ref: 3f3bff3cee806c1884fa13fd829d2ec5089cfcfa
dir: /player/system.cpp/
#include "system.h"
#ifndef _WIN32
#include <stdlib.h>
#include <time.h>
#include <errno.h>
#include <unistd.h>
#if defined(__linux) || defined(__linux__)
#include <sys/prctl.h>
#endif
#define nullptr 0
struct Event
{
Event * volatile pMultipleCond;
pthread_mutex_t mutex;
pthread_cond_t cond;
volatile bool signaled;
bool manual_reset;
};
static bool InitEvent(Event *e)
{
#if (defined(ANDROID) && !defined(__LP64__)) || defined(__APPLE__)
if (pthread_cond_init(&e->cond, NULL))
return false;
#else
pthread_condattr_t attr;
if (pthread_condattr_init(&attr))
return false;
if (pthread_condattr_setclock(&attr, CLOCK_MONOTONIC))
{
pthread_condattr_destroy(&attr);
return false;
}
if (pthread_cond_init(&e->cond, &attr))
{
pthread_condattr_destroy(&attr);
return false;
}
pthread_condattr_destroy(&attr);
#endif
if (pthread_mutex_init(&e->mutex, NULL))
{
pthread_cond_destroy(&e->cond);
return false;
}
e->pMultipleCond = NULL;
return true;
}
#ifdef __APPLE__
#include <mach/mach_time.h>
static inline uint64_t GetAbsTimeInNanoseconds()
{
static mach_timebase_info_data_t g_timebase_info;
if (g_timebase_info.denom == 0)
mach_timebase_info(&g_timebase_info);
return mach_absolute_time()*g_timebase_info.numer/g_timebase_info.denom;
}
#endif
static inline void GetAbsTime(timespec *ts, uint32_t timeout)
{
#if defined(__APPLE__)
uint64_t cur_time = GetAbsTimeInNanoseconds();
ts->tv_sec = cur_time/1000000000u + timeout/1000u;
ts->tv_nsec = (cur_time % 1000000000u) + (timeout % 1000u)*1000000u;
#else
clock_gettime(CLOCK_MONOTONIC, ts);
ts->tv_sec += timeout/1000u;
ts->tv_nsec += (timeout % 1000u)*1000000u;
#endif
if (ts->tv_nsec >= 1000000000)
{
ts->tv_nsec -= 1000000000;
ts->tv_sec++;
}
}
static inline int CondTimedWait(pthread_cond_t *cond, pthread_mutex_t *mutex, const struct timespec *abstime)
{
#if defined(ANDROID) && !defined(__LP64__)
return pthread_cond_timedwait_monotonic_np(cond, mutex, abstime);
#elif defined(__APPLE__)
timespec reltime;
uint64_t cur_time = GetAbsTimeInNanoseconds();
reltime.tv_sec = abstime->tv_sec - cur_time/1000000000u;
reltime.tv_nsec = abstime->tv_nsec - (cur_time % 1000000000u);
if (reltime.tv_nsec < 0)
{
reltime.tv_nsec += 1000000000;
reltime.tv_sec--;
}
if ((reltime.tv_sec < 0) || ((reltime.tv_sec == 0) && (reltime.tv_nsec == 0)))
return ETIMEDOUT;
return pthread_cond_timedwait_relative_np(cond, mutex, &reltime);
#else
return pthread_cond_timedwait(cond, mutex, abstime);
#endif
}
static bool WaitForEvent(Event *e, uint32_t timeout, bool *signaled)
{
if (pthread_mutex_lock(&e->mutex))
return false;
if (timeout == INFINITE)
{
while (!e->signaled)
pthread_cond_wait(&e->cond, &e->mutex);
} else if (timeout != 0)
{
timespec t;
GetAbsTime(&t, timeout);
while (!e->signaled)
{
if (CondTimedWait(&e->cond, &e->mutex, &t))
break;
}
}
*signaled = e->signaled;
if (!e->manual_reset)
e->signaled = false;
if (pthread_mutex_unlock(&e->mutex))
return false;
return true;
}
static bool WaitForMultipleEvents(Event **e, uint32_t count, uint32_t timeout, bool waitAll, int *signaled_num)
{
uint32_t i;
#define PTHR(func, num) for (i = num; i < count; i++)\
if (func(&e[i]->mutex))\
return false;
PTHR(pthread_mutex_lock, 0);
int sig_num = -1;
if (timeout == 0)
{
#define CHECK_SIGNALED \
if (waitAll)\
{\
for (i = 0; i < count; i++)\
if (!e[i]->signaled)\
break;\
if (i == count)\
for (i = 0; i < count; i++)\
{\
if (sig_num < 0 && e[i]->signaled)\
sig_num = (int)i;\
if (!e[i]->manual_reset)\
e[i]->signaled = false;\
}\
} else\
{\
for (i = 0; i < count; i++)\
if (e[i]->signaled)\
{\
sig_num = (int)i;\
if (!e[i]->manual_reset)\
e[i]->signaled = false;\
break;\
}\
}
CHECK_SIGNALED;
} else
if (timeout == INFINITE)
{
#define SET_MULTIPLE(val) for (i = 1; i < count; i++)\
e[i]->pMultipleCond = val;
SET_MULTIPLE(e[0]);
for (;;)
{
CHECK_SIGNALED;
if (sig_num >= 0)
break;
PTHR(pthread_mutex_unlock, 1);
pthread_cond_wait(&e[0]->cond, &e[0]->mutex);
PTHR(pthread_mutex_lock, 1);
}
SET_MULTIPLE(0);
} else
{
SET_MULTIPLE(e[0]);
timespec t;
GetAbsTime(&t, timeout);
for (;;)
{
CHECK_SIGNALED;
if (sig_num >= 0)
break;
PTHR(pthread_mutex_unlock, 1);
int res = CondTimedWait(&e[0]->cond, &e[0]->mutex, &t);
PTHR(pthread_mutex_lock, 1);
if (res)
break;
}
SET_MULTIPLE(0);
}
PTHR(pthread_mutex_unlock, 0);
*signaled_num = sig_num;
return true;
}
static bool SignalEvent(Event *e)
{
if (pthread_mutex_lock(&e->mutex))
return false;
Event *pMultipleCond = e->pMultipleCond;
e->signaled = true;
if (pthread_cond_signal(&e->cond))
return false;
if (pthread_mutex_unlock(&e->mutex))
return false;
if (pMultipleCond && pMultipleCond != e)
{
if (pthread_mutex_lock(&pMultipleCond->mutex))
return false;
if (pthread_cond_signal(&pMultipleCond->cond))
return false;
if (pthread_mutex_unlock(&pMultipleCond->mutex))
return false;
}
return true;
}
static bool ResetEvent(Event *e)
{
if (pthread_mutex_lock(&e->mutex))
return false;
e->signaled = false;
if (pthread_mutex_unlock(&e->mutex))
return false;
return true;
}
HANDLE event_create(bool manualReset, bool initialState)
{
Event *e = (Event *)malloc(sizeof(*e));
if (!e)
return NULL;
if (!InitEvent(e))
{
free(e);
return NULL;
}
e->manual_reset = manualReset;
e->signaled = initialState;
return (HANDLE)e;
}
bool event_destroy(HANDLE event)
{
Event *e = (Event *)event;
if (!e)
return false;
if (pthread_cond_destroy(&e->cond))
return false;
if (pthread_mutex_destroy(&e->mutex))
return false;
free((void *)e);
return true;
}
bool event_set(HANDLE event)
{
return SignalEvent((Event *)event);
}
bool event_reset(HANDLE event)
{
return ResetEvent((Event *)event);
}
int event_wait(HANDLE event, uint32_t milliseconds)
{
bool signaled;
if (!WaitForEvent((Event *)event, milliseconds, &signaled))
return WAIT_FAILED;
return signaled ? WAIT_OBJECT : WAIT_TIMEOUT;
}
int event_wait_multiple(uint32_t count, const HANDLE *events, bool waitAll, uint32_t milliseconds)
{
if (count == 1)
return event_wait(events[0], milliseconds);
int signaled_num = -1;
if (!WaitForMultipleEvents((Event **)events, count, milliseconds, waitAll, &signaled_num))
return WAIT_FAILED;
return (signaled_num < 0) ? WAIT_TIMEOUT : (WAIT_OBJECT_0 + signaled_num);
}
bool InitializeCriticalSection(LPCRITICAL_SECTION lpCriticalSection)
{
pthread_mutexattr_t ma;
if (pthread_mutexattr_init(&ma))
return false;
if (pthread_mutexattr_settype(&ma, PTHREAD_MUTEX_RECURSIVE))
{
pthread_mutexattr_destroy(&ma);
return false;
}
if (pthread_mutex_init((pthread_mutex_t *)lpCriticalSection, &ma))
{
pthread_mutexattr_destroy(&ma);
return false;
}
if (pthread_mutexattr_destroy(&ma))
return false;
return true;
}
bool DeleteCriticalSection(LPCRITICAL_SECTION lpCriticalSection)
{
if (pthread_mutex_destroy((pthread_mutex_t *)lpCriticalSection))
return false;
return true;
}
bool EnterCriticalSection(LPCRITICAL_SECTION lpCriticalSection)
{
if (pthread_mutex_lock((pthread_mutex_t *)lpCriticalSection))
return false;
return true;
}
bool LeaveCriticalSection(LPCRITICAL_SECTION lpCriticalSection)
{
if (pthread_mutex_unlock((pthread_mutex_t *)lpCriticalSection))
return false;
return true;
}
HANDLE thread_create(LPTHREAD_START_ROUTINE lpStartAddress, void *lpParameter)
{
pthread_t *t = (pthread_t *)malloc(sizeof(*t));
if (!t)
return nullptr;
if (pthread_create(t, 0, lpStartAddress, lpParameter))
{
free(t);
return nullptr;
}
//if (lpThreadId)
// *lpThreadId = (uint32_t)*t;
return (HANDLE)t;
}
bool thread_close(HANDLE thread)
{
if (!thread)
return false;
pthread_t *t = (pthread_t *)thread;
if (*t)
pthread_detach(*t);
free(t);
return true;
}
void *thread_wait(HANDLE thread)
{
if (!thread)
return (void*)-1;
void *ret = 0;
pthread_t *t = (pthread_t *)thread;
if (!*t)
return ret;
int res = pthread_join(*t, &ret);
if (res)
return (void*)-1;
#if 0
if (timeout == 0)
{
int res = pthread_tryjoin_np(*t, &ret);
if (res)
return false;
} else
if (timeout == INFINITE)
{
int res = pthread_join(*t, &ret);
if (res)
return false;
} else
{
timespec ts;
GetAbsTime(&ts, timeout);
int res = pthread_timedjoin_np(*t, &ret, &ts);
if (res)
return false;
}
#endif
*t = 0; // thread joined - no need to detach
return ret;
}
#else //_WIN32
bool event_destroy(HANDLE event)
{
CloseHandle(event);
return true;
}
bool thread_close(HANDLE thread)
{
CloseHandle(thread);
return true;
}
bool thread_wait(HANDLE thread)
{
return WaitForSingleObject(thread, INFINITE) == WAIT_OBJECT_0;
}
#endif //_WIN32
bool thread_name(const char *name)
{
#ifdef _WIN32
struct tagTHREADNAME_INFO
{
DWORD dwType;
LPCSTR szName;
DWORD dwThreadID;
DWORD dwFlags;
} info = { 0x1000, name, (DWORD)-1, 0 };
__try
{
RaiseException(0x406D1388, 0, sizeof(info)/sizeof(ULONG_PTR), (ULONG_PTR*)&info);
}
__except(EXCEPTION_EXECUTE_HANDLER)
{
}
return true;
#elif defined(__linux) || defined(__linux__)
return (0 == prctl(PR_SET_NAME, name, 0, 0, 0));
//return (0 == pthread_setname_np(pthread_self(), name));
#else // macos, ios
return (0 == pthread_setname_np(name));
#endif
}
bool thread_sleep(uint32_t milliseconds)
{
#ifdef _WIN32
Sleep(milliseconds);
#else
usleep((useconds_t)milliseconds*1000);
#endif
}
uint64_t GetTime()
{
uint64_t time;
#ifdef _WIN32
QueryPerformanceCounter((LARGE_INTEGER*)&time);
#elif defined(__APPLE__)
time = GetAbsTimeInNanoseconds() / 1000u;
#else
timespec ts;
// CLOCK_PROCESS_CPUTIME_ID CLOCK_THREAD_CPUTIME_ID
clock_gettime(CLOCK_MONOTONIC, &ts);
time = (uint64_t)ts.tv_sec * 1000000u + ts.tv_nsec / 1000u;
#endif
return time;
}