ref: a9ff0679687a00c8f5b5e23f846f59f406389214
dir: /src/effects_i_dsp.c/
/* libSoX internal DSP functions. * All public functions & data are prefixed with lsx_ . * * Copyright (c) 2008 robs@users.sourceforge.net * * This library is free software; you can redistribute it and/or modify it * under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2.1 of the License, or (at * your option) any later version. * * This library is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser * General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this library; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #ifdef NDEBUG /* Enable assert always. */ #undef NDEBUG /* Must undef above assert.h or other that might include it. */ #endif #include "sox_i.h" #include <assert.h> #include <string.h> /* Numerical Recipes cubic spline */ void lsx_prepare_spline3(double const * x, double const * y, int n, double start_1d, double end_1d, double * y_2d) { double p, qn, sig, un, * u = lsx_malloc((n - 1) * sizeof(*u)); int i; if (start_1d == HUGE_VAL) y_2d[0] = u[0] = 0; /* Start with natural spline or */ else { /* set the start first derivative */ y_2d[0] = -.5; u[0] = (3 / (x[1] - x[0])) * ((y[1] - y[0]) / (x[1] - x[0]) - start_1d); } for (i = 1; i < n - 1; ++i) { sig = (x[i] - x[i - 1]) / (x[i + 1] - x[i - 1]); p = sig * y_2d[i - 1] + 2; y_2d[i] = (sig - 1) / p; u[i] = (y[i + 1] - y[i]) / (x[i + 1] - x[i]) - (y[i] - y[i - 1]) / (x[i] - x[i - 1]); u[i] = (6 * u[i] / (x[i + 1] - x[i - 1]) - sig * u[i - 1]) / p; } if (end_1d == HUGE_VAL) qn = un = 0; /* End with natural spline or */ else { /* set the end first derivative */ qn = .5; un = 3 / (x[n - 1] - x[n - 2]) * (end_1d - (y[n - 1] - y[n - 2]) / (x[n - 1] - x[n - 2])); } y_2d[n - 1] = (un - qn * u[n - 2]) / (qn * y_2d[n - 2] + 1); for (i = n - 2; i >= 0; --i) y_2d[i] = y_2d[i] * y_2d[i + 1] + u[i]; free(u); } double lsx_spline3(double const * x, double const * y, double const * y_2d, int n, double x1) { int t, i[2] = {0, 0}; double d, a, b; for (i[1] = n - 1; i[1] - i[0] > 1; t = (i[1] + i[0]) >> 1, i[x[t] > x1] = t); d = x[i[1]] - x[i[0]]; assert(d != 0); a = (x[i[1]] - x1) / d; b = (x1 - x[i[0]]) / d; return a * y[i[0]] + b * y[i[1]] + ((a * a * a - a) * y_2d[i[0]] + (b * b * b - b) * y_2d[i[1]]) * d * d / 6; } double lsx_bessel_I_0(double x) { double term = 1, sum = 1, last_sum, x2 = x / 2; int i = 1; do { double y = x2 / i++; last_sum = sum, sum += term *= y * y; } while (sum != last_sum); return sum; } int lsx_set_dft_length(int num_taps) /* Set to 4 x nearest power of 2 */ { int result, n = num_taps; for (result = 8; n > 2; result <<= 1, n >>= 1); result = range_limit(result, 4096, 131072); assert(num_taps * 2 < result); return result; } #include "fft4g.h" static int * lsx_fft_br; static double * lsx_fft_sc; static int fft_len = -1; #ifdef HAVE_OPENMP static omp_lock_t fft_cache_lock; #endif void init_fft_cache(void) { assert(lsx_fft_br == NULL); assert(lsx_fft_sc == NULL); assert(fft_len == -1); omp_init_lock(&fft_cache_lock); fft_len = 0; } void clear_fft_cache(void) { assert(fft_len >= 0); omp_destroy_lock(&fft_cache_lock); free(lsx_fft_br); free(lsx_fft_sc); lsx_fft_sc = NULL; lsx_fft_br = NULL; fft_len = -1; } static sox_bool is_power_of_2(int x) { return !(x < 2 || (x & (x - 1))); } static void update_fft_cache(int len) { assert(is_power_of_2(len)); assert(fft_len >= 0); omp_set_lock(&fft_cache_lock); if (len > fft_len) { int old_n = fft_len; fft_len = len; lsx_fft_br = lsx_realloc(lsx_fft_br, dft_br_len(fft_len) * sizeof(*lsx_fft_br)); lsx_fft_sc = lsx_realloc(lsx_fft_sc, dft_sc_len(fft_len) * sizeof(*lsx_fft_sc)); if (!old_n) lsx_fft_br[0] = 0; } } void lsx_safe_rdft(int len, int type, double * d) { update_fft_cache(len); lsx_rdft(len, type, d, lsx_fft_br, lsx_fft_sc); omp_unset_lock(&fft_cache_lock); } void lsx_safe_cdft(int len, int type, double * d) { update_fft_cache(len); lsx_cdft(len, type, d, lsx_fft_br, lsx_fft_sc); omp_unset_lock(&fft_cache_lock); } void lsx_power_spectrum(int n, double const * in, double * out) { int i; double * work = lsx_memdup(in, n * sizeof(*work)); lsx_safe_rdft(n, 1, work); out[0] = sqr(work[0]); for (i = 2; i < n; i += 2) out[i >> 1] = sqr(work[i]) + sqr(work[i + 1]); out[i >> 1] = sqr(work[1]); free(work); } void lsx_power_spectrum_f(int n, float const * in, float * out) { int i; double * work = lsx_malloc(n * sizeof(*work)); for (i = 0; i< n; ++i) work[i] = in[i]; lsx_safe_rdft(n, 1, work); out[0] = sqr(work[0]); for (i = 2; i < n; i += 2) out[i >> 1] = sqr(work[i]) + sqr(work[i + 1]); out[i >> 1] = sqr(work[1]); free(work); } void lsx_apply_hann_f(float h[], const int num_points) { int i, m = num_points - 1; for (i = 0; i < num_points; ++i) { double x = 2 * M_PI * i / m; h[i] *= .5 - .5 * cos(x); } } void lsx_apply_hann(double h[], const int num_points) { int i, m = num_points - 1; for (i = 0; i < num_points; ++i) { double x = 2 * M_PI * i / m; h[i] *= .5 - .5 * cos(x); } } void lsx_apply_hamming(double h[], const int num_points) { int i, m = num_points - 1; for (i = 0; i < num_points; ++i) { double x = 2 * M_PI * i / m; h[i] *= .53836 - .46164 * cos(x); } } void lsx_apply_bartlett(double h[], const int num_points) { int i, m = num_points - 1; for (i = 0; i < num_points; ++i) { h[i] *= 2. / m * (m / 2. - fabs(i - m / 2.)); } } void lsx_apply_blackman(double h[], const int num_points, double alpha /*.16*/) { int i, m = num_points - 1; for (i = 0; i < num_points; ++i) { double x = 2 * M_PI * i / m; h[i] *= (1 - alpha) *.5 - .5 * cos(x) + alpha * .5 * cos(2 * x); } } void lsx_apply_blackman_nutall(double h[], const int num_points) { int i, m = num_points - 1; for (i = 0; i < num_points; ++i) { double x = 2 * M_PI * i / m; h[i] *= .3635819 - .4891775 * cos(x) + .1365995 * cos(2 * x) - .0106411 * cos(3 * x); } } double lsx_kaiser_beta(double att) { if (att > 100 ) return .1117 * att - 1.11; if (att > 50 ) return .1102 * (att - 8.7); if (att > 20.96) return .58417 * pow(att -20.96, .4) + .07886 * (att - 20.96); return 0; } void lsx_apply_kaiser(double h[], const int num_points, double beta) { int i, m = num_points - 1; for (i = 0; i <= m; ++i) { double x = 2. * i / m - 1; h[i] *= lsx_bessel_I_0(beta * sqrt(1 - x * x)) / lsx_bessel_I_0(beta); } } double * lsx_make_lpf(int num_taps, double Fc, double beta, double scale, sox_bool dc_norm) { int i, m = num_taps - 1; double * h = malloc(num_taps * sizeof(*h)), sum = 0; double mult = scale / lsx_bessel_I_0(beta); assert(Fc >= 0 && Fc <= 1); lsx_debug("make_lpf(n=%i, Fc=%g beta=%g dc-norm=%i scale=%g)", num_taps, Fc, beta, dc_norm, scale); for (i = 0; i <= m / 2; ++i) { double x = M_PI * (i - .5 * m), y = 2. * i / m - 1; h[i] = x? sin(Fc * x) / x : Fc; sum += h[i] *= lsx_bessel_I_0(beta * sqrt(1 - y * y)) * mult; if (m - i != i) sum += h[m - i] = h[i]; } for (i = 0; dc_norm && i < num_taps; ++i) h[i] *= scale / sum; return h; } int lsx_lpf_num_taps(double att, double tr_bw, int k) { /* TODO this could be cleaner, esp. for k != 0 */ int n; if (att <= 80) n = .25 / M_PI * (att - 7.95) / (2.285 * tr_bw) + .5; else { double n160 = (.0425* att - 1.4) / tr_bw; /* Half order for att = 160 */ n = n160 * (16.556 / (att - 39.6) + .8625) + .5; /* For att [80,160) */ } return k? 2 * n : 2 * (n + (n & 1)) + 1; /* =1 %4 (0 phase 1/2 band) */ } double * lsx_design_lpf( double Fp, /* End of pass-band; ~= 0.01dB point */ double Fc, /* Start of stop-band */ double Fn, /* Nyquist freq; e.g. 0.5, 1, PI */ sox_bool allow_aliasing, double att, /* Stop-band attenuation in dB */ int * num_taps, /* (Single phase.) 0: value will be estimated */ int k) /* Number of phases; 0 for single-phase */ { double tr_bw, beta; if (allow_aliasing) Fc += (Fc - Fp) * LSX_TO_3dB; Fp /= Fn, Fc /= Fn; /* Normalise to Fn = 1 */ tr_bw = LSX_TO_6dB * (Fc-Fp); /* Transition band-width: 6dB to stop points */ if (!*num_taps) *num_taps = lsx_lpf_num_taps(att, tr_bw, k); beta = lsx_kaiser_beta(att); if (k) *num_taps = *num_taps * k - 1; else k = 1; lsx_debug("%g %g %g", Fp, tr_bw, Fc); return lsx_make_lpf(*num_taps, (Fc - tr_bw) / k, beta, (double)k, sox_true); } static double safe_log(double x) { assert(x >= 0); if (x) return log(x); lsx_debug("log(0)"); return -26; } void lsx_fir_to_phase(double * * h, int * len, int * post_len, double phase) { double * pi_wraps, * work, phase1 = (phase > 50 ? 100 - phase : phase) / 50; int i, work_len, begin, end, imp_peak = 0, peak = 0; double imp_sum = 0, peak_imp_sum = 0; double prev_angle2 = 0, cum_2pi = 0, prev_angle1 = 0, cum_1pi = 0; for (i = *len, work_len = 2 * 2 * 8; i > 1; work_len <<= 1, i >>= 1); work = lsx_calloc((size_t)work_len + 2, sizeof(*work)); /* +2: (UN)PACK */ pi_wraps = lsx_malloc((((size_t)work_len + 2) / 2) * sizeof(*pi_wraps)); memcpy(work, *h, *len * sizeof(*work)); lsx_safe_rdft(work_len, 1, work); /* Cepstral: */ LSX_UNPACK(work, work_len); for (i = 0; i <= work_len; i += 2) { double angle = atan2(work[i + 1], work[i]); double detect = 2 * M_PI; double delta = angle - prev_angle2; double adjust = detect * ((delta < -detect * .7) - (delta > detect * .7)); prev_angle2 = angle; cum_2pi += adjust; angle += cum_2pi; detect = M_PI; delta = angle - prev_angle1; adjust = detect * ((delta < -detect * .7) - (delta > detect * .7)); prev_angle1 = angle; cum_1pi += fabs(adjust); /* fabs for when 2pi and 1pi have combined */ pi_wraps[i >> 1] = cum_1pi; work[i] = safe_log(sqrt(sqr(work[i]) + sqr(work[i + 1]))); work[i + 1] = 0; } LSX_PACK(work, work_len); lsx_safe_rdft(work_len, -1, work); for (i = 0; i < work_len; ++i) work[i] *= 2. / work_len; for (i = 1; i < work_len / 2; ++i) { /* Window to reject acausal components */ work[i] *= 2; work[i + work_len / 2] = 0; } lsx_safe_rdft(work_len, 1, work); for (i = 2; i < work_len; i += 2) /* Interpolate between linear & min phase */ work[i + 1] = phase1 * i / work_len * pi_wraps[work_len >> 1] + (1 - phase1) * (work[i + 1] + pi_wraps[i >> 1]) - pi_wraps[i >> 1]; work[0] = exp(work[0]), work[1] = exp(work[1]); for (i = 2; i < work_len; i += 2) { double x = exp(work[i]); work[i ] = x * cos(work[i + 1]); work[i + 1] = x * sin(work[i + 1]); } lsx_safe_rdft(work_len, -1, work); for (i = 0; i < work_len; ++i) work[i] *= 2. / work_len; /* Find peak pos. */ for (i = 0; i <= (int)(pi_wraps[work_len >> 1] / M_PI + .5); ++i) { imp_sum += work[i]; if (fabs(imp_sum) > fabs(peak_imp_sum)) { peak_imp_sum = imp_sum; peak = i; } if (work[i] > work[imp_peak]) /* For debug check only */ imp_peak = i; } while (peak && fabs(work[peak-1]) > fabs(work[peak]) && work[peak-1] * work[peak] > 0) --peak; if (!phase1) begin = 0; else if (phase1 == 1) begin = peak - *len / 2; else { begin = (.997 - (2 - phase1) * .22) * *len + .5; end = (.997 + (0 - phase1) * .22) * *len + .5; begin = peak - begin - (begin & 1); end = peak + 1 + end + (end & 1); *len = end - begin; *h = lsx_realloc(*h, *len * sizeof(**h)); } for (i = 0; i < *len; ++i) (*h)[i] = work[(begin + (phase > 50 ? *len - 1 - i : i) + work_len) & (work_len - 1)]; *post_len = phase > 50 ? peak - begin : begin + *len - (peak + 1); lsx_debug("nPI=%g peak-sum@%i=%g (val@%i=%g); len=%i post=%i (%g%%)", pi_wraps[work_len >> 1] / M_PI, peak, peak_imp_sum, imp_peak, work[imp_peak], *len, *post_len, 100 - 100. * *post_len / (*len - 1)); free(pi_wraps), free(work); } void lsx_plot_fir(double * h, int num_points, sox_rate_t rate, sox_plot_t type, char const * title, double y1, double y2) { int i, N = lsx_set_dft_length(num_points); if (type == sox_plot_gnuplot) { double * h1 = lsx_calloc(N, sizeof(*h1)); double * H = lsx_malloc((N / 2 + 1) * sizeof(*H)); memcpy(h1, h, sizeof(*h1) * num_points); lsx_power_spectrum(N, h1, H); printf( "# gnuplot file\n" "set title '%s'\n" "set xlabel 'Frequency (Hz)'\n" "set ylabel 'Amplitude Response (dB)'\n" "set grid xtics ytics\n" "set key off\n" "plot '-' with lines\n" , title); for (i = 0; i <= N/2; ++i) printf("%g %g\n", i * rate / N, 10 * log10(H[i])); printf( "e\n" "pause -1 'Hit return to continue'\n"); free(H); free(h1); } else if (type == sox_plot_octave) { printf("%% GNU Octave file (may also work with MATLAB(R) )\nb=["); for (i = 0; i < num_points; ++i) printf("%24.16e\n", h[i]); printf("];\n" "[h,w]=freqz(b,1,%i);\n" "plot(%g*w/pi,20*log10(h))\n" "title('%s')\n" "xlabel('Frequency (Hz)')\n" "ylabel('Amplitude Response (dB)')\n" "grid on\n" "axis([0 %g %g %g])\n" "disp('Hit return to continue')\n" "pause\n" , N, rate * .5, title, rate * .5, y1, y2); } else if (type == sox_plot_data) { printf("# %s\n" "# name: b\n" "# type: matrix\n" "# rows: %i\n" "# columns: 1\n", title, num_points); for (i = 0; i < num_points; ++i) printf("%24.16e\n", h[i]); } }