, 0xC6, 0x26, 0xA6, 0x66, 0xE6, 0x16, 0x96, 0x56, 0xD6, 0x36, 0xB6, 0x76, 0xF6, 0x0E, 0x8E, 0x4E, 0xCE, 0x2E, 0xAE, 0x6E, 0xEE, 0x1E, 0x9E, 0x5E, 0xDE, 0x3E, 0xBE, 0x7E, 0xFE, 0x01, 0x81, 0x41, 0xC1, 0x21, 0xA1, 0x61, 0xE1, 0x11, 0x91, 0x51, 0xD1, 0x31, 0xB1, 0x71, 0xF1, 0x09, 0x89, 0x49, 0xC9, 0x29, 0xA9, 0x69, 0xE9, 0x19, 0x99, 0x59, 0xD9, 0x39, 0xB9, 0x79, 0xF9, 0x05, 0x85, 0x45, 0xC5, 0x25, 0xA5, 0x65, 0xE5, 0x15, 0x95, 0x55, 0xD5, 0x35, 0xB5, 0x75, 0xF5, 0x0D, 0x8D, 0x4D, 0xCD, 0x2D, 0xAD, 0x6D, 0xED, 0x1D, 0x9D, 0x5D, 0xDD, 0x3D, 0xBD, 0x7D, 0xFD, 0x03, 0x83, 0x43, 0xC3, 0x23, 0xA3, 0x63, 0xE3, 0x13, 0x93, 0x53, 0xD3, 0x33, 0xB3, 0x73, 0xF3, 0x0B, 0x8B, 0x4B, 0xCB, 0x2B, 0xAB, 0x6B, 0xEB, 0x1B, 0x9B, 0x5B, 0xDB, 0x3B, 0xBB, 0x7B, 0xFB, 0x07, 0x87, 0x47, 0xC7, 0x27, 0xA7, 0x67, 0xE7, 0x17, 0x97, 0x57, 0xD7, 0x37, 0xB7, 0x77, 0xF7, 0x0F, 0x8F, 0x4F, 0xCF, 0x2F, 0xAF, 0x6F, 0xEF, 0x1F, 0x9F, 0x5F, 0xDF, 0x3F, 0xBF, 0x7F, 0xFF }; /* Utilities to byte-swap values, use libc optimized macros if possible */ #define TWIDDLE_BYTE(ub, type) \ do { \ if (ft->encoding.reverse_bits) \ ub = cswap[ub]; \ if (ft->encoding.reverse_nibbles) \ ub = ((ub & 15) << 4) | (ub >> 4); \ } while (0); #define TWIDDLE_WORD(uw, type) \ if (ft->encoding.reverse_bytes) \ uw = lsx_swap ## type(uw); #define TWIDDLE_FLOAT(f, type) \ if (ft->encoding.reverse_bytes) \ lsx_swapf(&f); /* N.B. This macro doesn't work for unaligned types (e.g. 3-byte types). */ #define READ_FUNC(type, size, ctype, twiddle) \ size_t lsx_read_ ## type ## _buf( \ sox_format_t * ft, ctype *buf, size_t len) \ { \ size_t n, nread; \ nread = lsx_readbuf(ft, buf, len * size) / size; \ for (n = 0; n < nread; n++) \ twiddle(buf[n], type); \ return nread; \ } /* Unpack a 3-byte value from a uint8_t * */ #define sox_unpack3(p) (ft->encoding.reverse_bytes == MACHINE_IS_BIGENDIAN? \ ((p)[0] | ((p)[1] << 8) | ((p)[2] << 16)) : \ ((p)[2] | ((p)[1] << 8) | ((p)[0] << 16))) /* This (slower) macro works for unaligned types (e.g. 3-byte types) that need to be unpacked. */ #define READ_FUNC_UNPACK(type, size, ctype, twiddle) \ size_t lsx_read_ ## type ## _buf( \ sox_format_t * ft, ctype *buf, size_t len) \ { \ size_t n, nread; \ uint8_t *data = lsx_malloc(size * len); \ nread = lsx_readbuf(ft, data, len * size) / size; \ for (n = 0; n < nread; n++) \ buf[n] = sox_unpack ## size(data + n * size); \ free(data); \ return n; \ } READ_FUNC(b, 1, uint8_t, TWIDDLE_BYTE) READ_FUNC(w, 2, uint16_t, TWIDDLE_WORD) READ_FUNC_UNPACK(3, 3, sox_uint24_t, TWIDDLE_WORD) READ_FUNC(dw, 4, uint32_t, TWIDDLE_WORD) READ_FUNC(qw, 8, uint64_t, TWIDDLE_WORD) READ_FUNC(f, sizeof(float), float, TWIDDLE_FLOAT) READ_FUNC(df, sizeof(double), double, TWIDDLE_WORD) #define READ1_FUNC(type, ctype) \ int lsx_read ## type(sox_format_t * ft, ctype * datum) { \ if (lsx_read_ ## type ## _buf(ft, datum, (size_t)1) == 1) \ return SOX_SUCCESS; \ if (!lsx_error(ft)) \ lsx_fail_errno(ft, errno, premature_eof); \ return SOX_EOF; \ } static char const premature_eof[] = "premature EOF"; READ1_FUNC(b, uint8_t) READ1_FUNC(w, uint16_t) READ1_FUNC(3, sox_uint24_t) READ1_FUNC(dw, uint32_t) READ1_FUNC(qw, uint64_t) READ1_FUNC(f, float) READ1_FUNC(df, double) int lsx_readchars(sox_format_t * ft, char * chars, size_t len) { size_t ret = lsx_readbuf(ft, chars, len); if (ret == len) return SOX_SUCCESS; if (!lsx_error(ft)) lsx_fail_errno(ft, errno, premature_eof); return SOX_EOF; } int lsx_read_fields(sox_format_t *ft, uint32_t *len, const char *spec, ...) { int err = SOX_SUCCESS; va_list ap; #define do_read(type, f, n) do { \ size_t nr; \ if (*len < n * sizeof(type)) { \ err = SOX_EOF; \ goto end; \ } \ nr = lsx_read_##f##_buf(ft, va_arg(ap, type *), r); \ if (nr != n) \ err = SOX_EOF; \ *len -= nr * sizeof(type); \ } while (0) va_start(ap, spec); while (*spec) { unsigned long r = 1; char c = *spec; if (c >= '0' && c <= '9') { char *next; r = strtoul(spec, &next, 10); spec = next; c = *spec; } else if (c == '*') { r = va_arg(ap, int); c = *++spec; } switch (c) { case 'b': do_read(uint8_t, b, r); break; case 'h': do_read(uint16_t, w, r); break; case 'i': do_read(uint32_t, dw, r); break; case 'q': do_read(uint64_t, qw, r); break; case 'x': err = lsx_skipbytes(ft, r); break; default: lsx_fail("lsx_read_fields: invalid format character '%c'", c); err = SOX_EOF; break; } if (err) break; spec++; } end: va_end(ap); #undef do_read return err; } /* N.B. This macro doesn't work for unaligned types (e.g. 3-byte types). */ #define WRITE_FUNC(type, size, ctype, twiddle) \ size_t lsx_write_ ## type ## _buf( \ sox_format_t * ft, ctype *buf, size_t len) \ { \ size_t n, nwritten; \ for (n = 0; n < len; n++) \ twiddle(buf[n], type); \ nwritten = lsx_writebuf(ft, buf, len * size); \ return nwritten / size; \ } /* Pack a 3-byte value to a uint8_t * */ #define sox_pack3(p, v) do {if (ft->encoding.reverse_bytes == MACHINE_IS_BIGENDIAN)\ {(p)[0] = v & 0xff; (p)[1] = (v >> 8) & 0xff; (p)[2] = (v >> 16) & 0xff;} else \ {(p)[2] = v & 0xff; (p)[1] = (v >> 8) & 0xff; (p)[0] = (v >> 16) & 0xff;} \ } while (0) /* This (slower) macro works for unaligned types (e.g. 3-byte types) that need to be packed. */ #define WRITE_FUNC_PACK(type, size, ctype, twiddle) \ size_t lsx_write_ ## type ## _buf( \ sox_format_t * ft, ctype *buf, size_t len) \ { \ size_t n, nwritten; \ uint8_t *data = lsx_malloc(size * len); \ for (n = 0; n < len; n++) \ sox_pack ## size(data + n * size, buf[n]); \ nwritten = lsx_writebuf(ft, data, len * size); \ free(data); \ return nwritten / size; \ } WRITE_FUNC(b, 1, uint8_t, TWIDDLE_BYTE) WRITE_FUNC(w, 2, uint16_t, TWIDDLE_WORD) WRITE_FUNC_PACK(3, 3, sox_uint24_t, TWIDDLE_WORD) WRITE_FUNC(dw, 4, uint32_t, TWIDDLE_WORD) WRITE_FUNC(qw, 8, uint64_t, TWIDDLE_WORD) WRITE_FUNC(f, sizeof(float), float, TWIDDLE_FLOAT) WRITE_FUNC(df, sizeof(double), double, TWIDDLE_WORD) #define WRITE1U_FUNC(type, ctype) \ int lsx_write ## type(sox_format_t * ft, unsigned d) \ { ctype datum = (ctype)d; \ return lsx_write_ ## type ## _buf(ft, &datum, (size_t)1) == 1 ? SOX_SUCCESS : SOX_EOF; \ } #define WRITE1S_FUNC(type, ctype) \ int lsx_writes ## type(sox_format_t * ft, signed d) \ { ctype datum = (ctype)d; \ return lsx_write_ ## type ## _buf(ft, &datum, (size_t)1) == 1 ? SOX_SUCCESS : SOX_EOF; \ } #define WRITE1_FUNC(type, ctype) \ int lsx_write ## type(sox_format_t * ft, ctype datum) \ { \ return lsx_write_ ## type ## _buf(ft, &datum, (size_t)1) == 1 ? SOX_SUCCESS : SOX_EOF; \ } WRITE1U_FUNC(b, uint8_t) WRITE1U_FUNC(w, uint16_t) WRITE1U_FUNC(3, sox_uint24_t) WRITE1U_FUNC(dw, uint32_t) WRITE1_FUNC(qw, uint64_t) WRITE1S_FUNC(b, uint8_t) WRITE1S_FUNC(w, uint16_t) WRITE1_FUNC(df, double) int lsx_writef(sox_format_t * ft, double datum) { float f = datum; return lsx_write_f_buf(ft, &f, (size_t) 1) == 1 ? SOX_SUCCESS : SOX_EOF; }