ref: e6435a48f54c9f84eec99bb5f56c327ae59b9c1f
dir: /src/ext4_dir.c/
/* * Copyright (c) 2013 Grzegorz Kostka (kostka.grzegorz@gmail.com) * * * HelenOS: * Copyright (c) 2012 Martin Sucha * Copyright (c) 2012 Frantisek Princ * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * - The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /** @addtogroup lwext4 * @{ */ /** * @file ext4_dir.h * @brief Directory handle procedures. */ #include "ext4_config.h" #include "ext4_types.h" #include "ext4_misc.h" #include "ext4_errno.h" #include "ext4_debug.h" #include "ext4_trans.h" #include "ext4_dir.h" #include "ext4_dir_idx.h" #include "ext4_crc32.h" #include "ext4_inode.h" #include "ext4_fs.h" #include <string.h> /****************************************************************************/ /* Walk through a dirent block to find a checksum "dirent" at the tail */ static struct ext4_dir_entry_tail * ext4_dir_get_tail(struct ext4_inode_ref *inode_ref, struct ext4_dir_en *de) { struct ext4_dir_entry_tail *t; struct ext4_sblock *sb = &inode_ref->fs->sb; t = EXT4_DIRENT_TAIL(de, ext4_sb_get_block_size(sb)); if (t->reserved_zero1 || t->reserved_zero2) return NULL; if (to_le16(t->rec_len) != sizeof(struct ext4_dir_entry_tail)) return NULL; if (t->reserved_ft != EXT4_DIRENTRY_DIR_CSUM) return NULL; return t; } #if CONFIG_META_CSUM_ENABLE static uint32_t ext4_dir_csum(struct ext4_inode_ref *inode_ref, struct ext4_dir_en *dirent, int size) { uint32_t csum; struct ext4_sblock *sb = &inode_ref->fs->sb; uint32_t ino_index = to_le32(inode_ref->index); uint32_t ino_gen = to_le32(ext4_inode_get_generation(inode_ref->inode)); /* First calculate crc32 checksum against fs uuid */ csum = ext4_crc32c(EXT4_CRC32_INIT, sb->uuid, sizeof(sb->uuid)); /* Then calculate crc32 checksum against inode number * and inode generation */ csum = ext4_crc32c(csum, &ino_index, sizeof(ino_index)); csum = ext4_crc32c(csum, &ino_gen, sizeof(ino_gen)); /* Finally calculate crc32 checksum against directory entries */ csum = ext4_crc32c(csum, dirent, size); return csum; } #else #define ext4_dir_csum(...) 0 #endif bool ext4_dir_csum_verify(struct ext4_inode_ref *inode_ref, struct ext4_dir_en *dirent) { #ifdef CONFIG_META_CSUM_ENABLE struct ext4_dir_entry_tail *t; struct ext4_sblock *sb = &inode_ref->fs->sb; /* Compute the checksum only if the filesystem supports it */ if (ext4_sb_feature_ro_com(sb, EXT4_FRO_COM_METADATA_CSUM)) { t = ext4_dir_get_tail(inode_ref, dirent); if (!t) { /* There is no space to hold the checksum */ return false; } ptrdiff_t __unused diff = (char *)t - (char *)dirent; uint32_t csum = ext4_dir_csum(inode_ref, dirent, diff); if (t->checksum != to_le32(csum)) return false; } #endif return true; } void ext4_dir_init_entry_tail(struct ext4_dir_entry_tail *t) { memset(t, 0, sizeof(struct ext4_dir_entry_tail)); t->rec_len = to_le16(sizeof(struct ext4_dir_entry_tail)); t->reserved_ft = EXT4_DIRENTRY_DIR_CSUM; } void ext4_dir_set_csum(struct ext4_inode_ref *inode_ref, struct ext4_dir_en *dirent) { struct ext4_dir_entry_tail *t; struct ext4_sblock *sb = &inode_ref->fs->sb; /* Compute the checksum only if the filesystem supports it */ if (ext4_sb_feature_ro_com(sb, EXT4_FRO_COM_METADATA_CSUM)) { t = ext4_dir_get_tail(inode_ref, dirent); if (!t) { /* There is no space to hold the checksum */ return; } ptrdiff_t __unused diff = (char *)t - (char *)dirent; uint32_t csum = ext4_dir_csum(inode_ref, dirent, diff); t->checksum = to_le32(csum); } } /**@brief Do some checks before returning iterator. * @param it Iterator to be checked * @param block_size Size of data block * @return Error code */ static int ext4_dir_iterator_set(struct ext4_dir_iter *it, uint32_t block_size) { uint32_t off_in_block = it->curr_off % block_size; struct ext4_sblock *sb = &it->inode_ref->fs->sb; it->curr = NULL; /* Ensure proper alignment */ if ((off_in_block % 4) != 0) return EIO; /* Ensure that the core of the entry does not overflow the block */ if (off_in_block > block_size - 8) return EIO; struct ext4_dir_en *en; en = (void *)(it->curr_blk.data + off_in_block); /* Ensure that the whole entry does not overflow the block */ uint16_t length = ext4_dir_en_get_entry_len(en); if (off_in_block + length > block_size) return EIO; /* Ensure the name length is not too large */ if (ext4_dir_en_get_name_len(sb, en) > length - 8) return EIO; /* Everything OK - "publish" the entry */ it->curr = en; return EOK; } /**@brief Seek to next valid directory entry. * Here can be jumped to the next data block. * @param it Initialized iterator * @param pos Position of the next entry * @return Error code */ static int ext4_dir_iterator_seek(struct ext4_dir_iter *it, uint64_t pos) { struct ext4_sblock *sb = &it->inode_ref->fs->sb; struct ext4_inode *inode = it->inode_ref->inode; struct ext4_blockdev *bdev = it->inode_ref->fs->bdev; uint64_t size = ext4_inode_get_size(sb, inode); int r; /* The iterator is not valid until we seek to the desired position */ it->curr = NULL; /* Are we at the end? */ if (pos >= size) { if (it->curr_blk.lb_id) { r = ext4_block_set(bdev, &it->curr_blk); it->curr_blk.lb_id = 0; if (r != EOK) return r; } it->curr_off = pos; return EOK; } /* Compute next block address */ uint32_t block_size = ext4_sb_get_block_size(sb); uint64_t current_blk_idx = it->curr_off / block_size; uint32_t next_blk_idx = (uint32_t)(pos / block_size); /* * If we don't have a block or are moving across block boundary, * we need to get another block */ if ((it->curr_blk.lb_id == 0) || (current_blk_idx != next_blk_idx)) { if (it->curr_blk.lb_id) { r = ext4_block_set(bdev, &it->curr_blk); it->curr_blk.lb_id = 0; if (r != EOK) return r; } ext4_fsblk_t next_blk; r = ext4_fs_get_inode_dblk_idx(it->inode_ref, next_blk_idx, &next_blk, false); if (r != EOK) return r; r = ext4_trans_block_get(bdev, &it->curr_blk, next_blk); if (r != EOK) { it->curr_blk.lb_id = 0; return r; } } it->curr_off = pos; return ext4_dir_iterator_set(it, block_size); } int ext4_dir_iterator_init(struct ext4_dir_iter *it, struct ext4_inode_ref *inode_ref, uint64_t pos) { it->inode_ref = inode_ref; it->curr = 0; it->curr_off = 0; it->curr_blk.lb_id = 0; return ext4_dir_iterator_seek(it, pos); } int ext4_dir_iterator_next(struct ext4_dir_iter *it) { int r = EOK; uint16_t skip; while (r == EOK) { skip = ext4_dir_en_get_entry_len(it->curr); r = ext4_dir_iterator_seek(it, it->curr_off + skip); if (!it->curr) break; /*Skip NULL referenced entry*/ if (ext4_dir_en_get_inode(it->curr) != 0) break; } return r; } int ext4_dir_iterator_fini(struct ext4_dir_iter *it) { it->curr = 0; if (it->curr_blk.lb_id) return ext4_block_set(it->inode_ref->fs->bdev, &it->curr_blk); return EOK; } void ext4_dir_write_entry(struct ext4_sblock *sb, struct ext4_dir_en *en, uint16_t entry_len, struct ext4_inode_ref *child, const char *name, size_t name_len) { /* Check maximum entry length */ ext4_assert(entry_len <= ext4_sb_get_block_size(sb)); /* Set type of entry */ switch (ext4_inode_type(sb, child->inode)) { case EXT4_INODE_MODE_DIRECTORY: ext4_dir_en_set_inode_type(sb, en, EXT4_DE_DIR); break; case EXT4_INODE_MODE_FILE: ext4_dir_en_set_inode_type(sb, en, EXT4_DE_REG_FILE); break; case EXT4_INODE_MODE_SOFTLINK: ext4_dir_en_set_inode_type(sb, en, EXT4_DE_SYMLINK); break; case EXT4_INODE_MODE_CHARDEV: ext4_dir_en_set_inode_type(sb, en, EXT4_DE_CHRDEV); break; case EXT4_INODE_MODE_BLOCKDEV: ext4_dir_en_set_inode_type(sb, en, EXT4_DE_BLKDEV); break; case EXT4_INODE_MODE_FIFO: ext4_dir_en_set_inode_type(sb, en, EXT4_DE_FIFO); break; case EXT4_INODE_MODE_SOCKET: ext4_dir_en_set_inode_type(sb, en, EXT4_DE_SOCK); break; default: /* FIXME: unsupported filetype */ ext4_dir_en_set_inode_type(sb, en, EXT4_DE_UNKNOWN); } /* Set basic attributes */ ext4_dir_en_set_inode(en, child->index); ext4_dir_en_set_entry_len(en, entry_len); ext4_dir_en_set_name_len(sb, en, (uint16_t)name_len); /* Write name */ memcpy(en->name, name, name_len); } int ext4_dir_add_entry(struct ext4_inode_ref *parent, const char *name, uint32_t name_len, struct ext4_inode_ref *child) { int r; struct ext4_fs *fs = parent->fs; struct ext4_sblock *sb = &parent->fs->sb; #if CONFIG_DIR_INDEX_ENABLE /* Index adding (if allowed) */ if ((ext4_sb_feature_com(sb, EXT4_FCOM_DIR_INDEX)) && (ext4_inode_has_flag(parent->inode, EXT4_INODE_FLAG_INDEX))) { r = ext4_dir_dx_add_entry(parent, child, name); /* Check if index is not corrupted */ if (r != EXT4_ERR_BAD_DX_DIR) { if (r != EOK) return r; return EOK; } /* Needed to clear dir index flag if corrupted */ ext4_inode_clear_flag(parent->inode, EXT4_INODE_FLAG_INDEX); parent->dirty = true; } #endif /* Linear algorithm */ uint32_t iblock = 0; ext4_fsblk_t fblock = 0; uint32_t block_size = ext4_sb_get_block_size(sb); uint64_t inode_size = ext4_inode_get_size(sb, parent->inode); uint32_t total_blocks = (uint32_t)(inode_size / block_size); /* Find block, where is space for new entry and try to add */ bool success = false; for (iblock = 0; iblock < total_blocks; ++iblock) { r = ext4_fs_get_inode_dblk_idx(parent, iblock, &fblock, false); if (r != EOK) return r; struct ext4_block block; r = ext4_trans_block_get(fs->bdev, &block, fblock); if (r != EOK) return r; if (!ext4_dir_csum_verify(parent, (void *)block.data)) { ext4_dbg(DEBUG_DIR, DBG_WARN "Leaf block checksum failed." "Inode: %" PRIu32", " "Block: %" PRIu32"\n", parent->index, iblock); } /* If adding is successful, function can finish */ r = ext4_dir_try_insert_entry(sb, parent, &block, child, name, name_len); if (r == EOK) success = true; r = ext4_block_set(fs->bdev, &block); if (r != EOK) return r; if (success) return EOK; } /* No free block found - needed to allocate next data block */ iblock = 0; fblock = 0; r = ext4_fs_append_inode_dblk(parent, &fblock, &iblock); if (r != EOK) return r; /* Load new block */ struct ext4_block b; r = ext4_trans_block_get_noread(fs->bdev, &b, fblock); if (r != EOK) return r; /* Fill block with zeroes */ memset(b.data, 0, block_size); struct ext4_dir_en *blk_en = (void *)b.data; /* Save new block */ if (ext4_sb_feature_ro_com(sb, EXT4_FRO_COM_METADATA_CSUM)) { uint16_t el = block_size - sizeof(struct ext4_dir_entry_tail); ext4_dir_write_entry(sb, blk_en, el, child, name, name_len); ext4_dir_init_entry_tail(EXT4_DIRENT_TAIL(b.data, block_size)); } else { ext4_dir_write_entry(sb, blk_en, block_size, child, name, name_len); } ext4_dir_set_csum(parent, (void *)b.data); ext4_trans_set_block_dirty(b.buf); r = ext4_block_set(fs->bdev, &b); return r; } int ext4_dir_find_entry(struct ext4_dir_search_result *result, struct ext4_inode_ref *parent, const char *name, uint32_t name_len) { int r; struct ext4_sblock *sb = &parent->fs->sb; /* Entry clear */ result->block.lb_id = 0; result->dentry = NULL; #if CONFIG_DIR_INDEX_ENABLE /* Index search */ if ((ext4_sb_feature_com(sb, EXT4_FCOM_DIR_INDEX)) && (ext4_inode_has_flag(parent->inode, EXT4_INODE_FLAG_INDEX))) { r = ext4_dir_dx_find_entry(result, parent, name_len, name); /* Check if index is not corrupted */ if (r != EXT4_ERR_BAD_DX_DIR) { if (r != EOK) return r; return EOK; } /* Needed to clear dir index flag if corrupted */ ext4_inode_clear_flag(parent->inode, EXT4_INODE_FLAG_INDEX); parent->dirty = true; } #endif /* Linear algorithm */ uint32_t iblock; ext4_fsblk_t fblock; uint32_t block_size = ext4_sb_get_block_size(sb); uint64_t inode_size = ext4_inode_get_size(sb, parent->inode); uint32_t total_blocks = (uint32_t)(inode_size / block_size); /* Walk through all data blocks */ for (iblock = 0; iblock < total_blocks; ++iblock) { /* Load block address */ r = ext4_fs_get_inode_dblk_idx(parent, iblock, &fblock, false); if (r != EOK) return r; /* Load data block */ struct ext4_block b; r = ext4_trans_block_get(parent->fs->bdev, &b, fblock); if (r != EOK) return r; if (!ext4_dir_csum_verify(parent, (void *)b.data)) { ext4_dbg(DEBUG_DIR, DBG_WARN "Leaf block checksum failed." "Inode: %" PRIu32", " "Block: %" PRIu32"\n", parent->index, iblock); } /* Try to find entry in block */ struct ext4_dir_en *res_entry; r = ext4_dir_find_in_block(&b, sb, name_len, name, &res_entry); if (r == EOK) { result->block = b; result->dentry = res_entry; return EOK; } /* Entry not found - put block and continue to the next block */ r = ext4_block_set(parent->fs->bdev, &b); if (r != EOK) return r; } return ENOENT; } int ext4_dir_remove_entry(struct ext4_inode_ref *parent, const char *name, uint32_t name_len) { struct ext4_sblock *sb = &parent->fs->sb; /* Check if removing from directory */ if (!ext4_inode_is_type(sb, parent->inode, EXT4_INODE_MODE_DIRECTORY)) return ENOTDIR; /* Try to find entry */ struct ext4_dir_search_result result; int rc = ext4_dir_find_entry(&result, parent, name, name_len); if (rc != EOK) return rc; /* Invalidate entry */ ext4_dir_en_set_inode(result.dentry, 0); /* Store entry position in block */ uint32_t pos = (uint8_t *)result.dentry - result.block.data; /* * If entry is not the first in block, it must be merged * with previous entry */ if (pos != 0) { uint32_t offset = 0; /* Start from the first entry in block */ struct ext4_dir_en *tmp_de =(void *)result.block.data; uint16_t de_len = ext4_dir_en_get_entry_len(tmp_de); /* Find direct predecessor of removed entry */ while ((offset + de_len) < pos) { offset += ext4_dir_en_get_entry_len(tmp_de); tmp_de = (void *)(result.block.data + offset); de_len = ext4_dir_en_get_entry_len(tmp_de); } ext4_assert(de_len + offset == pos); /* Add to removed entry length to predecessor's length */ uint16_t del_len; del_len = ext4_dir_en_get_entry_len(result.dentry); ext4_dir_en_set_entry_len(tmp_de, de_len + del_len); } ext4_dir_set_csum(parent, (struct ext4_dir_en *)result.block.data); ext4_trans_set_block_dirty(result.block.buf); return ext4_dir_destroy_result(parent, &result); } int ext4_dir_try_insert_entry(struct ext4_sblock *sb, struct ext4_inode_ref *inode_ref, struct ext4_block *dst_blk, struct ext4_inode_ref *child, const char *name, uint32_t name_len) { /* Compute required length entry and align it to 4 bytes */ uint32_t block_size = ext4_sb_get_block_size(sb); uint16_t required_len = sizeof(struct ext4_fake_dir_entry) + name_len; if ((required_len % 4) != 0) required_len += 4 - (required_len % 4); /* Initialize pointers, stop means to upper bound */ struct ext4_dir_en *start = (void *)dst_blk->data; struct ext4_dir_en *stop = (void *)(dst_blk->data + block_size); /* * Walk through the block and check for invalid entries * or entries with free space for new entry */ while (start < stop) { uint32_t inode = ext4_dir_en_get_inode(start); uint16_t rec_len = ext4_dir_en_get_entry_len(start); uint8_t itype = ext4_dir_en_get_inode_type(sb, start); /* If invalid and large enough entry, use it */ if ((inode == 0) && (itype != EXT4_DIRENTRY_DIR_CSUM) && (rec_len >= required_len)) { ext4_dir_write_entry(sb, start, rec_len, child, name, name_len); ext4_dir_set_csum(inode_ref, (void *)dst_blk->data); ext4_trans_set_block_dirty(dst_blk->buf); return EOK; } /* Valid entry, try to split it */ if (inode != 0) { uint16_t used_len; used_len = ext4_dir_en_get_name_len(sb, start); uint16_t sz; sz = sizeof(struct ext4_fake_dir_entry) + used_len; if ((used_len % 4) != 0) sz += 4 - (used_len % 4); uint16_t free_space = rec_len - sz; /* There is free space for new entry */ if (free_space >= required_len) { /* Cut tail of current entry */ struct ext4_dir_en * new_entry; new_entry = (void *)((uint8_t *)start + sz); ext4_dir_en_set_entry_len(start, sz); ext4_dir_write_entry(sb, new_entry, free_space, child, name, name_len); ext4_dir_set_csum(inode_ref, (void *)dst_blk->data); ext4_trans_set_block_dirty(dst_blk->buf); return EOK; } } /* Jump to the next entry */ start = (void *)((uint8_t *)start + rec_len); } /* No free space found for new entry */ return ENOSPC; } int ext4_dir_find_in_block(struct ext4_block *block, struct ext4_sblock *sb, size_t name_len, const char *name, struct ext4_dir_en **res_entry) { /* Start from the first entry in block */ struct ext4_dir_en *de = (struct ext4_dir_en *)block->data; /* Set upper bound for cycling */ uint8_t *addr_limit = block->data + ext4_sb_get_block_size(sb); /* Walk through the block and check entries */ while ((uint8_t *)de < addr_limit) { /* Termination condition */ if ((uint8_t *)de + name_len > addr_limit) break; /* Valid entry - check it */ if (ext4_dir_en_get_inode(de) != 0) { /* For more efficient compare only lengths firstly*/ uint16_t el = ext4_dir_en_get_name_len(sb, de); if (el == name_len) { /* Compare names */ if (memcmp(name, de->name, name_len) == 0) { *res_entry = de; return EOK; } } } uint16_t de_len = ext4_dir_en_get_entry_len(de); /* Corrupted entry */ if (de_len == 0) return EINVAL; /* Jump to next entry */ de = (struct ext4_dir_en *)((uint8_t *)de + de_len); } /* Entry not found */ return ENOENT; } int ext4_dir_destroy_result(struct ext4_inode_ref *parent, struct ext4_dir_search_result *result) { if (result->block.lb_id) return ext4_block_set(parent->fs->bdev, &result->block); return EOK; } /** * @} */