ref: 1928b9a1ba6f7c18ebc058835f308c3d7016a1da
dir: /codec/encoder/core/src/md.cpp/
/*!
* \copy
* Copyright (c) 2009-2013, Cisco Systems
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*
* \file md.c
*
* \brief mode decision
*
* \date 2009.05.14 Created
*
*************************************************************************************
*/
#include <string.h>
#include "ls_defines.h"
#include "encoder_context.h"
#include "svc_enc_slice_segment.h"
#include "md.h"
#include "mc.h"
#include "mv_pred.h"
#include "cpu_core.h"
#include "svc_enc_golomb.h"
#include "sample.h"
#include "array_stack_align.h"
namespace WelsSVCEnc {
#define INTRA_VARIANCE_SAD_THRESHOLD 150
#define INTER_VARIANCE_SAD_THRESHOLD 20
//fill cache of neighbor MB, containing pNonZeroCount, sample_avail, pIntra4x4PredMode
void FillNeighborCacheIntra(SMbCache* pMbCache, SMB* pCurMb, int32_t iMbWidth)
{
uint32_t uiNeighborAvail = pCurMb->uiNeighborAvail;
uint32_t uiNeighborIntra = 0;
if (uiNeighborAvail & LEFT_MB_POS) //LEFT MB
{
int8_t* pLeftMbNonZeroCount = pCurMb->pNonZeroCount - MB_LUMA_CHROMA_BLOCK4x4_NUM;
pMbCache->iNonZeroCoeffCount[8] = pLeftMbNonZeroCount[ 3];
pMbCache->iNonZeroCoeffCount[16] = pLeftMbNonZeroCount[ 7];
pMbCache->iNonZeroCoeffCount[24] = pLeftMbNonZeroCount[11];
pMbCache->iNonZeroCoeffCount[32] = pLeftMbNonZeroCount[15];
pMbCache->iNonZeroCoeffCount[ 13] = pLeftMbNonZeroCount[17];
pMbCache->iNonZeroCoeffCount[21] = pLeftMbNonZeroCount[21];
pMbCache->iNonZeroCoeffCount[37] = pLeftMbNonZeroCount[19];
pMbCache->iNonZeroCoeffCount[45] = pLeftMbNonZeroCount[23];
uiNeighborIntra |= LEFT_MB_POS;
if ( IS_INTRA4x4((pCurMb-1)->uiMbType ) )
{
int8_t* pLeftMbIntra4x4PredMode = pCurMb->pIntra4x4PredMode - INTRA_4x4_MODE_NUM;
pMbCache->iIntraPredMode[8] = pLeftMbIntra4x4PredMode[4];
pMbCache->iIntraPredMode[16] = pLeftMbIntra4x4PredMode[5];
pMbCache->iIntraPredMode[24] = pLeftMbIntra4x4PredMode[6];
pMbCache->iIntraPredMode[32] = pLeftMbIntra4x4PredMode[3];
}
else// if ( 0 == constrained_intra_pred_flag || IS_INTRA16x16((pCurMb-1)->uiMbType ))
{
pMbCache->iIntraPredMode[8] =
pMbCache->iIntraPredMode[16] =
pMbCache->iIntraPredMode[24] =
pMbCache->iIntraPredMode[32] = 2; //DC
}
}
else
{
pMbCache->iNonZeroCoeffCount[ 8] =
pMbCache->iNonZeroCoeffCount[16] =
pMbCache->iNonZeroCoeffCount[24] =
pMbCache->iNonZeroCoeffCount[32] = -1;//unavailable
pMbCache->iNonZeroCoeffCount[13] =
pMbCache->iNonZeroCoeffCount[21] =
pMbCache->iNonZeroCoeffCount[37] =
pMbCache->iNonZeroCoeffCount[45] = -1;//unavailable
pMbCache->iIntraPredMode[8] =
pMbCache->iIntraPredMode[16] =
pMbCache->iIntraPredMode[24] =
pMbCache->iIntraPredMode[32] = -1;//unavailable
}
if (uiNeighborAvail & TOP_MB_POS)//TOP MB
{
SMB* pTopMb = pCurMb - iMbWidth;
ST32(&pMbCache->iNonZeroCoeffCount[1], LD32(&pTopMb->pNonZeroCount[12]));
ST16(&pMbCache->iNonZeroCoeffCount[6], LD16(&pTopMb->pNonZeroCount[20]));
ST16(&pMbCache->iNonZeroCoeffCount[30], LD16(&pTopMb->pNonZeroCount[22]));
uiNeighborIntra |= TOP_MB_POS;
if ( IS_INTRA4x4( pTopMb->uiMbType ) )
{
ST32(pMbCache->iIntraPredMode+1, LD32(&pTopMb->pIntra4x4PredMode[0]));
}
else// if ( 0 == constrained_intra_pred_flag || IS_INTRA16x16( pTopMb->uiMbType ))
{
const uint32_t kuiDc32 = 0x02020202;
ST32( pMbCache->iIntraPredMode+1 , kuiDc32 );
}
}
else
{
const uint32_t kuiUnavail32 = 0xffffffff;
ST32( pMbCache->iIntraPredMode+1 , kuiUnavail32 );
ST32( &pMbCache->iNonZeroCoeffCount[1], kuiUnavail32 );
ST16( &pMbCache->iNonZeroCoeffCount[6], 0xffff );
ST16( &pMbCache->iNonZeroCoeffCount[30], 0xffff );
}
if (uiNeighborAvail & TOPLEFT_MB_POS)
{
uiNeighborIntra |= 0x04;
}
if (uiNeighborAvail & TOPRIGHT_MB_POS)
{
uiNeighborIntra |= 0x08;
}
pMbCache->uiNeighborIntra = uiNeighborIntra;
}
//fill cache of neighbor MB, containing motion_vector and uiRefIndex
void FillNeighborCacheInterWithoutBGD(SMbCache* pMbCache, SMB* pCurMb, int32_t iMbWidth, int8_t *pVaaBgMbFlag)
{
uint32_t uiNeighborAvail = pCurMb->uiNeighborAvail;
SMB* pLeftMb = pCurMb -1 ;
SMB* pTopMb = pCurMb -iMbWidth;
SMB* pLeftTopMb = pCurMb - iMbWidth - 1 ;
SMB* iRightTopMb = pCurMb -iMbWidth + 1 ;
SMVComponentUnit *pMvComp = &pMbCache->sMvComponents;
if( (uiNeighborAvail & LEFT_MB_POS) && IS_SVC_INTER(pLeftMb->uiMbType) )
{
pMvComp->sMotionVectorCache[ 6] = pLeftMb->sMv[ 3];
pMvComp->sMotionVectorCache[12] = pLeftMb->sMv[ 7];
pMvComp->sMotionVectorCache[18] = pLeftMb->sMv[11];
pMvComp->sMotionVectorCache[24] = pLeftMb->sMv[15];
pMvComp->iRefIndexCache[ 6] = pLeftMb->pRefIndex[1];
pMvComp->iRefIndexCache[12] = pLeftMb->pRefIndex[1];
pMvComp->iRefIndexCache[18] = pLeftMb->pRefIndex[3];
pMvComp->iRefIndexCache[24] = pLeftMb->pRefIndex[3];
pMbCache->iSadCost[3] = pLeftMb->pSadCost[0];
if ( pLeftMb->uiMbType == MB_TYPE_SKIP )
{
pMbCache->bMbTypeSkip[3] = 1;
pMbCache->iSadCostSkip[3] = pMbCache->pEncSad[-1];
}
else
{
pMbCache->bMbTypeSkip[3] = 0;
pMbCache->iSadCostSkip[3] = 0;
}
}
else //avail or non-inter
{
ST32(&pMvComp->sMotionVectorCache[ 6], 0);
ST32(&pMvComp->sMotionVectorCache[12], 0);
ST32(&pMvComp->sMotionVectorCache[18], 0);
ST32(&pMvComp->sMotionVectorCache[24], 0);
pMvComp->iRefIndexCache[ 6] =
pMvComp->iRefIndexCache[12] =
pMvComp->iRefIndexCache[18] =
pMvComp->iRefIndexCache[24] = (uiNeighborAvail & LEFT_MB_POS) ? REF_NOT_IN_LIST : REF_NOT_AVAIL;
pMbCache->iSadCost[3] = 0;
pMbCache->bMbTypeSkip[3] = 0;
pMbCache->iSadCostSkip[3] = 0;
}
if ( (uiNeighborAvail & TOP_MB_POS) && IS_SVC_INTER(pTopMb->uiMbType) ) //TOP MB
{
ST64(&pMvComp->sMotionVectorCache[1], LD64(&pTopMb->sMv[12]));
ST64(&pMvComp->sMotionVectorCache[3], LD64(&pTopMb->sMv[14]));
pMvComp->iRefIndexCache[1] = pTopMb->pRefIndex[2];
pMvComp->iRefIndexCache[2] = pTopMb->pRefIndex[2];
pMvComp->iRefIndexCache[3] = pTopMb->pRefIndex[3];
pMvComp->iRefIndexCache[4] = pTopMb->pRefIndex[3];
pMbCache->iSadCost[1] = pTopMb->pSadCost[0];
if ( pTopMb->uiMbType == MB_TYPE_SKIP )
{
pMbCache->bMbTypeSkip[1] = 1;
pMbCache->iSadCostSkip[1] = pMbCache->pEncSad[-iMbWidth];
}
else
{
pMbCache->bMbTypeSkip[1] = 0;
pMbCache->iSadCostSkip[1] = 0;
}
}
else //unavail
{
ST64(&pMvComp->sMotionVectorCache[1], 0);
ST64(&pMvComp->sMotionVectorCache[3], 0);
pMvComp->iRefIndexCache[1] =
pMvComp->iRefIndexCache[2] =
pMvComp->iRefIndexCache[3] =
pMvComp->iRefIndexCache[4] = (uiNeighborAvail & TOP_MB_POS) ? REF_NOT_IN_LIST : REF_NOT_AVAIL;
pMbCache->iSadCost[1] = 0;
pMbCache->bMbTypeSkip[1] = 0;
pMbCache->iSadCostSkip[1] = 0;
}
if ( (uiNeighborAvail & TOPLEFT_MB_POS) && IS_SVC_INTER(pLeftTopMb->uiMbType) ) //LEFT_TOP MB
{
pMvComp->sMotionVectorCache[0] = pLeftTopMb->sMv[15];
pMvComp->iRefIndexCache[0] = pLeftTopMb->pRefIndex[3];
pMbCache->iSadCost[0] = pLeftTopMb->pSadCost[0];
if ( pLeftTopMb->uiMbType == MB_TYPE_SKIP )
{
pMbCache->bMbTypeSkip[0] = 1;
pMbCache->iSadCostSkip[0] = pMbCache->pEncSad[-iMbWidth-1];
}
else
{
pMbCache->bMbTypeSkip[0] = 0;
pMbCache->iSadCostSkip[0] = 0;
}
}
else //unavail
{
ST32(&pMvComp->sMotionVectorCache[0], 0);
pMvComp->iRefIndexCache[0] = (uiNeighborAvail & TOPLEFT_MB_POS) ? REF_NOT_IN_LIST : REF_NOT_AVAIL;
pMbCache->iSadCost[0] = 0;
pMbCache->bMbTypeSkip[0] = 0;
pMbCache->iSadCostSkip[0] = 0;
}
if ((uiNeighborAvail & TOPRIGHT_MB_POS) && IS_SVC_INTER(iRightTopMb->uiMbType) ) //RIGHT_TOP MB
{
pMvComp->sMotionVectorCache[5] = iRightTopMb->sMv[12];
pMvComp->iRefIndexCache[5] = iRightTopMb->pRefIndex[2];
pMbCache->iSadCost[2] = iRightTopMb->pSadCost[0];
if ( iRightTopMb->uiMbType == MB_TYPE_SKIP )
{
pMbCache->bMbTypeSkip[2] = 1;
pMbCache->iSadCostSkip[2] = pMbCache->pEncSad[-iMbWidth+1];
}
else
{
pMbCache->bMbTypeSkip[2] = 0;
pMbCache->iSadCostSkip[2] = 0;
}
}
else //unavail
{
ST32(&pMvComp->sMotionVectorCache[5], 0);
pMvComp->iRefIndexCache[5] = (uiNeighborAvail & TOPRIGHT_MB_POS) ? REF_NOT_IN_LIST : REF_NOT_AVAIL;
pMbCache->iSadCost[2] = 0;
pMbCache->bMbTypeSkip[2] = 0;
pMbCache->iSadCostSkip[2] = 0;
}
//right-top 4*4 pBlock unavailable
ST32(&pMvComp->sMotionVectorCache[ 9], 0);
ST32(&pMvComp->sMotionVectorCache[21], 0);
ST32(&pMvComp->sMotionVectorCache[11], 0);
ST32(&pMvComp->sMotionVectorCache[17], 0);
ST32(&pMvComp->sMotionVectorCache[23], 0);
pMvComp->iRefIndexCache[ 9] =
pMvComp->iRefIndexCache[11] =
pMvComp->iRefIndexCache[17] =
pMvComp->iRefIndexCache[21] =
pMvComp->iRefIndexCache[23] = REF_NOT_AVAIL;
}
void FillNeighborCacheInterWithBGD(SMbCache* pMbCache, SMB* pCurMb, int32_t iMbWidth, int8_t *pVaaBgMbFlag)
{
uint32_t uiNeighborAvail = pCurMb->uiNeighborAvail;
SMB* pLeftMb = pCurMb -1 ;
SMB* pTopMb = pCurMb -iMbWidth;
SMB* pLeftTopMb = pCurMb - iMbWidth - 1 ;
SMB* iRightTopMb = pCurMb -iMbWidth + 1 ;
SMVComponentUnit *pMvComp = &pMbCache->sMvComponents;
if( (uiNeighborAvail & LEFT_MB_POS) && IS_SVC_INTER(pLeftMb->uiMbType) )
{
pMvComp->sMotionVectorCache[ 6] = pLeftMb->sMv[ 3];
pMvComp->sMotionVectorCache[12] = pLeftMb->sMv[ 7];
pMvComp->sMotionVectorCache[18] = pLeftMb->sMv[11];
pMvComp->sMotionVectorCache[24] = pLeftMb->sMv[15];
pMvComp->iRefIndexCache[ 6] = pLeftMb->pRefIndex[1];
pMvComp->iRefIndexCache[12] = pLeftMb->pRefIndex[1];
pMvComp->iRefIndexCache[18] = pLeftMb->pRefIndex[3];
pMvComp->iRefIndexCache[24] = pLeftMb->pRefIndex[3];
pMbCache->iSadCost[3] = pLeftMb->pSadCost[0];
if ( pLeftMb->uiMbType == MB_TYPE_SKIP && pVaaBgMbFlag[-1] == 0)
{
pMbCache->bMbTypeSkip[3] = 1;
pMbCache->iSadCostSkip[3] = pMbCache->pEncSad[-1];
}
else
{
pMbCache->bMbTypeSkip[3] = 0;
pMbCache->iSadCostSkip[3] = 0;
}
}
else //avail or non-inter
{
ST32(&pMvComp->sMotionVectorCache[ 6], 0);
ST32(&pMvComp->sMotionVectorCache[12], 0);
ST32(&pMvComp->sMotionVectorCache[18], 0);
ST32(&pMvComp->sMotionVectorCache[24], 0);
pMvComp->iRefIndexCache[ 6] =
pMvComp->iRefIndexCache[12] =
pMvComp->iRefIndexCache[18] =
pMvComp->iRefIndexCache[24] = (uiNeighborAvail & LEFT_MB_POS) ? REF_NOT_IN_LIST : REF_NOT_AVAIL;
pMbCache->iSadCost[3] = 0;
pMbCache->bMbTypeSkip[3] = 0;
pMbCache->iSadCostSkip[3] = 0;
}
if ( (uiNeighborAvail & TOP_MB_POS) && IS_SVC_INTER(pTopMb->uiMbType) ) //TOP MB
{
ST64(&pMvComp->sMotionVectorCache[1], LD64(&pTopMb->sMv[12]));
ST64(&pMvComp->sMotionVectorCache[3], LD64(&pTopMb->sMv[14]));
pMvComp->iRefIndexCache[1] = pTopMb->pRefIndex[2];
pMvComp->iRefIndexCache[2] = pTopMb->pRefIndex[2];
pMvComp->iRefIndexCache[3] = pTopMb->pRefIndex[3];
pMvComp->iRefIndexCache[4] = pTopMb->pRefIndex[3];
pMbCache->iSadCost[1] = pTopMb->pSadCost[0];
if ( pTopMb->uiMbType == MB_TYPE_SKIP && pVaaBgMbFlag[-iMbWidth] == 0 )
{
pMbCache->bMbTypeSkip[1] = 1;
pMbCache->iSadCostSkip[1] = pMbCache->pEncSad[-iMbWidth];
}
else
{
pMbCache->bMbTypeSkip[1] = 0;
pMbCache->iSadCostSkip[1] = 0;
}
}
else //unavail
{
ST64(&pMvComp->sMotionVectorCache[1], 0);
ST64(&pMvComp->sMotionVectorCache[3], 0);
pMvComp->iRefIndexCache[1] =
pMvComp->iRefIndexCache[2] =
pMvComp->iRefIndexCache[3] =
pMvComp->iRefIndexCache[4] = (uiNeighborAvail & TOP_MB_POS) ? REF_NOT_IN_LIST : REF_NOT_AVAIL;
pMbCache->iSadCost[1] = 0;
pMbCache->bMbTypeSkip[1] = 0;
pMbCache->iSadCostSkip[1] = 0;
}
if ( (uiNeighborAvail & TOPLEFT_MB_POS) && IS_SVC_INTER(pLeftTopMb->uiMbType) ) //LEFT_TOP MB
{
pMvComp->sMotionVectorCache[0] = pLeftTopMb->sMv[15];
pMvComp->iRefIndexCache[0] = pLeftTopMb->pRefIndex[3];
pMbCache->iSadCost[0] = pLeftTopMb->pSadCost[0];
if ( pLeftTopMb->uiMbType == MB_TYPE_SKIP && pVaaBgMbFlag[-iMbWidth-1] == 0 )
{
pMbCache->bMbTypeSkip[0] = 1;
pMbCache->iSadCostSkip[0] = pMbCache->pEncSad[-iMbWidth-1];
}
else
{
pMbCache->bMbTypeSkip[0] = 0;
pMbCache->iSadCostSkip[0] = 0;
}
}
else //unavail
{
ST32(&pMvComp->sMotionVectorCache[0], 0);
pMvComp->iRefIndexCache[0] = (uiNeighborAvail & TOPLEFT_MB_POS) ? REF_NOT_IN_LIST : REF_NOT_AVAIL;
pMbCache->iSadCost[0] = 0;
pMbCache->bMbTypeSkip[0] = 0;
pMbCache->iSadCostSkip[0] = 0;
}
if ((uiNeighborAvail & TOPRIGHT_MB_POS) && IS_SVC_INTER(iRightTopMb->uiMbType) ) //RIGHT_TOP MB
{
pMvComp->sMotionVectorCache[5] = iRightTopMb->sMv[12];
pMvComp->iRefIndexCache[5] = iRightTopMb->pRefIndex[2];
pMbCache->iSadCost[2] = iRightTopMb->pSadCost[0];
if ( iRightTopMb->uiMbType == MB_TYPE_SKIP && pVaaBgMbFlag[-iMbWidth+1] == 0 )
{
pMbCache->bMbTypeSkip[2] = 1;
pMbCache->iSadCostSkip[2] = pMbCache->pEncSad[-iMbWidth+1];
}
else
{
pMbCache->bMbTypeSkip[2] = 0;
pMbCache->iSadCostSkip[2] = 0;
}
}
else //unavail
{
ST32(&pMvComp->sMotionVectorCache[5], 0);
pMvComp->iRefIndexCache[5] = (uiNeighborAvail & TOPRIGHT_MB_POS) ? REF_NOT_IN_LIST : REF_NOT_AVAIL;
pMbCache->iSadCost[2] = 0;
pMbCache->bMbTypeSkip[2] = 0;
pMbCache->iSadCostSkip[2] = 0;
}
//right-top 4*4 pBlock unavailable
ST32(&pMvComp->sMotionVectorCache[ 9], 0);
ST32(&pMvComp->sMotionVectorCache[21], 0);
ST32(&pMvComp->sMotionVectorCache[11], 0);
ST32(&pMvComp->sMotionVectorCache[17], 0);
ST32(&pMvComp->sMotionVectorCache[23], 0);
pMvComp->iRefIndexCache[ 9] =
pMvComp->iRefIndexCache[11] =
pMvComp->iRefIndexCache[17] =
pMvComp->iRefIndexCache[21] =
pMvComp->iRefIndexCache[23] = REF_NOT_AVAIL;
}
void InitFillNeighborCacheInterFunc( SWelsFuncPtrList *pFuncList, const int32_t kiFlag )
{
pFuncList->pfFillInterNeighborCache = kiFlag ? FillNeighborCacheInterWithBGD : FillNeighborCacheInterWithoutBGD;
}
void UpdateMbMv_c( SMVUnitXY *pMvBuffer, const SMVUnitXY ksMv )
{
int32_t k = 0;
for (; k < MB_BLOCK4x4_NUM; k += 4)
{
pMvBuffer[k ] =
pMvBuffer[k+1] =
pMvBuffer[k+2] =
pMvBuffer[k+3] = ksMv;
}
}
uint8_t MdInterAnalysisVaaInfo_c( int32_t *pSad8x8 )
{
int32_t iSadBlock[4], iAverageSadBlock[4];
int32_t iAverageSad, iVarianceSad;
iSadBlock[0] = pSad8x8[0];
iAverageSad = iSadBlock[0];
iSadBlock[1] = pSad8x8[1];
iAverageSad += iSadBlock[1];
iSadBlock[2] = pSad8x8[2];
iAverageSad += iSadBlock[2];
iSadBlock[3] = pSad8x8[3];
iAverageSad += iSadBlock[3];
iAverageSad = iAverageSad >> 2;
iAverageSadBlock[0] = (iSadBlock[0] >> 6) - (iAverageSad >> 6);
iVarianceSad = iAverageSadBlock[0] * iAverageSadBlock[0];
iAverageSadBlock[1] = (iSadBlock[1] >> 6) - (iAverageSad >> 6);
iVarianceSad += iAverageSadBlock[1] * iAverageSadBlock[1];
iAverageSadBlock[2] = (iSadBlock[2] >> 6) - (iAverageSad >> 6);
iVarianceSad += iAverageSadBlock[2] * iAverageSadBlock[2];
iAverageSadBlock[3] = (iSadBlock[3] >> 6) - (iAverageSad >> 6);
iVarianceSad += iAverageSadBlock[3] * iAverageSadBlock[3];
if ( iVarianceSad < INTER_VARIANCE_SAD_THRESHOLD )
{
return 15;
}
uint8_t uiMbSign = 0;
if (iSadBlock[0] > iAverageSad)
uiMbSign |= 0x08;
if (iSadBlock[1] > iAverageSad)
uiMbSign |= 0x04;
if (iSadBlock[2] > iAverageSad)
uiMbSign |= 0x02;
if (iSadBlock[3] > iAverageSad)
uiMbSign |= 0x01;
return ( uiMbSign );
}
static inline int32_t AnalysisVaaInfoIntra_c( uint8_t *pDataY, const int32_t kiLineSize )
{
ENFORCE_STACK_ALIGN_1D(uint16_t, uiAvgBlock, 16, 16)
uint16_t *pBlock = &uiAvgBlock[0];
uint8_t *pEncData = pDataY;
const int32_t kiLineSize2 = kiLineSize << 1;
const int32_t kiLineSize3 = kiLineSize + kiLineSize2;
const int32_t kiLineSize4 = kiLineSize << 2;
int32_t i = 0, j = 0, num = 0;
int32_t iSumAvg = 0, iSumSqr = 0;
// analysis_vaa_info_intra_core_c( pDataY, iLineSize, pBlock );
for ( ; j < 16; j += 4 )
{
num = 0;
for ( i = 0; i < 16; i += 4, num ++ )
{
pBlock[num] = pEncData[i ] + pEncData[i+1 ] + pEncData[i+2 ] + pEncData[i+3 ];
pBlock[num] += pEncData[i+kiLineSize ] + pEncData[i+kiLineSize+1 ] + pEncData[i+kiLineSize+2 ] + pEncData[i+kiLineSize+3 ];
pBlock[num] += pEncData[i+kiLineSize2] + pEncData[i+kiLineSize2+1] + pEncData[i+kiLineSize2+2] + pEncData[i+kiLineSize2+3];
pBlock[num] += pEncData[i+kiLineSize3] + pEncData[i+kiLineSize3+1] + pEncData[i+kiLineSize3+2] + pEncData[i+kiLineSize3+3];
pBlock[num] >>= 4;
}
pBlock += 4;
pEncData += kiLineSize4;
}
pBlock = &uiAvgBlock[0];
i = 4;
for ( ; i > 0; --i )
{
iSumAvg += pBlock[0] + pBlock[1] + pBlock[2] + pBlock[3];
iSumSqr += pBlock[0] * pBlock[0] + pBlock[1] * pBlock[1] + pBlock[2] * pBlock[2] + pBlock[3] * pBlock[3];
pBlock += 4;
}
return /*variance =*/ (iSumSqr - ((iSumAvg * iSumAvg) >> 4));
}
// for pfGetVarianceFromIntraVaa function ptr adaptive by CPU features, 6/7/2010
void InitIntraAnalysisVaaInfo( SWelsFuncPtrList *pFuncList, const uint32_t kuiCpuFlag )
{
pFuncList->pfGetVarianceFromIntraVaa = AnalysisVaaInfoIntra_c;
pFuncList->pfGetMbSignFromInterVaa = MdInterAnalysisVaaInfo_c;
pFuncList->pfUpdateMbMv = UpdateMbMv_c;
#if defined(X86_ASM)
if ( (kuiCpuFlag & WELS_CPU_SSE2) == WELS_CPU_SSE2 )
{
pFuncList->pfGetVarianceFromIntraVaa = AnalysisVaaInfoIntra_sse2;
pFuncList->pfGetMbSignFromInterVaa = MdInterAnalysisVaaInfo_sse2;
pFuncList->pfUpdateMbMv = UpdateMbMv_sse2;
}
if ( (kuiCpuFlag & WELS_CPU_SSSE3) == WELS_CPU_SSSE3 )
{
pFuncList->pfGetVarianceFromIntraVaa = AnalysisVaaInfoIntra_ssse3;
}
if ( (kuiCpuFlag & WELS_CPU_SSE41) == WELS_CPU_SSE41 )
{
pFuncList->pfGetMbSignFromInterVaa = MdInterAnalysisVaaInfo_sse41;
}
#endif//X86_ASM
}
BOOL_T MdIntraAnalysisVaaInfo( sWelsEncCtx* pEncCtx, uint8_t* pEncMb )
{
SDqLayer* pCurDqLayer = pEncCtx->pCurDqLayer;
const int32_t kiLineSize = pCurDqLayer->iEncStride[0];
const int32_t kiVariance = pEncCtx->pFuncList->pfGetVarianceFromIntraVaa( pEncMb, kiLineSize );
return (kiVariance >= INTRA_VARIANCE_SAD_THRESHOLD);
}
void InitMeRefinePointer(SMeRefinePointer* pMeRefine, SMbCache* pMbCache, int32_t iStride)
{
pMeRefine->pHalfPixH = &pMbCache->pBufferInterPredMe[0] + iStride;
pMeRefine->pHalfPixV = &pMbCache->pBufferInterPredMe[640] + iStride;
pMeRefine->pQuarPixBest= &pMbCache->pBufferInterPredMe[1280] + iStride;
pMeRefine->pQuarPixTmp = &pMbCache->pBufferInterPredMe[1920] + iStride;
}
typedef struct TagQuarParams
{
int32_t iBestCost;
int32_t iBestHalfPix;
int32_t iStrideA;
int32_t iStrideB;
uint8_t * pRef;
uint8_t * pSrcB[4];
uint8_t * pSrcA[4];
int32_t iLms[4];
int32_t iBestQuarPix;
}SQuarRefineParams;
#define SWITCH_BEST_TMP_BUF(prev_best, curr_best){\
pParams->iBestCost = iCurCost;\
pTmp = prev_best;\
prev_best = curr_best;\
curr_best = pTmp;\
}
#define CALC_COST(me_buf, lm) ( pFunc->sSampleDealingFuncs.pfMeCost[kuiPixel](pEncMb, iStrideEnc, me_buf, ME_REFINE_BUF_STRIDE) + lm )
inline void MeRefineQuarPixel( SWelsFuncPtrList *pFunc, SWelsME* pMe, SMeRefinePointer* pMeRefine, const int32_t kiWidth, const int32_t kiHeight,SQuarRefineParams *pParams, int32_t iStrideEnc )
{
PWelsSampleAveragingFunc *pSampleAvg = pFunc->sMcFuncs.pfSampleAveraging;
const int32_t kiAvgIndex = kiWidth >> 4;
int32_t iCurCost;
uint8_t *pEncMb = pMe->pEncMb;
uint8_t *pTmp = NULL;
const uint8_t kuiPixel = pMe->uiPixel;
pSampleAvg[kiAvgIndex](pMeRefine->pQuarPixTmp, ME_REFINE_BUF_STRIDE, pParams->pSrcA[0], ME_REFINE_BUF_STRIDE,pParams->pSrcB[0], pParams->iStrideA, kiHeight);
iCurCost = CALC_COST(pMeRefine->pQuarPixTmp,pParams->iLms[0]);
if (iCurCost < pParams->iBestCost)
{
pParams->iBestQuarPix = ME_QUAR_PIXEL_TOP;
SWITCH_BEST_TMP_BUF(pMeRefine->pQuarPixBest,pMeRefine->pQuarPixTmp);
}
//=========================(0, 1)=======================//
pSampleAvg[kiAvgIndex](pMeRefine->pQuarPixTmp, ME_REFINE_BUF_STRIDE, pParams->pSrcA[1],
ME_REFINE_BUF_STRIDE,pParams->pSrcB[1], pParams->iStrideA, kiHeight);
iCurCost = CALC_COST(pMeRefine->pQuarPixTmp,pParams->iLms[1]);
if (iCurCost < pParams->iBestCost)
{
pParams->iBestQuarPix = ME_QUAR_PIXEL_BOTTOM;
SWITCH_BEST_TMP_BUF(pMeRefine->pQuarPixBest,pMeRefine->pQuarPixTmp);
}
//==========================(-1, 0)=========================//
pSampleAvg[kiAvgIndex](pMeRefine->pQuarPixTmp, ME_REFINE_BUF_STRIDE,pParams->pSrcA[2],
ME_REFINE_BUF_STRIDE,pParams->pSrcB[2], pParams->iStrideB, kiHeight);
iCurCost = CALC_COST(pMeRefine->pQuarPixTmp,pParams->iLms[2]);
if (iCurCost < pParams->iBestCost)
{
pParams->iBestQuarPix = ME_QUAR_PIXEL_LEFT;
SWITCH_BEST_TMP_BUF(pMeRefine->pQuarPixBest,pMeRefine->pQuarPixTmp);
}
//==========================(1, 0)=========================//
pSampleAvg[kiAvgIndex](pMeRefine->pQuarPixTmp, ME_REFINE_BUF_STRIDE,pParams->pSrcA[3],
ME_REFINE_BUF_STRIDE, pParams->pSrcB[3], pParams->iStrideB, kiHeight);
iCurCost = CALC_COST(pMeRefine->pQuarPixTmp,pParams->iLms[3]);
if (iCurCost < pParams->iBestCost)
{
pParams->iBestQuarPix = ME_QUAR_PIXEL_RIGHT;
SWITCH_BEST_TMP_BUF(pMeRefine->pQuarPixBest,pMeRefine->pQuarPixTmp);
}
}
void MeRefineFracPixel(sWelsEncCtx* pEncCtx, uint8_t* pMemPredInterMb, SWelsME* pMe,
SMeRefinePointer* pMeRefine, int32_t iWidth, int32_t iHeight)
{
SWelsFuncPtrList *pFunc= pEncCtx->pFuncList;
int16_t iMvx = pMe->sMv.iMvX;
int16_t iMvy = pMe->sMv.iMvY;
int16_t iHalfMvx = iMvx;
int16_t iHalfMvy = iMvy;
const int32_t kiStrideEnc = pEncCtx->pCurDqLayer->iEncStride[0];
const int32_t kiStrideRef = pEncCtx->pCurDqLayer->pRefPic->iLineSize[0];
uint8_t* pEncData = pMe->pEncMb;
uint8_t* pRef = pMe->pRefMb;//091010
int32_t iBestQuarPix = ME_NO_BEST_QUAR_PIXEL;
SQuarRefineParams sParams;
static int32_t iMvQuarAddX[10] = {0,0,-1,1,0,0,0,-1,1,0};
int32_t *pMvQuarAddY = iMvQuarAddX + 3;
uint8_t* pBestPredInter = pRef;
int32_t iInterBlk4Stride = ME_REFINE_BUF_STRIDE;
int32_t iBestCost;
int32_t iCurCost;
int32_t iBestHalfPix;
if ((pFunc->sSampleDealingFuncs.pfMeCost == pFunc->sSampleDealingFuncs.pfSampleSatd) && (pFunc->sSampleDealingFuncs.pfMdCost == pFunc->sSampleDealingFuncs.pfSampleSatd))
{
iBestCost = pMe->uSadPredISatd.uiSatd + COST_MVD(pMe->pMvdCost, iMvx - pMe->sMvp.iMvX, iMvy - pMe->sMvp.iMvY);
}
else
{
iBestCost = pFunc->sSampleDealingFuncs.pfMeCost[pMe->uiPixel]( pEncData, kiStrideEnc, pRef, kiStrideRef ) +
COST_MVD(pMe->pMvdCost, iMvx - pMe->sMvp.iMvX, iMvy - pMe->sMvp.iMvY);
}
iBestHalfPix = REFINE_ME_NO_BEST_HALF_PIXEL;
pFunc->sMcFuncs.pfLumaHalfpelVer( pRef-kiStrideRef, kiStrideRef, pMeRefine->pHalfPixV, ME_REFINE_BUF_STRIDE, iWidth, iHeight+1 );
//step 1: get [iWidth][iHeight+1] half pixel from vertical filter
//===========================(0, -2)==============================//
iCurCost = pFunc->sSampleDealingFuncs.pfMeCost[pMe->uiPixel](pEncData, kiStrideEnc, pMeRefine->pHalfPixV, ME_REFINE_BUF_STRIDE) +
COST_MVD( pMe->pMvdCost, iMvx - pMe->sMvp.iMvX, iMvy - 2 - pMe->sMvp.iMvY );
if(iCurCost < iBestCost)
{
iBestCost = iCurCost;
iBestHalfPix = REFINE_ME_HALF_PIXEL_TOP;
pBestPredInter = pMeRefine->pHalfPixV;
}
//===========================(0, 2)==============================//
iCurCost = pFunc->sSampleDealingFuncs.pfMeCost[pMe->uiPixel](pEncData, kiStrideEnc, pMeRefine->pHalfPixV+ME_REFINE_BUF_STRIDE, ME_REFINE_BUF_STRIDE) +
COST_MVD( pMe->pMvdCost, iMvx - pMe->sMvp.iMvX, iMvy + 2 - pMe->sMvp.iMvY );
if(iCurCost < iBestCost)
{
iBestCost = iCurCost;
iBestHalfPix = REFINE_ME_HALF_PIXEL_BOTTOM;
pBestPredInter = pMeRefine->pHalfPixV+ME_REFINE_BUF_STRIDE;
}
pFunc->sMcFuncs.pfLumaHalfpelHor( pRef-1, kiStrideRef, pMeRefine->pHalfPixH, ME_REFINE_BUF_STRIDE, iWidth+1, iHeight );
//step 2: get [iWidth][iHeight+1] half pixel from horizon filter
//===========================(-2, 0)==============================//
iCurCost = pFunc->sSampleDealingFuncs.pfMeCost[pMe->uiPixel](pEncData, kiStrideEnc, pMeRefine->pHalfPixH, ME_REFINE_BUF_STRIDE) +
COST_MVD( pMe->pMvdCost, iMvx - 2 - pMe->sMvp.iMvX, iMvy - pMe->sMvp.iMvY );
if(iCurCost < iBestCost)
{
iBestCost = iCurCost;
iBestHalfPix = REFINE_ME_HALF_PIXEL_LEFT;
pBestPredInter = pMeRefine->pHalfPixH;
}
//===========================(2, 0)===============================//
iCurCost = pFunc->sSampleDealingFuncs.pfMeCost[pMe->uiPixel](pEncData, kiStrideEnc, pMeRefine->pHalfPixH+1, ME_REFINE_BUF_STRIDE) +
COST_MVD( pMe->pMvdCost, iMvx + 2 - pMe->sMvp.iMvX, iMvy - pMe->sMvp.iMvY );
if(iCurCost < iBestCost)
{
iBestCost = iCurCost;
iBestHalfPix = REFINE_ME_HALF_PIXEL_RIGHT;
pBestPredInter = pMeRefine->pHalfPixH+1;
}
sParams.iBestCost = iBestCost;
sParams.iBestHalfPix = iBestHalfPix;
sParams.pRef = pRef;
sParams.iBestQuarPix = ME_NO_BEST_QUAR_PIXEL;
//step 5: if no best half-pixel prediction, try quarter pixel prediction
// if yes, must get [X+1][X+1] half-pixel from (2, 2) horizontal and vertical filter
if (REFINE_ME_NO_BEST_HALF_PIXEL == iBestHalfPix)
{
sParams.iStrideA = kiStrideRef;
sParams.iStrideB = kiStrideRef;
sParams.pSrcA[0] = pMeRefine->pHalfPixV;
sParams.pSrcA[1] = pMeRefine->pHalfPixV+ME_REFINE_BUF_STRIDE;
sParams.pSrcA[2] = pMeRefine->pHalfPixH;
sParams.pSrcA[3] = pMeRefine->pHalfPixH+1;
sParams.pSrcB[0] = sParams.pSrcB[1] = sParams.pSrcB[2] = sParams.pSrcB[3] = pRef;
sParams.iLms[0] = COST_MVD( pMe->pMvdCost, iHalfMvx - pMe->sMvp.iMvX, iHalfMvy - 1 - pMe->sMvp.iMvY );
sParams.iLms[1] = COST_MVD( pMe->pMvdCost, iHalfMvx - pMe->sMvp.iMvX, iHalfMvy + 1 - pMe->sMvp.iMvY );
sParams.iLms[2] = COST_MVD( pMe->pMvdCost, iHalfMvx - 1 - pMe->sMvp.iMvX, iHalfMvy - pMe->sMvp.iMvY );
sParams.iLms[3] = COST_MVD( pMe->pMvdCost, iHalfMvx + 1 - pMe->sMvp.iMvX, iHalfMvy - pMe->sMvp.iMvY );
}
else //must get [X+1][X+1] half-pixel from (2, 2) horizontal and vertical filter
{
switch(iBestHalfPix)
{
case REFINE_ME_HALF_PIXEL_LEFT:
{
pMeRefine->pHalfPixHV = pMeRefine->pHalfPixV;//reuse pBuffer, here only h&hv
pFunc->sMcFuncs.pfLumaHalfpelCen( pRef-1-kiStrideRef, kiStrideRef, pMeRefine->pHalfPixHV,ME_REFINE_BUF_STRIDE,iWidth+1, iHeight+1 );
iHalfMvx -= 2;
sParams.iStrideA = ME_REFINE_BUF_STRIDE;
sParams.iStrideB = kiStrideRef;
sParams.pSrcA[0] = pMeRefine->pHalfPixH;
sParams.pSrcA[3] = sParams.pSrcA[2] = sParams.pSrcA[1] = sParams.pSrcA[0];
sParams.pSrcB[0] = pMeRefine->pHalfPixHV;
sParams.pSrcB[1] = pMeRefine->pHalfPixHV+ME_REFINE_BUF_STRIDE;
sParams.pSrcB[2] = pRef - 1;
sParams.pSrcB[3] = pRef;
}break;
case REFINE_ME_HALF_PIXEL_RIGHT:
{
pMeRefine->pHalfPixHV = pMeRefine->pHalfPixV;//reuse pBuffer, here only h&hv
pFunc->sMcFuncs.pfLumaHalfpelCen( pRef-1-kiStrideRef, kiStrideRef, pMeRefine->pHalfPixHV,ME_REFINE_BUF_STRIDE,iWidth+1, iHeight+1 );
iHalfMvx += 2;
sParams.iStrideA = ME_REFINE_BUF_STRIDE;
sParams.iStrideB = kiStrideRef;
sParams.pSrcA[0] = pMeRefine->pHalfPixH+1;
sParams.pSrcA[3] = sParams.pSrcA[2] = sParams.pSrcA[1] = sParams.pSrcA[0];
sParams.pSrcB[0] = pMeRefine->pHalfPixHV+1;
sParams.pSrcB[1] = pMeRefine->pHalfPixHV+1+ ME_REFINE_BUF_STRIDE;
sParams.pSrcB[2] = pRef;
sParams.pSrcB[3] = pRef + 1;
}break;
case REFINE_ME_HALF_PIXEL_TOP:
{
pMeRefine->pHalfPixHV = pMeRefine->pHalfPixH;//reuse pBuffer, here only v&hv
pFunc->sMcFuncs.pfLumaHalfpelCen( pRef-1-kiStrideRef, kiStrideRef, pMeRefine->pHalfPixHV,ME_REFINE_BUF_STRIDE,iWidth+1, iHeight+1 );
iHalfMvy -= 2;
sParams.iStrideA = kiStrideRef;
sParams.iStrideB = ME_REFINE_BUF_STRIDE;
sParams.pSrcA[0] = pMeRefine->pHalfPixV;
sParams.pSrcA[3] = sParams.pSrcA[2] = sParams.pSrcA[1] = sParams.pSrcA[0];
sParams.pSrcB[0] = pRef - kiStrideRef;
sParams.pSrcB[1] = pRef;
sParams.pSrcB[2] = pMeRefine->pHalfPixHV;
sParams.pSrcB[3] = pMeRefine->pHalfPixHV+1;
}break;
case REFINE_ME_HALF_PIXEL_BOTTOM:
{
pMeRefine->pHalfPixHV = pMeRefine->pHalfPixH;//reuse pBuffer, here only v&hv
pFunc->sMcFuncs.pfLumaHalfpelCen( pRef-1-kiStrideRef, kiStrideRef, pMeRefine->pHalfPixHV,ME_REFINE_BUF_STRIDE,iWidth+1, iHeight+1 );
iHalfMvy += 2;
sParams.iStrideA = kiStrideRef;
sParams.iStrideB = ME_REFINE_BUF_STRIDE;
sParams.pSrcA[0] = pMeRefine->pHalfPixV + ME_REFINE_BUF_STRIDE;
sParams.pSrcA[3] = sParams.pSrcA[2] = sParams.pSrcA[1] = sParams.pSrcA[0];
sParams.pSrcB[0] = pRef;
sParams.pSrcB[1] = pRef + kiStrideRef;
sParams.pSrcB[2] = pMeRefine->pHalfPixHV + ME_REFINE_BUF_STRIDE;
sParams.pSrcB[3] = pMeRefine->pHalfPixHV + ME_REFINE_BUF_STRIDE + 1;
}break;
default:
break;
}
sParams.iLms[0] = COST_MVD( pMe->pMvdCost, iHalfMvx - pMe->sMvp.iMvX, iHalfMvy - 1 - pMe->sMvp.iMvY );
sParams.iLms[1] = COST_MVD( pMe->pMvdCost, iHalfMvx - pMe->sMvp.iMvX, iHalfMvy + 1 - pMe->sMvp.iMvY );
sParams.iLms[2] = COST_MVD( pMe->pMvdCost, iHalfMvx - 1 - pMe->sMvp.iMvX, iHalfMvy - pMe->sMvp.iMvY );
sParams.iLms[3] = COST_MVD( pMe->pMvdCost, iHalfMvx + 1 - pMe->sMvp.iMvX, iHalfMvy - pMe->sMvp.iMvY );
}
MeRefineQuarPixel(pFunc, pMe, pMeRefine, iWidth, iHeight, &sParams, kiStrideEnc);
if(iBestCost > sParams.iBestCost)
{
pBestPredInter = pMeRefine->pQuarPixBest;
iBestCost = sParams.iBestCost;
}
iBestQuarPix = sParams.iBestQuarPix;
//update final best MV
pMe->sMv.iMvX = iHalfMvx + iMvQuarAddX[iBestQuarPix];
pMe->sMv.iMvY = iHalfMvy + pMvQuarAddY[iBestQuarPix];
pMe->uiSatdCost = iBestCost;
//No half or quarter pixel best, so do MC with integer pixel MV
if ( iBestHalfPix+iBestQuarPix == NO_BEST_FRAC_PIX )
{
pBestPredInter = pRef;
iInterBlk4Stride = kiStrideRef;
}
if ( MB_WIDTH_LUMA == iWidth && MB_HEIGHT_LUMA == iHeight ) //P16x16
{
pFunc->pfCopy16x16NotAligned( pMemPredInterMb, MB_WIDTH_LUMA, pBestPredInter, iInterBlk4Stride ); // dst can be align with 16 bytes, but not sure at pSrc, 12/29/2011
}
else if ( MB_WIDTH_LUMA == iWidth && MB_HEIGHT_CHROMA == iHeight ) //P16x8
{
pFunc->pfCopy16x8NotAligned( pMemPredInterMb, MB_WIDTH_LUMA, pBestPredInter, iInterBlk4Stride ); // dst can be align with 16 bytes, but not sure at pSrc, 12/29/2011
}
else if ( MB_WIDTH_CHROMA == iWidth && MB_HEIGHT_LUMA == iHeight ) //P8x16
{
pFunc->pfCopy8x16Aligned( pMemPredInterMb, MB_WIDTH_LUMA, pBestPredInter, iInterBlk4Stride );
}
else //P8x8
{
pFunc->pfCopy8x8Aligned( pMemPredInterMb, MB_WIDTH_LUMA, pBestPredInter, iInterBlk4Stride );
}
}
void InitBlkStrideWithRef(int32_t* pBlkStride, const int32_t kiStrideRef)
{
static const uint8_t kuiStrideX[16] =
{
0, 4 , 0, 4 ,
8, 12, 8, 12,
0, 4 , 0, 4 ,
8, 12, 8, 12
};
static const uint8_t kuiStrideY[16] =
{
0, 0, 4 , 4 ,
0, 0, 4 , 4 ,
8, 8, 12, 12,
8, 8, 12, 12
};
int32_t i;
for (i = 0; i < 16; i+=4)
{
pBlkStride[i ] = kuiStrideX[i ] + kuiStrideY[i ] * kiStrideRef;
pBlkStride[i+1] = kuiStrideX[i+1] + kuiStrideY[i+1] * kiStrideRef;
pBlkStride[i+2] = kuiStrideX[i+2] + kuiStrideY[i+2] * kiStrideRef;
pBlkStride[i+3] = kuiStrideX[i+3] + kuiStrideY[i+3] * kiStrideRef;
}
}
/*
* iMvdSz = (648*2+1) or (972*2+1);
*/
void MvdCostInit( uint16_t* pMvdCostInter, const int32_t kiMvdSz )
{
const int32_t kiSz = kiMvdSz >> 1;
uint16_t *pNegMvd = pMvdCostInter;
uint16_t *pPosMvd = pMvdCostInter+kiSz+1;
const int32_t *kpQpLambda= &g_kiQpCostTable[0];
int32_t i,j;
for( i = 0; i < 52; ++ i )
{
const uint16_t kiLambda = kpQpLambda[i];
int32_t iNegSe = -kiSz;
int32_t iPosSe = 1;
for (j = 0; j < kiSz; j += 4)
{
*pNegMvd++ = kiLambda * BsSizeSE(iNegSe++);
*pNegMvd++ = kiLambda * BsSizeSE(iNegSe++);
*pNegMvd++ = kiLambda * BsSizeSE(iNegSe++);
*pNegMvd++ = kiLambda * BsSizeSE(iNegSe++);
*pPosMvd++ = kiLambda * BsSizeSE(iPosSe++);
*pPosMvd++ = kiLambda * BsSizeSE(iPosSe++);
*pPosMvd++ = kiLambda * BsSizeSE(iPosSe++);
*pPosMvd++ = kiLambda * BsSizeSE(iPosSe++);
}
*pNegMvd = kiLambda;
pNegMvd += kiSz+1;
pPosMvd += kiSz+1;
}
}
void PredictSad( int8_t* pRefIndexCache, int32_t* pSadCostCache, int32_t uiRef, int32_t * pSadPred )
{
const int32_t kiRefB = pRefIndexCache[1];//top g_uiCache12_8x8RefIdx[0] - 4
int32_t iRefC = pRefIndexCache[5];//top-right g_uiCache12_8x8RefIdx[0] - 2
const int32_t kiRefA = pRefIndexCache[6];//left g_uiCache12_8x8RefIdx[0] - 1
const int32_t kiSadB = pSadCostCache[1];
int32_t iSadC = pSadCostCache[2];
const int32_t kiSadA = pSadCostCache[3];
int32_t iCount;
if( iRefC == REF_NOT_AVAIL )
{
iRefC = pRefIndexCache[0];//top-left g_uiCache12_8x8RefIdx[0] - 4 - 1
iSadC = pSadCostCache[0];
}
if( kiRefB == REF_NOT_AVAIL && iRefC == REF_NOT_AVAIL && kiRefA != REF_NOT_AVAIL )
{
* pSadPred = kiSadA;
}
else
{
iCount = (uiRef == kiRefA)<<MB_LEFT_BIT;
iCount |= (uiRef == kiRefB)<<MB_TOP_BIT;
iCount |= (uiRef == iRefC)<<MB_TOPRIGHT_BIT;
switch(iCount)
{
case LEFT_MB_POS:// A
*pSadPred = kiSadA;
break;
case TOP_MB_POS:// B
*pSadPred = kiSadB;
break;
case TOPRIGHT_MB_POS:// C or D
*pSadPred = iSadC;
break;
default:
*pSadPred = WELS_MEDIAN( kiSadA, kiSadB, iSadC );
break;
}
}
#define REPLACE_SAD_MULTIPLY(x) ((x) - (x>>3) + (x >>5)) // it's 0.90625, very close with 0.9
iCount = (*pSadPred)<<6; // here *64 will not overflow. SAD range 0~ 255*256(max 2^16), int32_t is enough
*pSadPred = (REPLACE_SAD_MULTIPLY(iCount) + 32)>>6;
#undef REPLACE_SAD_MULTIPLY
}
void PredictSadSkip( int8_t* pRefIndexCache, bool_t* pMbSkipCache, int32_t* pSadCostCache, int32_t uiRef, int32_t * iSadPredSkip )
{
const int32_t kiRefB = pRefIndexCache[1];//top g_uiCache12_8x8RefIdx[0] - 4
int32_t iRefC = pRefIndexCache[5];//top-right g_uiCache12_8x8RefIdx[0] - 2
const int32_t kiRefA = pRefIndexCache[6];//left g_uiCache12_8x8RefIdx[0] - 1
const int32_t kiSadB = (pMbSkipCache[1]==1 ? pSadCostCache[1] : 0);
int32_t iSadC = (pMbSkipCache[2]==1 ? pSadCostCache[2] : 0);
const int32_t kiSadA = (pMbSkipCache[3]==1 ? pSadCostCache[3] : 0);
int32_t iRefSkip = pMbSkipCache[2];
int32_t iCount = 0;
if( iRefC == REF_NOT_AVAIL )
{
iRefC = pRefIndexCache[0];//top-left g_uiCache12_8x8RefIdx[0] - 4 - 1
iSadC = (pMbSkipCache[0]==1 ? pSadCostCache[0] : 0);
iRefSkip = pMbSkipCache[0];
}
if( kiRefB == REF_NOT_AVAIL && iRefC == REF_NOT_AVAIL && kiRefA != REF_NOT_AVAIL )
{
* iSadPredSkip = kiSadA;
}
else
{
iCount = ((uiRef == kiRefA) && (pMbSkipCache[3]==1))<<MB_LEFT_BIT;
iCount |= ((uiRef == kiRefB) && (pMbSkipCache[1]==1))<<MB_TOP_BIT;
iCount |= ((uiRef == iRefC) && (iRefSkip==1))<<MB_TOPRIGHT_BIT;
switch(iCount)
{
case LEFT_MB_POS:// A
*iSadPredSkip = kiSadA;
break;
case TOP_MB_POS:// B
*iSadPredSkip = kiSadB;
break;
case TOPRIGHT_MB_POS:// C or D
*iSadPredSkip = iSadC;
break;
default:
*iSadPredSkip = WELS_MEDIAN( kiSadA, kiSadB, iSadC );
break;
}
}
}
}