ref: fc179b3edab19f0c9a4a669a9f8158dfc8ffecad
dir: /vp9/encoder/x86/vp9_subpel_variance_impl_intrin_avx2.c/
/* * Copyright (c) 2012 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <immintrin.h> // AVX2 #include "vpx_ports/mem.h" #include "vp9/encoder/vp9_variance.h" DECLARE_ALIGNED(32, static const uint8_t, bilinear_filters_avx2[512]) = { 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 15, 1, 15, 1, 15, 1, 15, 1, 15, 1, 15, 1, 15, 1, 15, 1, 15, 1, 15, 1, 15, 1, 15, 1, 15, 1, 15, 1, 15, 1, 15, 1, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 13, 3, 13, 3, 13, 3, 13, 3, 13, 3, 13, 3, 13, 3, 13, 3, 13, 3, 13, 3, 13, 3, 13, 3, 13, 3, 13, 3, 13, 3, 13, 3, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 11, 5, 11, 5, 11, 5, 11, 5, 11, 5, 11, 5, 11, 5, 11, 5, 11, 5, 11, 5, 11, 5, 11, 5, 11, 5, 11, 5, 11, 5, 11, 5, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 9, 7, 9, 7, 9, 7, 9, 7, 9, 7, 9, 7, 9, 7, 9, 7, 9, 7, 9, 7, 9, 7, 9, 7, 9, 7, 9, 7, 9, 7, 9, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 7, 9, 7, 9, 7, 9, 7, 9, 7, 9, 7, 9, 7, 9, 7, 9, 7, 9, 7, 9, 7, 9, 7, 9, 7, 9, 7, 9, 7, 9, 7, 9, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 5, 11, 5, 11, 5, 11, 5, 11, 5, 11, 5, 11, 5, 11, 5, 11, 5, 11, 5, 11, 5, 11, 5, 11, 5, 11, 5, 11, 5, 11, 5, 11, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 3, 13, 3, 13, 3, 13, 3, 13, 3, 13, 3, 13, 3, 13, 3, 13, 3, 13, 3, 13, 3, 13, 3, 13, 3, 13, 3, 13, 3, 13, 3, 13, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 1, 15, 1, 15, 1, 15, 1, 15, 1, 15, 1, 15, 1, 15, 1, 15, 1, 15, 1, 15, 1, 15, 1, 15, 1, 15, 1, 15, 1, 15, 1, 15 }; unsigned int vp9_sub_pixel_variance32xh_avx2(const uint8_t *src, int src_stride, int x_offset, int y_offset, const uint8_t *dst, int dst_stride, int height, unsigned int *sse) { __m256i src_reg, dst_reg, exp_src_lo, exp_src_hi, exp_dst_lo, exp_dst_hi; __m256i sse_reg, sum_reg, sse_reg_hi, res_cmp, sum_reg_lo, sum_reg_hi; __m256i zero_reg; int i, sum; sum_reg = _mm256_set1_epi16(0); sse_reg = _mm256_set1_epi16(0); zero_reg = _mm256_set1_epi16(0); if (x_offset == 0) { // x_offset = 0 and y_offset = 0 if (y_offset == 0) { for (i = 0; i < height ; i++) { // load source and destination src_reg = _mm256_loadu_si256((__m256i const *) (src)); dst_reg = _mm256_load_si256((__m256i const *) (dst)); // expend each byte to 2 bytes exp_src_lo = _mm256_unpacklo_epi8(src_reg, zero_reg); exp_src_hi = _mm256_unpackhi_epi8(src_reg, zero_reg); exp_dst_lo = _mm256_unpacklo_epi8(dst_reg, zero_reg); exp_dst_hi = _mm256_unpackhi_epi8(dst_reg, zero_reg); // source - dest exp_src_lo = _mm256_sub_epi16(exp_src_lo, exp_dst_lo); exp_src_hi = _mm256_sub_epi16(exp_src_hi, exp_dst_hi); // calculate sum sum_reg = _mm256_add_epi16(sum_reg, exp_src_lo); exp_src_lo = _mm256_madd_epi16(exp_src_lo, exp_src_lo); sum_reg = _mm256_add_epi16(sum_reg, exp_src_hi); exp_src_hi = _mm256_madd_epi16(exp_src_hi, exp_src_hi); // calculate sse sse_reg = _mm256_add_epi32(sse_reg, exp_src_lo); sse_reg = _mm256_add_epi32(sse_reg, exp_src_hi); src+= src_stride; dst+= dst_stride; } // x_offset = 0 and y_offset = 8 } else if (y_offset == 8) { __m256i src_next_reg; for (i = 0; i < height ; i++) { // load source + next source + destination src_reg = _mm256_loadu_si256((__m256i const *) (src)); src_next_reg = _mm256_loadu_si256((__m256i const *) (src + src_stride)); dst_reg = _mm256_load_si256((__m256i const *) (dst)); // average between current and next stride source src_reg = _mm256_avg_epu8(src_reg, src_next_reg); // expend each byte to 2 bytes exp_src_lo = _mm256_unpacklo_epi8(src_reg, zero_reg); exp_src_hi = _mm256_unpackhi_epi8(src_reg, zero_reg); exp_dst_lo = _mm256_unpacklo_epi8(dst_reg, zero_reg); exp_dst_hi = _mm256_unpackhi_epi8(dst_reg, zero_reg); // source - dest exp_src_lo = _mm256_sub_epi16(exp_src_lo, exp_dst_lo); exp_src_hi = _mm256_sub_epi16(exp_src_hi, exp_dst_hi); // calculate sum sum_reg = _mm256_add_epi16(sum_reg, exp_src_lo); exp_src_lo = _mm256_madd_epi16(exp_src_lo, exp_src_lo); sum_reg = _mm256_add_epi16(sum_reg, exp_src_hi); exp_src_hi = _mm256_madd_epi16(exp_src_hi, exp_src_hi); sse_reg = _mm256_add_epi32(sse_reg, exp_src_lo); // calculate sse sse_reg = _mm256_add_epi32(sse_reg, exp_src_hi); src+= src_stride; dst+= dst_stride; } // x_offset = 0 and y_offset = bilin interpolation } else { __m256i filter, pw8, src_next_reg; #if (ARCH_X86_64) int64_t y_offset64; y_offset64 = y_offset; y_offset64 <<= 5; filter = _mm256_load_si256( (__m256i const *)(bilinear_filters_avx2 + y_offset64)); #else y_offset <<= 5; filter = _mm256_load_si256( (__m256i const *)(bilinear_filters_avx2 + y_offset)); #endif pw8 = _mm256_set1_epi16(8); for (i = 0; i < height ; i++) { // load current and next source + destination src_reg = _mm256_loadu_si256((__m256i const *) (src)); src_next_reg = _mm256_loadu_si256((__m256i const *) (src + src_stride)); dst_reg = _mm256_load_si256((__m256i const *) (dst)); // merge current and next source exp_src_lo = _mm256_unpacklo_epi8(src_reg, src_next_reg); exp_src_hi = _mm256_unpackhi_epi8(src_reg, src_next_reg); // filter the source exp_src_lo = _mm256_maddubs_epi16(exp_src_lo, filter); exp_src_hi = _mm256_maddubs_epi16(exp_src_hi, filter); // add 8 to the source exp_src_lo = _mm256_add_epi16(exp_src_lo, pw8); exp_src_hi = _mm256_add_epi16(exp_src_hi, pw8); // divide by 16 exp_src_lo = _mm256_srai_epi16(exp_src_lo, 4); exp_src_hi = _mm256_srai_epi16(exp_src_hi, 4); // expand each byte to 2 byte in the destination exp_dst_lo = _mm256_unpacklo_epi8(dst_reg, zero_reg); exp_dst_hi = _mm256_unpackhi_epi8(dst_reg, zero_reg); // source - dest exp_src_lo = _mm256_sub_epi16(exp_src_lo, exp_dst_lo); exp_src_hi = _mm256_sub_epi16(exp_src_hi, exp_dst_hi); // calculate sum sum_reg = _mm256_add_epi16(sum_reg, exp_src_lo); exp_src_lo = _mm256_madd_epi16(exp_src_lo, exp_src_lo); sum_reg = _mm256_add_epi16(sum_reg, exp_src_hi); exp_src_hi = _mm256_madd_epi16(exp_src_hi, exp_src_hi); // calculate sse sse_reg = _mm256_add_epi32(sse_reg, exp_src_lo); sse_reg = _mm256_add_epi32(sse_reg, exp_src_hi); src+= src_stride; dst+= dst_stride; } } // x_offset = 8 and y_offset = 0 } else if (x_offset == 8) { if (y_offset == 0) { __m256i src_next_reg; for (i = 0; i < height ; i++) { // load source and another source starting from the next // following byte + destination src_reg = _mm256_loadu_si256((__m256i const *) (src)); src_next_reg = _mm256_loadu_si256((__m256i const *) (src + 1)); dst_reg = _mm256_load_si256((__m256i const *) (dst)); // average between source and the next byte following source src_reg = _mm256_avg_epu8(src_reg, src_next_reg); // expand each byte to 2 bytes exp_src_lo = _mm256_unpacklo_epi8(src_reg, zero_reg); exp_src_hi = _mm256_unpackhi_epi8(src_reg, zero_reg); exp_dst_lo = _mm256_unpacklo_epi8(dst_reg, zero_reg); exp_dst_hi = _mm256_unpackhi_epi8(dst_reg, zero_reg); // source - dest exp_src_lo = _mm256_sub_epi16(exp_src_lo, exp_dst_lo); exp_src_hi = _mm256_sub_epi16(exp_src_hi, exp_dst_hi); // calculate sum sum_reg = _mm256_add_epi16(sum_reg, exp_src_lo); exp_src_lo = _mm256_madd_epi16(exp_src_lo, exp_src_lo); sum_reg = _mm256_add_epi16(sum_reg, exp_src_hi); exp_src_hi = _mm256_madd_epi16(exp_src_hi, exp_src_hi); // calculate sse sse_reg = _mm256_add_epi32(sse_reg, exp_src_lo); sse_reg = _mm256_add_epi32(sse_reg, exp_src_hi); src+= src_stride; dst+= dst_stride; } // x_offset = 8 and y_offset = 8 } else if (y_offset == 8) { __m256i src_next_reg, src_avg; // load source and another source starting from the next // following byte src_reg = _mm256_loadu_si256((__m256i const *) (src)); src_next_reg = _mm256_loadu_si256((__m256i const *) (src + 1)); // average between source and the next byte following source src_avg = _mm256_avg_epu8(src_reg, src_next_reg); for (i = 0; i < height ; i++) { src+= src_stride; // load source and another source starting from the next // following byte + destination src_reg = _mm256_loadu_si256((__m256i const *) (src)); src_next_reg = _mm256_loadu_si256((__m256i const *) (src + 1)); dst_reg = _mm256_load_si256((__m256i const *) (dst)); // average between source and the next byte following source src_reg = _mm256_avg_epu8(src_reg, src_next_reg); // expand each byte to 2 bytes exp_dst_lo = _mm256_unpacklo_epi8(dst_reg, zero_reg); exp_dst_hi = _mm256_unpackhi_epi8(dst_reg, zero_reg); // average between previous average to current average src_avg = _mm256_avg_epu8(src_avg, src_reg); // expand each byte to 2 bytes exp_src_lo = _mm256_unpacklo_epi8(src_avg, zero_reg); exp_src_hi = _mm256_unpackhi_epi8(src_avg, zero_reg); // save current source average src_avg = src_reg; // source - dest exp_src_lo = _mm256_sub_epi16(exp_src_lo, exp_dst_lo); exp_src_hi = _mm256_sub_epi16(exp_src_hi, exp_dst_hi); // calculate sum sum_reg = _mm256_add_epi16(sum_reg, exp_src_lo); exp_src_lo = _mm256_madd_epi16(exp_src_lo, exp_src_lo); sum_reg = _mm256_add_epi16(sum_reg, exp_src_hi); exp_src_hi = _mm256_madd_epi16(exp_src_hi, exp_src_hi); // calculate sse sse_reg = _mm256_add_epi32(sse_reg, exp_src_lo); sse_reg = _mm256_add_epi32(sse_reg, exp_src_hi); dst+= dst_stride; } // x_offset = 8 and y_offset = bilin interpolation } else { __m256i filter, pw8, src_next_reg, src_avg; #if (ARCH_X86_64) int64_t y_offset64; y_offset64 = y_offset; y_offset64 <<= 5; filter = _mm256_load_si256( (__m256i const *)(bilinear_filters_avx2 + y_offset64)); #else y_offset <<= 5; filter = _mm256_load_si256( (__m256i const *)(bilinear_filters_avx2 + y_offset)); #endif pw8 = _mm256_set1_epi16(8); // load source and another source starting from the next // following byte src_reg = _mm256_loadu_si256((__m256i const *) (src)); src_next_reg = _mm256_loadu_si256((__m256i const *) (src + 1)); // average between source and the next byte following source src_avg = _mm256_avg_epu8(src_reg, src_next_reg); for (i = 0; i < height ; i++) { src+= src_stride; // load source and another source starting from the next // following byte + destination src_reg = _mm256_loadu_si256((__m256i const *) (src)); src_next_reg = _mm256_loadu_si256((__m256i const *) (src + 1)); dst_reg = _mm256_load_si256((__m256i const *) (dst)); // average between source and the next byte following source src_reg = _mm256_avg_epu8(src_reg, src_next_reg); // merge previous average and current average exp_src_lo = _mm256_unpacklo_epi8(src_avg, src_reg); exp_src_hi = _mm256_unpackhi_epi8(src_avg, src_reg); // filter the source exp_src_lo = _mm256_maddubs_epi16(exp_src_lo, filter); exp_src_hi = _mm256_maddubs_epi16(exp_src_hi, filter); // add 8 to the source exp_src_lo = _mm256_add_epi16(exp_src_lo, pw8); exp_src_hi = _mm256_add_epi16(exp_src_hi, pw8); // divide the source by 16 exp_src_lo = _mm256_srai_epi16(exp_src_lo, 4); exp_src_hi = _mm256_srai_epi16(exp_src_hi, 4); // expand each byte to 2 bytes exp_dst_lo = _mm256_unpacklo_epi8(dst_reg, zero_reg); exp_dst_hi = _mm256_unpackhi_epi8(dst_reg, zero_reg); // save current source average src_avg = src_reg; // source - dest exp_src_lo = _mm256_sub_epi16(exp_src_lo, exp_dst_lo); exp_src_hi = _mm256_sub_epi16(exp_src_hi, exp_dst_hi); // calculate sum sum_reg = _mm256_add_epi16(sum_reg, exp_src_lo); exp_src_lo = _mm256_madd_epi16(exp_src_lo, exp_src_lo); sum_reg = _mm256_add_epi16(sum_reg, exp_src_hi); exp_src_hi = _mm256_madd_epi16(exp_src_hi, exp_src_hi); // calculate sse sse_reg = _mm256_add_epi32(sse_reg, exp_src_lo); sse_reg = _mm256_add_epi32(sse_reg, exp_src_hi); dst+= dst_stride; } } // x_offset = bilin interpolation and y_offset = 0 } else { if (y_offset == 0) { __m256i filter, pw8, src_next_reg; #if (ARCH_X86_64) int64_t x_offset64; x_offset64 = x_offset; x_offset64 <<= 5; filter = _mm256_load_si256( (__m256i const *)(bilinear_filters_avx2 + x_offset64)); #else x_offset <<= 5; filter = _mm256_load_si256( (__m256i const *)(bilinear_filters_avx2 + x_offset)); #endif pw8 = _mm256_set1_epi16(8); for (i = 0; i < height ; i++) { // load source and another source starting from the next // following byte + destination src_reg = _mm256_loadu_si256((__m256i const *) (src)); src_next_reg = _mm256_loadu_si256((__m256i const *) (src + 1)); dst_reg = _mm256_load_si256((__m256i const *) (dst)); // merge current and next source exp_src_lo = _mm256_unpacklo_epi8(src_reg, src_next_reg); exp_src_hi = _mm256_unpackhi_epi8(src_reg, src_next_reg); // filter the source exp_src_lo = _mm256_maddubs_epi16(exp_src_lo, filter); exp_src_hi = _mm256_maddubs_epi16(exp_src_hi, filter); // add 8 to source exp_src_lo = _mm256_add_epi16(exp_src_lo, pw8); exp_src_hi = _mm256_add_epi16(exp_src_hi, pw8); // divide the source by 16 exp_src_lo = _mm256_srai_epi16(exp_src_lo, 4); exp_src_hi = _mm256_srai_epi16(exp_src_hi, 4); // expand each byte to 2 bytes exp_dst_lo = _mm256_unpacklo_epi8(dst_reg, zero_reg); exp_dst_hi = _mm256_unpackhi_epi8(dst_reg, zero_reg); // source - dest exp_src_lo = _mm256_sub_epi16(exp_src_lo, exp_dst_lo); exp_src_hi = _mm256_sub_epi16(exp_src_hi, exp_dst_hi); // calculate sum sum_reg = _mm256_add_epi16(sum_reg, exp_src_lo); exp_src_lo = _mm256_madd_epi16(exp_src_lo, exp_src_lo); sum_reg = _mm256_add_epi16(sum_reg, exp_src_hi); exp_src_hi = _mm256_madd_epi16(exp_src_hi, exp_src_hi); // calculate sse sse_reg = _mm256_add_epi32(sse_reg, exp_src_lo); sse_reg = _mm256_add_epi32(sse_reg, exp_src_hi); src+= src_stride; dst+= dst_stride; } // x_offset = bilin interpolation and y_offset = 8 } else if (y_offset == 8) { __m256i filter, pw8, src_next_reg, src_pack; #if (ARCH_X86_64) int64_t x_offset64; x_offset64 = x_offset; x_offset64 <<= 5; filter = _mm256_load_si256( (__m256i const *)(bilinear_filters_avx2 + x_offset64)); #else x_offset <<= 5; filter = _mm256_load_si256( (__m256i const *)(bilinear_filters_avx2 + x_offset)); #endif pw8 = _mm256_set1_epi16(8); // load source and another source starting from the next // following byte src_reg = _mm256_loadu_si256((__m256i const *) (src)); src_next_reg = _mm256_loadu_si256((__m256i const *) (src + 1)); // merge current and next stride source exp_src_lo = _mm256_unpacklo_epi8(src_reg, src_next_reg); exp_src_hi = _mm256_unpackhi_epi8(src_reg, src_next_reg); // filter the source exp_src_lo = _mm256_maddubs_epi16(exp_src_lo, filter); exp_src_hi = _mm256_maddubs_epi16(exp_src_hi, filter); // add 8 to source exp_src_lo = _mm256_add_epi16(exp_src_lo, pw8); exp_src_hi = _mm256_add_epi16(exp_src_hi, pw8); // divide source by 16 exp_src_lo = _mm256_srai_epi16(exp_src_lo, 4); exp_src_hi = _mm256_srai_epi16(exp_src_hi, 4); // convert each 16 bit to 8 bit to each low and high lane source src_pack = _mm256_packus_epi16(exp_src_lo, exp_src_hi); for (i = 0; i < height ; i++) { src+= src_stride; // load source and another source starting from the next // following byte + destination src_reg = _mm256_loadu_si256((__m256i const *) (src)); src_next_reg = _mm256_loadu_si256((__m256i const *) (src + 1)); dst_reg = _mm256_load_si256((__m256i const *) (dst)); // merge current and next stride source exp_src_lo = _mm256_unpacklo_epi8(src_reg, src_next_reg); exp_src_hi = _mm256_unpackhi_epi8(src_reg, src_next_reg); // filter the source exp_src_lo = _mm256_maddubs_epi16(exp_src_lo, filter); exp_src_hi = _mm256_maddubs_epi16(exp_src_hi, filter); // add 8 to source exp_src_lo = _mm256_add_epi16(exp_src_lo, pw8); exp_src_hi = _mm256_add_epi16(exp_src_hi, pw8); // divide source by 16 exp_src_lo = _mm256_srai_epi16(exp_src_lo, 4); exp_src_hi = _mm256_srai_epi16(exp_src_hi, 4); // convert each 16 bit to 8 bit to each low and high lane source src_reg = _mm256_packus_epi16(exp_src_lo, exp_src_hi); // average between previous pack to the current src_pack = _mm256_avg_epu8(src_pack, src_reg); // expand each byte to 2 bytes exp_dst_lo = _mm256_unpacklo_epi8(dst_reg, zero_reg); exp_dst_hi = _mm256_unpackhi_epi8(dst_reg, zero_reg); exp_src_lo = _mm256_unpacklo_epi8(src_pack, zero_reg); exp_src_hi = _mm256_unpackhi_epi8(src_pack, zero_reg); // source - dest exp_src_lo = _mm256_sub_epi16(exp_src_lo, exp_dst_lo); exp_src_hi = _mm256_sub_epi16(exp_src_hi, exp_dst_hi); // calculate sum sum_reg = _mm256_add_epi16(sum_reg, exp_src_lo); exp_src_lo = _mm256_madd_epi16(exp_src_lo, exp_src_lo); sum_reg = _mm256_add_epi16(sum_reg, exp_src_hi); exp_src_hi = _mm256_madd_epi16(exp_src_hi, exp_src_hi); // calculate sse sse_reg = _mm256_add_epi32(sse_reg, exp_src_lo); sse_reg = _mm256_add_epi32(sse_reg, exp_src_hi); // save previous pack src_pack = src_reg; dst+= dst_stride; } // x_offset = bilin interpolation and y_offset = bilin interpolation } else { __m256i xfilter, yfilter, pw8, src_next_reg, src_pack; #if (ARCH_X86_64) int64_t x_offset64, y_offset64; x_offset64 = x_offset; x_offset64 <<= 5; y_offset64 = y_offset; y_offset64 <<= 5; xfilter = _mm256_load_si256( (__m256i const *)(bilinear_filters_avx2 + x_offset64)); yfilter = _mm256_load_si256( (__m256i const *)(bilinear_filters_avx2 + y_offset64)); #else x_offset <<= 5; xfilter = _mm256_load_si256( (__m256i const *)(bilinear_filters_avx2 + x_offset)); y_offset <<= 5; yfilter = _mm256_load_si256( (__m256i const *)(bilinear_filters_avx2 + y_offset)); #endif pw8 = _mm256_set1_epi16(8); // load source and another source starting from the next // following byte src_reg = _mm256_loadu_si256((__m256i const *) (src)); src_next_reg = _mm256_loadu_si256((__m256i const *) (src + 1)); // merge current and next stride source exp_src_lo = _mm256_unpacklo_epi8(src_reg, src_next_reg); exp_src_hi = _mm256_unpackhi_epi8(src_reg, src_next_reg); // filter the source exp_src_lo = _mm256_maddubs_epi16(exp_src_lo, xfilter); exp_src_hi = _mm256_maddubs_epi16(exp_src_hi, xfilter); // add 8 to the source exp_src_lo = _mm256_add_epi16(exp_src_lo, pw8); exp_src_hi = _mm256_add_epi16(exp_src_hi, pw8); // divide the source by 16 exp_src_lo = _mm256_srai_epi16(exp_src_lo, 4); exp_src_hi = _mm256_srai_epi16(exp_src_hi, 4); // convert each 16 bit to 8 bit to each low and high lane source src_pack = _mm256_packus_epi16(exp_src_lo, exp_src_hi); for (i = 0; i < height ; i++) { src+= src_stride; // load source and another source starting from the next // following byte + destination src_reg = _mm256_loadu_si256((__m256i const *) (src)); src_next_reg = _mm256_loadu_si256((__m256i const *) (src + 1)); dst_reg = _mm256_load_si256((__m256i const *) (dst)); // merge current and next stride source exp_src_lo = _mm256_unpacklo_epi8(src_reg, src_next_reg); exp_src_hi = _mm256_unpackhi_epi8(src_reg, src_next_reg); // filter the source exp_src_lo = _mm256_maddubs_epi16(exp_src_lo, xfilter); exp_src_hi = _mm256_maddubs_epi16(exp_src_hi, xfilter); // add 8 to source exp_src_lo = _mm256_add_epi16(exp_src_lo, pw8); exp_src_hi = _mm256_add_epi16(exp_src_hi, pw8); // divide source by 16 exp_src_lo = _mm256_srai_epi16(exp_src_lo, 4); exp_src_hi = _mm256_srai_epi16(exp_src_hi, 4); // convert each 16 bit to 8 bit to each low and high lane source src_reg = _mm256_packus_epi16(exp_src_lo, exp_src_hi); // merge previous pack to current pack source exp_src_lo = _mm256_unpacklo_epi8(src_pack, src_reg); exp_src_hi = _mm256_unpackhi_epi8(src_pack, src_reg); // filter the source exp_src_lo = _mm256_maddubs_epi16(exp_src_lo, yfilter); exp_src_hi = _mm256_maddubs_epi16(exp_src_hi, yfilter); // expand each byte to 2 bytes exp_dst_lo = _mm256_unpacklo_epi8(dst_reg, zero_reg); exp_dst_hi = _mm256_unpackhi_epi8(dst_reg, zero_reg); // add 8 to source exp_src_lo = _mm256_add_epi16(exp_src_lo, pw8); exp_src_hi = _mm256_add_epi16(exp_src_hi, pw8); // divide source by 16 exp_src_lo = _mm256_srai_epi16(exp_src_lo, 4); exp_src_hi = _mm256_srai_epi16(exp_src_hi, 4); // source - dest exp_src_lo = _mm256_sub_epi16(exp_src_lo, exp_dst_lo); exp_src_hi = _mm256_sub_epi16(exp_src_hi, exp_dst_hi); // caculate sum sum_reg = _mm256_add_epi16(sum_reg, exp_src_lo); exp_src_lo = _mm256_madd_epi16(exp_src_lo, exp_src_lo); sum_reg = _mm256_add_epi16(sum_reg, exp_src_hi); exp_src_hi = _mm256_madd_epi16(exp_src_hi, exp_src_hi); // calculate sse sse_reg = _mm256_add_epi32(sse_reg, exp_src_lo); sse_reg = _mm256_add_epi32(sse_reg, exp_src_hi); src_pack = src_reg; dst+= dst_stride; } } } // sum < 0 res_cmp = _mm256_cmpgt_epi16(zero_reg, sum_reg); // save the next 8 bytes of each lane of sse sse_reg_hi = _mm256_srli_si256(sse_reg, 8); // merge the result of sum < 0 with sum to add sign to the next 16 bits sum_reg_lo = _mm256_unpacklo_epi16(sum_reg, res_cmp); sum_reg_hi = _mm256_unpackhi_epi16(sum_reg, res_cmp); // add each 8 bytes from every lane of sse and sum sse_reg = _mm256_add_epi32(sse_reg, sse_reg_hi); sum_reg = _mm256_add_epi32(sum_reg_lo, sum_reg_hi); // save the next 4 bytes of each lane sse sse_reg_hi = _mm256_srli_si256(sse_reg, 4); // save the next 8 bytes of each lane of sum sum_reg_hi = _mm256_srli_si256(sum_reg, 8); // add the first 4 bytes to the next 4 bytes sse sse_reg = _mm256_add_epi32(sse_reg, sse_reg_hi); // add the first 8 bytes to the next 8 bytes sum_reg = _mm256_add_epi32(sum_reg, sum_reg_hi); // extract the low lane and the high lane and add the results *((int*)sse)= _mm_cvtsi128_si32(_mm256_castsi256_si128(sse_reg)) + _mm_cvtsi128_si32(_mm256_extractf128_si256(sse_reg, 1)); sum_reg_hi = _mm256_srli_si256(sum_reg, 4); sum_reg = _mm256_add_epi32(sum_reg, sum_reg_hi); sum = _mm_cvtsi128_si32(_mm256_castsi256_si128(sum_reg)) + _mm_cvtsi128_si32(_mm256_extractf128_si256(sum_reg, 1)); return sum; }