ref: 546452fba192387faad314496c6e5d990b6b1564
dir: /src/loudness.c/
/* Effect: loudness filter Copyright (c) 2008 robs@users.sourceforge.net * * This library is free software; you can redistribute it and/or modify it * under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2.1 of the License, or (at * your option) any later version. * * This library is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser * General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this library; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "sox_i.h" #include "fft4g.h" #define FIFO_SIZE_T int #include "fifo.h" #include <string.h> typedef struct { int dft_length, num_taps; double * coefs; } filter_t; typedef struct { double delta, start; int n; size_t samples_in, samples_out; fifo_t input_fifo, output_fifo; filter_t filter, * filter_ptr; } priv_t; static int create(sox_effect_t * effp, int argc, char **argv) { priv_t * p = (priv_t *)effp->priv; p->filter_ptr = &p->filter; p->delta = -10; p->start = 65; p->n = 1023; do { /* break-able block */ NUMERIC_PARAMETER(delta,-50 , 15) /* FIXME expand range */ NUMERIC_PARAMETER(start, 50 , 75) /* FIXME expand range */ NUMERIC_PARAMETER(n ,127 ,2047) } while (0); p->n = 2 * p->n + 1; return argc? lsx_usage(effp) : SOX_SUCCESS; } static double * make_filter(int n, double start, double delta, double rate) { static const struct {double f, af, lu, tf;} iso226_table[] = { { 20,0.532,-31.6,78.5},{ 25,0.506,-27.2,68.7},{ 31.5,0.480,-23.0,59.5}, { 40,0.455,-19.1,51.1},{ 50,0.432,-15.9,44.0},{ 63,0.409,-13.0,37.5}, { 80,0.387,-10.3,31.5},{ 100,0.367, -8.1,26.5},{ 125,0.349, -6.2,22.1}, { 160,0.330, -4.5,17.9},{ 200,0.315, -3.1,14.4},{ 250,0.301, -2.0,11.4}, { 315,0.288, -1.1, 8.6},{ 400,0.276, -0.4, 6.2},{ 500,0.267, 0.0, 4.4}, { 630,0.259, 0.3, 3.0},{ 800,0.253, 0.5, 2.2},{ 1000,0.250, 0.0, 2.4}, { 1250,0.246, -2.7, 3.5},{ 1600,0.244, -4.1, 1.7},{ 2000,0.243, -1.0,-1.3}, { 2500,0.243, 1.7,-4.2},{ 3150,0.243, 2.5,-6.0},{ 4000,0.242, 1.2,-5.4}, { 5000,0.242, -2.1,-1.5},{ 6300,0.245, -7.1, 6.0},{ 8000,0.254,-11.2,12.6}, {10000,0.271,-10.7,13.9},{12500,0.301, -3.1,12.3}, }; #define LEN (array_length(iso226_table) + 2) #define SPL(phon, t) (10 / t.af * log10(4.47e-3 * (pow(10., .025 * (phon)) - \ 1.15) + pow(.4 * pow(10., (t.tf + t.lu) / 10 - 9), t.af)) - t.lu + 94) double fs[LEN], spl[LEN], d[LEN], * work, * h; int i, work_len; fs[0] = log(1.); spl[0] = delta * .2; for (i = 0; i < (int)LEN - 2; ++i) { spl[i + 1] = SPL(start + delta, iso226_table[i]) - SPL(start , iso226_table[i]); fs[i + 1] = log(iso226_table[i].f); } fs[i + 1] = log(100000.); spl[i + 1] = spl[0]; lsx_prepare_spline3(fs, spl, (int)LEN, HUGE_VAL, HUGE_VAL, d); for (work_len = 8192; work_len < rate / 2; work_len <<= 1); work = lsx_calloc(work_len, sizeof(*work)); h = lsx_calloc(n, sizeof(*h)); for (i = 1; i <= work_len / 2; ++i) { double f = rate * i / work_len; double spl1 = f < 1? spl[0] : lsx_spline3(fs, spl, d, (int)LEN, log(f)); work[i < work_len / 2 ? 2 * i : 1] = dB_to_linear(spl1); } lsx_safe_rdft(work_len, -1, work); for (i = 0; i < n; ++i) h[i] = work[(work_len - n / 2 + i) % work_len] * 2. / work_len; lsx_apply_kaiser(h, n, lsx_kaiser_beta(40 + 2./3 * fabs(delta))); free(work); return h; #undef SPL #undef LEN } static int start(sox_effect_t * effp) { priv_t * p = (priv_t *) effp->priv; int i, half = p->n / 2, dft_length = lsx_set_dft_length(p->n); double * h; if (p->delta == 0) return SOX_EFF_NULL; if (!p->filter_ptr->num_taps) { h = make_filter(p->n, p->start, p->delta, effp->in_signal.rate); p->filter_ptr->coefs = lsx_calloc(dft_length, sizeof(*p->filter_ptr->coefs)); for (i = 0; i < p->n; ++i) p->filter_ptr->coefs[(i + dft_length - p->n + 1) & (dft_length - 1)] = h[i] / dft_length * 2; free(h); p->filter_ptr->num_taps = p->n; p->filter_ptr->dft_length = dft_length; lsx_safe_rdft(dft_length, 1, p->filter_ptr->coefs); } fifo_create(&p->input_fifo, (int)sizeof(double)); memset(fifo_reserve(&p->input_fifo, half), 0, sizeof(double) * half); fifo_create(&p->output_fifo, (int)sizeof(double)); return SOX_SUCCESS; } static void filter(priv_t * p) { int i, num_in = max(0, fifo_occupancy(&p->input_fifo)); filter_t const * f = p->filter_ptr; int const overlap = f->num_taps - 1; double * output; while (num_in >= f->dft_length) { double const * input = fifo_read_ptr(&p->input_fifo); fifo_read(&p->input_fifo, f->dft_length - overlap, NULL); num_in -= f->dft_length - overlap; output = fifo_reserve(&p->output_fifo, f->dft_length); fifo_trim_by(&p->output_fifo, overlap); memcpy(output, input, f->dft_length * sizeof(*output)); lsx_rdft(f->dft_length, 1, output, lsx_fft_br, lsx_fft_sc); output[0] *= f->coefs[0]; output[1] *= f->coefs[1]; for (i = 2; i < f->dft_length; i += 2) { double tmp = output[i]; output[i ] = f->coefs[i ] * tmp - f->coefs[i+1] * output[i+1]; output[i+1] = f->coefs[i+1] * tmp + f->coefs[i ] * output[i+1]; } lsx_rdft(f->dft_length, -1, output, lsx_fft_br, lsx_fft_sc); } } static int flow(sox_effect_t * effp, const sox_sample_t * ibuf, sox_sample_t * obuf, size_t * isamp, size_t * osamp) { priv_t * p = (priv_t *)effp->priv; size_t i, odone = min(*osamp, (size_t)fifo_occupancy(&p->output_fifo)); double const * s = fifo_read(&p->output_fifo, (int)odone, NULL); for (i = 0; i < odone; ++i) *obuf++ = SOX_FLOAT_64BIT_TO_SAMPLE(*s++, effp->clips); p->samples_out += odone; if (*isamp && odone < *osamp) { double * t = fifo_write(&p->input_fifo, (int)*isamp, NULL); p->samples_in += (int)*isamp; for (i = *isamp; i; --i) *t++ = SOX_SAMPLE_TO_FLOAT_64BIT(*ibuf++, effp->clips); filter(p); } else *isamp = 0; *osamp = odone; return SOX_SUCCESS; } static int drain(sox_effect_t * effp, sox_sample_t * obuf, size_t * osamp) { priv_t * p = (priv_t *)effp->priv; static size_t isamp = 0; size_t samples_out = p->samples_in; size_t remaining = samples_out - p->samples_out; double * buff = lsx_calloc(1024, sizeof(*buff)); if ((int)remaining > 0) { while ((size_t)fifo_occupancy(&p->output_fifo) < remaining) { fifo_write(&p->input_fifo, 1024, buff); p->samples_in += 1024; filter(p); } fifo_trim_to(&p->output_fifo, (int)remaining); p->samples_in = 0; } free(buff); return flow(effp, 0, obuf, &isamp, osamp); } static int stop(sox_effect_t * effp) { priv_t * p = (priv_t *) effp->priv; fifo_delete(&p->input_fifo); fifo_delete(&p->output_fifo); free(p->filter_ptr->coefs); memset(p->filter_ptr, 0, sizeof(*p->filter_ptr)); return SOX_SUCCESS; } sox_effect_handler_t const * sox_loudness_effect_fn(void) { static sox_effect_handler_t handler = { "loudness", "[gain [ref]]", 0, create, start, flow, drain, stop, NULL, sizeof(priv_t) }; return &handler; }