ref: f2fe530e157f3d6261c03be0f14456cf1f79c69e
dir: /vp9/common/vp9_alloccommon.c/
/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "./vpx_config.h" #include "vpx_mem/vpx_mem.h" #include "vp9/common/vp9_blockd.h" #include "vp9/common/vp9_common.h" #include "vp9/common/vp9_entropymode.h" #include "vp9/common/vp9_entropymv.h" #include "vp9/common/vp9_onyxc_int.h" #include "vp9/common/vp9_systemdependent.h" // TODO(hkuang): Don't need to lock the whole pool after implementing atomic // frame reference count. void lock_buffer_pool(BufferPool *const pool) { #if CONFIG_MULTITHREAD pthread_mutex_lock(&pool->pool_mutex); #else (void)pool; #endif } void unlock_buffer_pool(BufferPool *const pool) { #if CONFIG_MULTITHREAD pthread_mutex_unlock(&pool->pool_mutex); #else (void)pool; #endif } static INLINE void alloc_mi_array(VP9_COMMON *cm, int mi_size, int idx) { CHECK_MEM_ERROR(cm, cm->mip_array[idx], vpx_calloc(mi_size, sizeof(*cm->mip_array[0]))); CHECK_MEM_ERROR(cm, cm->mi_grid_base_array[idx], vpx_calloc(mi_size, sizeof(*cm->mi_grid_base_array[0]))); } static void clear_mi_border(const VP9_COMMON *cm, MODE_INFO *mi) { int i; // Top border row vpx_memset(mi, 0, sizeof(*mi) * cm->mi_stride); // Left border column for (i = 1; i < cm->mi_rows + 1; ++i) vpx_memset(&mi[i * cm->mi_stride], 0, sizeof(*mi)); } static void set_mb_mi(VP9_COMMON *cm, int aligned_width, int aligned_height) { cm->mi_cols = aligned_width >> MI_SIZE_LOG2; cm->mi_rows = aligned_height >> MI_SIZE_LOG2; cm->mi_stride = cm->mi_cols + MI_BLOCK_SIZE; cm->mb_cols = (cm->mi_cols + 1) >> 1; cm->mb_rows = (cm->mi_rows + 1) >> 1; cm->MBs = cm->mb_rows * cm->mb_cols; } static void setup_mi(VP9_COMMON *cm) { cm->mi = cm->mip + cm->mi_stride + 1; cm->prev_mi = cm->prev_mip + cm->mi_stride + 1; cm->mi_grid_visible = cm->mi_grid_base + cm->mi_stride + 1; cm->prev_mi_grid_visible = cm->prev_mi_grid_base + cm->mi_stride + 1; vpx_memset(cm->mip, 0, cm->mi_stride * (cm->mi_rows + 1) * sizeof(*cm->mip)); vpx_memset(cm->mi_grid_base, 0, cm->mi_stride * (cm->mi_rows + 1) * sizeof(*cm->mi_grid_base)); // Only clear mi border in non frame-parallel decode. In frame-parallel // decode, prev_mip is managed by previous decoding thread. While in // non frame-parallel decode, prev_mip and mip are both managed by // current decoding thread. if (!cm->frame_parallel_decode) clear_mi_border(cm, cm->prev_mip); } static int alloc_mi(VP9_COMMON *cm, int mi_size) { int i; for (i = 0; i < NUM_PING_PONG_BUFFERS; ++i) { // Delay reallocation as another thread is accessing prev_mi. if (cm->frame_parallel_decode && i == cm->prev_mi_idx) { cm->update_prev_mi = 1; continue; } alloc_mi_array(cm, mi_size, i); } cm->mip = cm->mip_array[cm->mi_idx]; cm->mi_grid_base = cm->mi_grid_base_array[cm->mi_idx]; if (!cm->frame_parallel_decode) { cm->mi_idx = 0; cm->prev_mi_idx = 1; // In frame-parallel decode, prev_mip comes from another thread, // so current decoding thread should not touch it. cm->prev_mip = cm->mip_array[cm->prev_mi_idx]; cm->prev_mi_grid_base = cm->mi_grid_base_array[cm->prev_mi_idx]; } return 0; } static void free_mi(VP9_COMMON *cm, int decode_done) { int i; for (i = 0; i < NUM_PING_PONG_BUFFERS; ++i) { if (cm->frame_parallel_decode && i == cm->prev_mi_idx && !decode_done) continue; vpx_free(cm->mip_array[i]); cm->mip_array[i] = NULL; vpx_free(cm->mi_grid_base_array[i]); cm->mi_grid_base_array[i] = NULL; } cm->mip = NULL; cm->mi_grid_base = NULL; if (!cm->frame_parallel_decode) { cm->prev_mip = NULL; cm->prev_mi_grid_base = NULL; } } static int alloc_seg_map(VP9_COMMON *cm, int seg_map_size) { int i; for (i = 0; i < NUM_PING_PONG_BUFFERS; ++i) { cm->seg_map_array[i] = (uint8_t *)vpx_calloc(seg_map_size, 1); if (cm->seg_map_array[i] == NULL) return 1; } // Init the index. cm->seg_map_idx = 0; cm->prev_seg_map_idx = 1; cm->current_frame_seg_map = cm->seg_map_array[cm->seg_map_idx]; if (!cm->frame_parallel_decode) { cm->last_frame_seg_map = cm->seg_map_array[cm->prev_seg_map_idx]; } return 0; } static void free_seg_map(VP9_COMMON *cm) { int i; for (i = 0; i < NUM_PING_PONG_BUFFERS; ++i) { vpx_free(cm->seg_map_array[i]); cm->seg_map_array[i] = NULL; } cm->current_frame_seg_map = NULL; if (!cm->frame_parallel_decode) { cm->last_frame_seg_map = NULL; } } void vp9_free_frame_buffers(VP9_COMMON *cm) { int i; BufferPool *const pool = cm->buffer_pool; for (i = 0; i < FRAME_BUFFERS; ++i) { vp9_free_frame_buffer(&pool->frame_bufs[i].buf); if (pool->frame_bufs[i].ref_count > 0 && pool->frame_bufs[i].raw_frame_buffer.data != NULL) { pool->release_fb_cb(pool->cb_priv, &pool->frame_bufs[i].raw_frame_buffer); pool->frame_bufs[i].ref_count = 0; } } vp9_free_frame_buffer(&cm->post_proc_buffer); } void vp9_free_context_buffers(VP9_COMMON *cm) { free_mi(cm, 1); free_seg_map(cm); vpx_free(cm->above_context); cm->above_context = NULL; vpx_free(cm->above_seg_context); cm->above_seg_context = NULL; } int vp9_resize_frame_buffers(VP9_COMMON *cm, int width, int height) { const int aligned_width = ALIGN_POWER_OF_TWO(width, MI_SIZE_LOG2); const int aligned_height = ALIGN_POWER_OF_TWO(height, MI_SIZE_LOG2); #if CONFIG_INTERNAL_STATS || CONFIG_VP9_POSTPROC const int ss_x = cm->subsampling_x; const int ss_y = cm->subsampling_y; // TODO(agrange): this should be conditionally allocated. if (vp9_realloc_frame_buffer(&cm->post_proc_buffer, width, height, ss_x, ss_y, VP9_DEC_BORDER_IN_PIXELS, NULL, NULL, NULL) < 0) goto fail; #endif set_mb_mi(cm, aligned_width, aligned_height); free_mi(cm, 0); if (alloc_mi(cm, cm->mi_stride * (cm->mi_rows + MI_BLOCK_SIZE))) goto fail; setup_mi(cm); // Create the segmentation map structure and set to 0. free_seg_map(cm); if (alloc_seg_map(cm, cm->mi_rows * cm->mi_cols)) goto fail; vpx_free(cm->above_context); cm->above_context = (ENTROPY_CONTEXT *)vpx_calloc(2 * mi_cols_aligned_to_sb(cm->mi_cols) * MAX_MB_PLANE, sizeof(*cm->above_context)); if (!cm->above_context) goto fail; vpx_free(cm->above_seg_context); cm->above_seg_context = (PARTITION_CONTEXT *)vpx_calloc(mi_cols_aligned_to_sb(cm->mi_cols), sizeof(*cm->above_seg_context)); if (!cm->above_seg_context) goto fail; return 0; fail: vp9_free_frame_buffers(cm); vp9_free_context_buffers(cm); return 1; } static void init_frame_bufs(VP9_COMMON *cm) { int i; RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs; cm->new_fb_idx = FRAME_BUFFERS - 1; frame_bufs[cm->new_fb_idx].ref_count = 1; for (i = 0; i < REF_FRAMES; ++i) { cm->ref_frame_map[i] = i; frame_bufs[i].ref_count = 1; } } int vp9_alloc_frame_buffers(VP9_COMMON *cm, int width, int height) { int i; const int ss_x = cm->subsampling_x; const int ss_y = cm->subsampling_y; RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs; vp9_free_frame_buffers(cm); for (i = 0; i < FRAME_BUFFERS; ++i) { frame_bufs[i].ref_count = 0; if (vp9_alloc_frame_buffer(&frame_bufs[i].buf, width, height, ss_x, ss_y, VP9_ENC_BORDER_IN_PIXELS) < 0) goto fail; } init_frame_bufs(cm); #if CONFIG_INTERNAL_STATS || CONFIG_VP9_POSTPROC if (vp9_alloc_frame_buffer(&cm->post_proc_buffer, width, height, ss_x, ss_y, VP9_ENC_BORDER_IN_PIXELS) < 0) goto fail; #endif return 0; fail: vp9_free_frame_buffers(cm); return 1; } int vp9_alloc_context_buffers(VP9_COMMON *cm, int width, int height) { const int aligned_width = ALIGN_POWER_OF_TWO(width, MI_SIZE_LOG2); const int aligned_height = ALIGN_POWER_OF_TWO(height, MI_SIZE_LOG2); vp9_free_context_buffers(cm); set_mb_mi(cm, aligned_width, aligned_height); if (alloc_mi(cm, cm->mi_stride * (cm->mi_rows + MI_BLOCK_SIZE))) goto fail; setup_mi(cm); // Create the segmentation map structure and set to 0. cm->last_frame_seg_map = (uint8_t *)vpx_calloc(cm->mi_rows * cm->mi_cols, 1); if (!cm->last_frame_seg_map) goto fail; cm->above_context = (ENTROPY_CONTEXT *)vpx_calloc(2 * mi_cols_aligned_to_sb(cm->mi_cols) * MAX_MB_PLANE, sizeof(*cm->above_context)); if (!cm->above_context) goto fail; cm->above_seg_context = (PARTITION_CONTEXT *)vpx_calloc(mi_cols_aligned_to_sb(cm->mi_cols), sizeof(*cm->above_seg_context)); if (!cm->above_seg_context) goto fail; return 0; fail: vp9_free_context_buffers(cm); return 1; } void vp9_remove_common(VP9_COMMON *cm) { vp9_free_frame_buffers(cm); vp9_free_context_buffers(cm); } void vp9_update_frame_size(VP9_COMMON *cm) { const int aligned_width = ALIGN_POWER_OF_TWO(cm->width, MI_SIZE_LOG2); const int aligned_height = ALIGN_POWER_OF_TWO(cm->height, MI_SIZE_LOG2); set_mb_mi(cm, aligned_width, aligned_height); setup_mi(cm); // Initialize the previous frame segment map to 0. if (cm->current_frame_seg_map) vpx_memset(cm->current_frame_seg_map, 0, cm->mi_rows * cm->mi_cols); } void vp9_swap_mi_and_prev_mi(VP9_COMMON *cm) { // Swap indices. const int tmp = cm->mi_idx; // Only used in frame parallel decode: Update the prev_mi buffer if // needed. The worker that was accessing it must already finish decoding. // So it can be resized safely now. if (cm->update_prev_mi) { const int mi_size = cm->mi_stride * (cm->mi_rows + MI_BLOCK_SIZE); vpx_free(cm->mip_array[cm->prev_mi_idx]); vpx_free(cm->mi_grid_base_array[cm->prev_mi_idx]); cm->mip_array[cm->prev_mi_idx] = NULL; cm->mi_grid_base_array[cm->prev_mi_idx] = NULL; alloc_mi_array(cm, mi_size, cm->prev_mi_idx); cm->update_prev_mi = 0; } cm->mi_idx = cm->prev_mi_idx; cm->prev_mi_idx = tmp; // Current mip will be the prev_mip for the next frame. cm->mip = cm->mip_array[cm->mi_idx]; cm->prev_mip = cm->mip_array[cm->prev_mi_idx]; cm->mi_grid_base = cm->mi_grid_base_array[cm->mi_idx]; cm->prev_mi_grid_base = cm->mi_grid_base_array[cm->prev_mi_idx]; // Update the upper left visible macroblock ptrs. cm->mi = cm->mip + cm->mi_stride + 1; cm->prev_mi = cm->prev_mip + cm->mi_stride + 1; cm->mi_grid_visible = cm->mi_grid_base + cm->mi_stride + 1; cm->prev_mi_grid_visible = cm->prev_mi_grid_base + cm->mi_stride + 1; } void vp9_swap_current_and_last_seg_map(VP9_COMMON *cm) { // Swap indices. const int tmp = cm->seg_map_idx; cm->seg_map_idx = cm->prev_seg_map_idx; cm->prev_seg_map_idx = tmp; cm->current_frame_seg_map = cm->seg_map_array[cm->seg_map_idx]; cm->last_frame_seg_map = cm->seg_map_array[cm->prev_seg_map_idx]; }