ref: ec080fa9dece663d00409bd59dbea0e02b9d47af
dir: /vp9/common/x86/vp9_idct_x86.c/
/* * Copyright (c) 2012 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <assert.h> #include <emmintrin.h> // SSE2 #include "./vpx_config.h" #include "vpx/vpx_integer.h" #include "vp9/common/vp9_common.h" #include "vp9/common/vp9_idct.h" #if HAVE_SSE2 // In order to improve performance, clip absolute diff values to [0, 255], // which allows to keep the additions/subtractions in 8 bits. void vp9_dc_only_idct_add_sse2(int input_dc, uint8_t *pred_ptr, uint8_t *dst_ptr, int pitch, int stride) { int a1; int16_t out; uint8_t abs_diff; __m128i p0, p1, p2, p3; unsigned int extended_diff; __m128i diff; out = dct_const_round_shift(input_dc * cospi_16_64); out = dct_const_round_shift(out * cospi_16_64); a1 = ROUND_POWER_OF_TWO(out, 4); // Read prediction data. p0 = _mm_cvtsi32_si128 (*(const int *)(pred_ptr + 0 * pitch)); p1 = _mm_cvtsi32_si128 (*(const int *)(pred_ptr + 1 * pitch)); p2 = _mm_cvtsi32_si128 (*(const int *)(pred_ptr + 2 * pitch)); p3 = _mm_cvtsi32_si128 (*(const int *)(pred_ptr + 3 * pitch)); // Unpack prediction data, and store 4x4 array in 1 XMM register. p0 = _mm_unpacklo_epi32(p0, p1); p2 = _mm_unpacklo_epi32(p2, p3); p0 = _mm_unpacklo_epi64(p0, p2); // Clip dc value to [0, 255] range. Then, do addition or subtraction // according to its sign. if (a1 >= 0) { abs_diff = (a1 > 255) ? 255 : a1; extended_diff = abs_diff * 0x01010101u; diff = _mm_shuffle_epi32(_mm_cvtsi32_si128((int)extended_diff), 0); p1 = _mm_adds_epu8(p0, diff); } else { abs_diff = (a1 < -255) ? 255 : -a1; extended_diff = abs_diff * 0x01010101u; diff = _mm_shuffle_epi32(_mm_cvtsi32_si128((int)extended_diff), 0); p1 = _mm_subs_epu8(p0, diff); } // Store results to dst. *(int *)dst_ptr = _mm_cvtsi128_si32(p1); dst_ptr += stride; p1 = _mm_srli_si128(p1, 4); *(int *)dst_ptr = _mm_cvtsi128_si32(p1); dst_ptr += stride; p1 = _mm_srli_si128(p1, 4); *(int *)dst_ptr = _mm_cvtsi128_si32(p1); dst_ptr += stride; p1 = _mm_srli_si128(p1, 4); *(int *)dst_ptr = _mm_cvtsi128_si32(p1); } void vp9_short_idct4x4_sse2(int16_t *input, int16_t *output, int pitch) { const __m128i zero = _mm_setzero_si128(); const __m128i eight = _mm_set1_epi16(8); const __m128i cst = _mm_setr_epi16((int16_t)cospi_16_64, (int16_t)cospi_16_64, (int16_t)cospi_16_64, (int16_t)-cospi_16_64, (int16_t)cospi_24_64, (int16_t)-cospi_8_64, (int16_t)cospi_8_64, (int16_t)cospi_24_64); const __m128i rounding = _mm_set1_epi32(DCT_CONST_ROUNDING); const int half_pitch = pitch >> 1; __m128i input0, input1, input2, input3; // Rows input0 = _mm_loadl_epi64((__m128i *)input); input1 = _mm_loadl_epi64((__m128i *)(input + 4)); input2 = _mm_loadl_epi64((__m128i *)(input + 8)); input3 = _mm_loadl_epi64((__m128i *)(input + 12)); // Construct i3, i1, i3, i1, i2, i0, i2, i0 input0 = _mm_shufflelo_epi16(input0, 0xd8); input1 = _mm_shufflelo_epi16(input1, 0xd8); input2 = _mm_shufflelo_epi16(input2, 0xd8); input3 = _mm_shufflelo_epi16(input3, 0xd8); input0 = _mm_unpacklo_epi32(input0, input0); input1 = _mm_unpacklo_epi32(input1, input1); input2 = _mm_unpacklo_epi32(input2, input2); input3 = _mm_unpacklo_epi32(input3, input3); // Stage 1 input0 = _mm_madd_epi16(input0, cst); input1 = _mm_madd_epi16(input1, cst); input2 = _mm_madd_epi16(input2, cst); input3 = _mm_madd_epi16(input3, cst); input0 = _mm_add_epi32(input0, rounding); input1 = _mm_add_epi32(input1, rounding); input2 = _mm_add_epi32(input2, rounding); input3 = _mm_add_epi32(input3, rounding); input0 = _mm_srai_epi32(input0, DCT_CONST_BITS); input1 = _mm_srai_epi32(input1, DCT_CONST_BITS); input2 = _mm_srai_epi32(input2, DCT_CONST_BITS); input3 = _mm_srai_epi32(input3, DCT_CONST_BITS); // Stage 2 input0 = _mm_packs_epi32(input0, zero); input1 = _mm_packs_epi32(input1, zero); input2 = _mm_packs_epi32(input2, zero); input3 = _mm_packs_epi32(input3, zero); // Transpose input1 = _mm_unpacklo_epi16(input0, input1); input3 = _mm_unpacklo_epi16(input2, input3); input0 = _mm_unpacklo_epi32(input1, input3); input1 = _mm_unpackhi_epi32(input1, input3); // Switch column2, column 3, and then, we got: // input2: column1, column 0; input3: column2, column 3. input1 = _mm_shuffle_epi32(input1, 0x4e); input2 = _mm_add_epi16(input0, input1); input3 = _mm_sub_epi16(input0, input1); // Columns // Construct i3, i1, i3, i1, i2, i0, i2, i0 input0 = _mm_shufflelo_epi16(input2, 0xd8); input1 = _mm_shufflehi_epi16(input2, 0xd8); input2 = _mm_shufflehi_epi16(input3, 0xd8); input3 = _mm_shufflelo_epi16(input3, 0xd8); input0 = _mm_unpacklo_epi32(input0, input0); input1 = _mm_unpackhi_epi32(input1, input1); input2 = _mm_unpackhi_epi32(input2, input2); input3 = _mm_unpacklo_epi32(input3, input3); // Stage 1 input0 = _mm_madd_epi16(input0, cst); input1 = _mm_madd_epi16(input1, cst); input2 = _mm_madd_epi16(input2, cst); input3 = _mm_madd_epi16(input3, cst); input0 = _mm_add_epi32(input0, rounding); input1 = _mm_add_epi32(input1, rounding); input2 = _mm_add_epi32(input2, rounding); input3 = _mm_add_epi32(input3, rounding); input0 = _mm_srai_epi32(input0, DCT_CONST_BITS); input1 = _mm_srai_epi32(input1, DCT_CONST_BITS); input2 = _mm_srai_epi32(input2, DCT_CONST_BITS); input3 = _mm_srai_epi32(input3, DCT_CONST_BITS); // Stage 2 input0 = _mm_packs_epi32(input0, zero); input1 = _mm_packs_epi32(input1, zero); input2 = _mm_packs_epi32(input2, zero); input3 = _mm_packs_epi32(input3, zero); // Transpose input1 = _mm_unpacklo_epi16(input0, input1); input3 = _mm_unpacklo_epi16(input2, input3); input0 = _mm_unpacklo_epi32(input1, input3); input1 = _mm_unpackhi_epi32(input1, input3); // Switch column2, column 3, and then, we got: // input2: column1, column 0; input3: column2, column 3. input1 = _mm_shuffle_epi32(input1, 0x4e); input2 = _mm_add_epi16(input0, input1); input3 = _mm_sub_epi16(input0, input1); // Final round and shift input2 = _mm_add_epi16(input2, eight); input3 = _mm_add_epi16(input3, eight); input2 = _mm_srai_epi16(input2, 4); input3 = _mm_srai_epi16(input3, 4); // Store results _mm_storel_epi64((__m128i *)output, input2); input2 = _mm_srli_si128(input2, 8); _mm_storel_epi64((__m128i *)(output + half_pitch), input2); _mm_storel_epi64((__m128i *)(output + 3 * half_pitch), input3); input3 = _mm_srli_si128(input3, 8); _mm_storel_epi64((__m128i *)(output + 2 * half_pitch), input3); } void vp9_idct4_1d_sse2(int16_t *input, int16_t *output) { const __m128i zero = _mm_setzero_si128(); const __m128i c1 = _mm_setr_epi16((int16_t)cospi_16_64, (int16_t)cospi_16_64, (int16_t)cospi_16_64, (int16_t)-cospi_16_64, (int16_t)cospi_24_64, (int16_t)-cospi_8_64, (int16_t)cospi_8_64, (int16_t)cospi_24_64); const __m128i c2 = _mm_setr_epi16(1, 1, 1, 1, 1, -1, 1, -1); const __m128i rounding = _mm_set1_epi32(DCT_CONST_ROUNDING); __m128i in, temp; // Load input data. in = _mm_loadl_epi64((__m128i *)input); // Construct i3, i1, i3, i1, i2, i0, i2, i0 in = _mm_shufflelo_epi16(in, 0xd8); in = _mm_unpacklo_epi32(in, in); // Stage 1 in = _mm_madd_epi16(in, c1); in = _mm_add_epi32(in, rounding); in = _mm_srai_epi32(in, DCT_CONST_BITS); in = _mm_packs_epi32(in, zero); // Stage 2 temp = _mm_shufflelo_epi16(in, 0x9c); in = _mm_shufflelo_epi16(in, 0xc9); in = _mm_unpacklo_epi64(temp, in); in = _mm_madd_epi16(in, c2); in = _mm_packs_epi32(in, zero); // Store results _mm_storel_epi64((__m128i *)output, in); } #define IDCT8x8_1D \ /* Stage1 */ \ { \ const __m128i lo_17 = _mm_unpacklo_epi16(in1, in7); \ const __m128i hi_17 = _mm_unpackhi_epi16(in1, in7); \ const __m128i lo_35 = _mm_unpacklo_epi16(in3, in5); \ const __m128i hi_35 = _mm_unpackhi_epi16(in3, in5); \ \ tmp0 = _mm_madd_epi16(lo_17, stg1_0); \ tmp1 = _mm_madd_epi16(hi_17, stg1_0); \ tmp2 = _mm_madd_epi16(lo_17, stg1_1); \ tmp3 = _mm_madd_epi16(hi_17, stg1_1); \ tmp4 = _mm_madd_epi16(lo_35, stg1_2); \ tmp5 = _mm_madd_epi16(hi_35, stg1_2); \ tmp6 = _mm_madd_epi16(lo_35, stg1_3); \ tmp7 = _mm_madd_epi16(hi_35, stg1_3); \ \ tmp0 = _mm_add_epi32(tmp0, rounding); \ tmp1 = _mm_add_epi32(tmp1, rounding); \ tmp2 = _mm_add_epi32(tmp2, rounding); \ tmp3 = _mm_add_epi32(tmp3, rounding); \ tmp4 = _mm_add_epi32(tmp4, rounding); \ tmp5 = _mm_add_epi32(tmp5, rounding); \ tmp6 = _mm_add_epi32(tmp6, rounding); \ tmp7 = _mm_add_epi32(tmp7, rounding); \ \ tmp0 = _mm_srai_epi32(tmp0, DCT_CONST_BITS); \ tmp1 = _mm_srai_epi32(tmp1, DCT_CONST_BITS); \ tmp2 = _mm_srai_epi32(tmp2, DCT_CONST_BITS); \ tmp3 = _mm_srai_epi32(tmp3, DCT_CONST_BITS); \ tmp4 = _mm_srai_epi32(tmp4, DCT_CONST_BITS); \ tmp5 = _mm_srai_epi32(tmp5, DCT_CONST_BITS); \ tmp6 = _mm_srai_epi32(tmp6, DCT_CONST_BITS); \ tmp7 = _mm_srai_epi32(tmp7, DCT_CONST_BITS); \ \ stp1_4 = _mm_packs_epi32(tmp0, tmp1); \ stp1_7 = _mm_packs_epi32(tmp2, tmp3); \ stp1_5 = _mm_packs_epi32(tmp4, tmp5); \ stp1_6 = _mm_packs_epi32(tmp6, tmp7); \ } \ \ /* Stage2 */ \ { \ const __m128i lo_04 = _mm_unpacklo_epi16(in0, in4); \ const __m128i hi_04 = _mm_unpackhi_epi16(in0, in4); \ const __m128i lo_26 = _mm_unpacklo_epi16(in2, in6); \ const __m128i hi_26 = _mm_unpackhi_epi16(in2, in6); \ \ tmp0 = _mm_madd_epi16(lo_04, stg2_0); \ tmp1 = _mm_madd_epi16(hi_04, stg2_0); \ tmp2 = _mm_madd_epi16(lo_04, stg2_1); \ tmp3 = _mm_madd_epi16(hi_04, stg2_1); \ tmp4 = _mm_madd_epi16(lo_26, stg2_2); \ tmp5 = _mm_madd_epi16(hi_26, stg2_2); \ tmp6 = _mm_madd_epi16(lo_26, stg2_3); \ tmp7 = _mm_madd_epi16(hi_26, stg2_3); \ \ tmp0 = _mm_add_epi32(tmp0, rounding); \ tmp1 = _mm_add_epi32(tmp1, rounding); \ tmp2 = _mm_add_epi32(tmp2, rounding); \ tmp3 = _mm_add_epi32(tmp3, rounding); \ tmp4 = _mm_add_epi32(tmp4, rounding); \ tmp5 = _mm_add_epi32(tmp5, rounding); \ tmp6 = _mm_add_epi32(tmp6, rounding); \ tmp7 = _mm_add_epi32(tmp7, rounding); \ \ tmp0 = _mm_srai_epi32(tmp0, DCT_CONST_BITS); \ tmp1 = _mm_srai_epi32(tmp1, DCT_CONST_BITS); \ tmp2 = _mm_srai_epi32(tmp2, DCT_CONST_BITS); \ tmp3 = _mm_srai_epi32(tmp3, DCT_CONST_BITS); \ tmp4 = _mm_srai_epi32(tmp4, DCT_CONST_BITS); \ tmp5 = _mm_srai_epi32(tmp5, DCT_CONST_BITS); \ tmp6 = _mm_srai_epi32(tmp6, DCT_CONST_BITS); \ tmp7 = _mm_srai_epi32(tmp7, DCT_CONST_BITS); \ \ stp2_0 = _mm_packs_epi32(tmp0, tmp1); \ stp2_1 = _mm_packs_epi32(tmp2, tmp3); \ stp2_2 = _mm_packs_epi32(tmp4, tmp5); \ stp2_3 = _mm_packs_epi32(tmp6, tmp7); \ \ stp2_4 = _mm_adds_epi16(stp1_4, stp1_5); \ stp2_5 = _mm_subs_epi16(stp1_4, stp1_5); \ stp2_6 = _mm_subs_epi16(stp1_7, stp1_6); \ stp2_7 = _mm_adds_epi16(stp1_7, stp1_6); \ } \ \ /* Stage3 */ \ { \ const __m128i lo_56 = _mm_unpacklo_epi16(stp2_6, stp2_5); \ const __m128i hi_56 = _mm_unpackhi_epi16(stp2_6, stp2_5); \ \ stp1_0 = _mm_adds_epi16(stp2_0, stp2_3); \ stp1_1 = _mm_adds_epi16(stp2_1, stp2_2); \ stp1_2 = _mm_subs_epi16(stp2_1, stp2_2); \ stp1_3 = _mm_subs_epi16(stp2_0, stp2_3); \ \ tmp0 = _mm_madd_epi16(lo_56, stg2_1); \ tmp1 = _mm_madd_epi16(hi_56, stg2_1); \ tmp2 = _mm_madd_epi16(lo_56, stg2_0); \ tmp3 = _mm_madd_epi16(hi_56, stg2_0); \ \ tmp0 = _mm_add_epi32(tmp0, rounding); \ tmp1 = _mm_add_epi32(tmp1, rounding); \ tmp2 = _mm_add_epi32(tmp2, rounding); \ tmp3 = _mm_add_epi32(tmp3, rounding); \ \ tmp0 = _mm_srai_epi32(tmp0, DCT_CONST_BITS); \ tmp1 = _mm_srai_epi32(tmp1, DCT_CONST_BITS); \ tmp2 = _mm_srai_epi32(tmp2, DCT_CONST_BITS); \ tmp3 = _mm_srai_epi32(tmp3, DCT_CONST_BITS); \ \ stp1_5 = _mm_packs_epi32(tmp0, tmp1); \ stp1_6 = _mm_packs_epi32(tmp2, tmp3); \ } \ \ /* Stage4 */ \ in0 = _mm_adds_epi16(stp1_0, stp2_7); \ in1 = _mm_adds_epi16(stp1_1, stp1_6); \ in2 = _mm_adds_epi16(stp1_2, stp1_5); \ in3 = _mm_adds_epi16(stp1_3, stp2_4); \ in4 = _mm_subs_epi16(stp1_3, stp2_4); \ in5 = _mm_subs_epi16(stp1_2, stp1_5); \ in6 = _mm_subs_epi16(stp1_1, stp1_6); \ in7 = _mm_subs_epi16(stp1_0, stp2_7); void vp9_short_idct8x8_sse2(int16_t *input, int16_t *output, int pitch) { const int half_pitch = pitch >> 1; const __m128i rounding = _mm_set1_epi32(DCT_CONST_ROUNDING); const __m128i final_rounding = _mm_set1_epi16(1<<4); const __m128i stg1_0 = pair_set_epi16(cospi_28_64, -cospi_4_64); const __m128i stg1_1 = pair_set_epi16(cospi_4_64, cospi_28_64); const __m128i stg1_2 = pair_set_epi16(-cospi_20_64, cospi_12_64); const __m128i stg1_3 = pair_set_epi16(cospi_12_64, cospi_20_64); const __m128i stg2_0 = pair_set_epi16(cospi_16_64, cospi_16_64); const __m128i stg2_1 = pair_set_epi16(cospi_16_64, -cospi_16_64); const __m128i stg2_2 = pair_set_epi16(cospi_24_64, -cospi_8_64); const __m128i stg2_3 = pair_set_epi16(cospi_8_64, cospi_24_64); __m128i in0, in1, in2, in3, in4, in5, in6, in7; __m128i stp1_0, stp1_1, stp1_2, stp1_3, stp1_4, stp1_5, stp1_6, stp1_7; __m128i stp2_0, stp2_1, stp2_2, stp2_3, stp2_4, stp2_5, stp2_6, stp2_7; __m128i tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; int i; // Load input data. in0 = _mm_load_si128((__m128i *)input); in1 = _mm_load_si128((__m128i *)(input + 8 * 1)); in2 = _mm_load_si128((__m128i *)(input + 8 * 2)); in3 = _mm_load_si128((__m128i *)(input + 8 * 3)); in4 = _mm_load_si128((__m128i *)(input + 8 * 4)); in5 = _mm_load_si128((__m128i *)(input + 8 * 5)); in6 = _mm_load_si128((__m128i *)(input + 8 * 6)); in7 = _mm_load_si128((__m128i *)(input + 8 * 7)); // 2-D for (i = 0; i < 2; i++) { // 8x8 Transpose is copied from vp9_short_fdct8x8_sse2() { const __m128i tr0_0 = _mm_unpacklo_epi16(in0, in1); const __m128i tr0_1 = _mm_unpacklo_epi16(in2, in3); const __m128i tr0_2 = _mm_unpackhi_epi16(in0, in1); const __m128i tr0_3 = _mm_unpackhi_epi16(in2, in3); const __m128i tr0_4 = _mm_unpacklo_epi16(in4, in5); const __m128i tr0_5 = _mm_unpacklo_epi16(in6, in7); const __m128i tr0_6 = _mm_unpackhi_epi16(in4, in5); const __m128i tr0_7 = _mm_unpackhi_epi16(in6, in7); const __m128i tr1_0 = _mm_unpacklo_epi32(tr0_0, tr0_1); const __m128i tr1_1 = _mm_unpacklo_epi32(tr0_2, tr0_3); const __m128i tr1_2 = _mm_unpackhi_epi32(tr0_0, tr0_1); const __m128i tr1_3 = _mm_unpackhi_epi32(tr0_2, tr0_3); const __m128i tr1_4 = _mm_unpacklo_epi32(tr0_4, tr0_5); const __m128i tr1_5 = _mm_unpacklo_epi32(tr0_6, tr0_7); const __m128i tr1_6 = _mm_unpackhi_epi32(tr0_4, tr0_5); const __m128i tr1_7 = _mm_unpackhi_epi32(tr0_6, tr0_7); in0 = _mm_unpacklo_epi64(tr1_0, tr1_4); in1 = _mm_unpackhi_epi64(tr1_0, tr1_4); in2 = _mm_unpacklo_epi64(tr1_2, tr1_6); in3 = _mm_unpackhi_epi64(tr1_2, tr1_6); in4 = _mm_unpacklo_epi64(tr1_1, tr1_5); in5 = _mm_unpackhi_epi64(tr1_1, tr1_5); in6 = _mm_unpacklo_epi64(tr1_3, tr1_7); in7 = _mm_unpackhi_epi64(tr1_3, tr1_7); } // 4-stage 1D idct8x8 IDCT8x8_1D } // Final rounding and shift in0 = _mm_add_epi16(in0, final_rounding); in1 = _mm_add_epi16(in1, final_rounding); in2 = _mm_add_epi16(in2, final_rounding); in3 = _mm_add_epi16(in3, final_rounding); in4 = _mm_add_epi16(in4, final_rounding); in5 = _mm_add_epi16(in5, final_rounding); in6 = _mm_add_epi16(in6, final_rounding); in7 = _mm_add_epi16(in7, final_rounding); in0 = _mm_srai_epi16(in0, 5); in1 = _mm_srai_epi16(in1, 5); in2 = _mm_srai_epi16(in2, 5); in3 = _mm_srai_epi16(in3, 5); in4 = _mm_srai_epi16(in4, 5); in5 = _mm_srai_epi16(in5, 5); in6 = _mm_srai_epi16(in6, 5); in7 = _mm_srai_epi16(in7, 5); // Store results _mm_store_si128((__m128i *)output, in0); _mm_store_si128((__m128i *)(output + half_pitch * 1), in1); _mm_store_si128((__m128i *)(output + half_pitch * 2), in2); _mm_store_si128((__m128i *)(output + half_pitch * 3), in3); _mm_store_si128((__m128i *)(output + half_pitch * 4), in4); _mm_store_si128((__m128i *)(output + half_pitch * 5), in5); _mm_store_si128((__m128i *)(output + half_pitch * 6), in6); _mm_store_si128((__m128i *)(output + half_pitch * 7), in7); } void vp9_short_idct10_8x8_sse2(int16_t *input, int16_t *output, int pitch) { const int half_pitch = pitch >> 1; const __m128i zero = _mm_setzero_si128(); const __m128i rounding = _mm_set1_epi32(DCT_CONST_ROUNDING); const __m128i final_rounding = _mm_set1_epi16(1<<4); const __m128i stg1_0 = pair_set_epi16(cospi_28_64, -cospi_4_64); const __m128i stg1_1 = pair_set_epi16(cospi_4_64, cospi_28_64); const __m128i stg1_2 = pair_set_epi16(-cospi_20_64, cospi_12_64); const __m128i stg1_3 = pair_set_epi16(cospi_12_64, cospi_20_64); const __m128i stg2_0 = pair_set_epi16(cospi_16_64, cospi_16_64); const __m128i stg2_1 = pair_set_epi16(cospi_16_64, -cospi_16_64); const __m128i stg2_2 = pair_set_epi16(cospi_24_64, -cospi_8_64); const __m128i stg2_3 = pair_set_epi16(cospi_8_64, cospi_24_64); const __m128i stg3_0 = pair_set_epi16(-cospi_16_64, cospi_16_64); __m128i in0, in1, in2, in3, in4, in5, in6, in7; __m128i stp1_0, stp1_1, stp1_2, stp1_3, stp1_4, stp1_5, stp1_6, stp1_7; __m128i stp2_0, stp2_1, stp2_2, stp2_3, stp2_4, stp2_5, stp2_6, stp2_7; __m128i tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; // Rows. Load 4-row input data. in0 = _mm_load_si128((__m128i *)input); in1 = _mm_load_si128((__m128i *)(input + 8 * 1)); in2 = _mm_load_si128((__m128i *)(input + 8 * 2)); in3 = _mm_load_si128((__m128i *)(input + 8 * 3)); // 8x4 Transpose { const __m128i tr0_0 = _mm_unpacklo_epi16(in0, in1); const __m128i tr0_1 = _mm_unpacklo_epi16(in2, in3); const __m128i tr0_2 = _mm_unpackhi_epi16(in0, in1); const __m128i tr0_3 = _mm_unpackhi_epi16(in2, in3); in0 = _mm_unpacklo_epi32(tr0_0, tr0_1); // i1 i0 in1 = _mm_unpacklo_epi32(tr0_2, tr0_3); // i5 i4 in2 = _mm_unpackhi_epi32(tr0_0, tr0_1); // i3 i2 in3 = _mm_unpackhi_epi32(tr0_2, tr0_3); // i7 i6 } // Stage1 { const __m128i lo_17 = _mm_unpackhi_epi16(in0, in3); const __m128i lo_35 = _mm_unpackhi_epi16(in2, in1); tmp0 = _mm_madd_epi16(lo_17, stg1_0); tmp2 = _mm_madd_epi16(lo_17, stg1_1); tmp4 = _mm_madd_epi16(lo_35, stg1_2); tmp6 = _mm_madd_epi16(lo_35, stg1_3); tmp0 = _mm_add_epi32(tmp0, rounding); tmp2 = _mm_add_epi32(tmp2, rounding); tmp4 = _mm_add_epi32(tmp4, rounding); tmp6 = _mm_add_epi32(tmp6, rounding); tmp0 = _mm_srai_epi32(tmp0, DCT_CONST_BITS); tmp2 = _mm_srai_epi32(tmp2, DCT_CONST_BITS); tmp4 = _mm_srai_epi32(tmp4, DCT_CONST_BITS); tmp6 = _mm_srai_epi32(tmp6, DCT_CONST_BITS); stp1_4 = _mm_packs_epi32(tmp0, zero); stp1_7 = _mm_packs_epi32(tmp2, zero); stp1_5 = _mm_packs_epi32(tmp4, zero); stp1_6 = _mm_packs_epi32(tmp6, zero); } // Stage2 { const __m128i lo_04 = _mm_unpacklo_epi16(in0, in1); const __m128i lo_26 = _mm_unpacklo_epi16(in2, in3); tmp0 = _mm_madd_epi16(lo_04, stg2_0); tmp2 = _mm_madd_epi16(lo_04, stg2_1); tmp4 = _mm_madd_epi16(lo_26, stg2_2); tmp6 = _mm_madd_epi16(lo_26, stg2_3); tmp0 = _mm_add_epi32(tmp0, rounding); tmp2 = _mm_add_epi32(tmp2, rounding); tmp4 = _mm_add_epi32(tmp4, rounding); tmp6 = _mm_add_epi32(tmp6, rounding); tmp0 = _mm_srai_epi32(tmp0, DCT_CONST_BITS); tmp2 = _mm_srai_epi32(tmp2, DCT_CONST_BITS); tmp4 = _mm_srai_epi32(tmp4, DCT_CONST_BITS); tmp6 = _mm_srai_epi32(tmp6, DCT_CONST_BITS); stp2_0 = _mm_packs_epi32(tmp0, zero); stp2_1 = _mm_packs_epi32(tmp2, zero); stp2_2 = _mm_packs_epi32(tmp4, zero); stp2_3 = _mm_packs_epi32(tmp6, zero); stp2_4 = _mm_adds_epi16(stp1_4, stp1_5); stp2_5 = _mm_subs_epi16(stp1_4, stp1_5); stp2_6 = _mm_subs_epi16(stp1_7, stp1_6); stp2_7 = _mm_adds_epi16(stp1_7, stp1_6); } // Stage3 { const __m128i lo_56 = _mm_unpacklo_epi16(stp2_5, stp2_6); stp1_0 = _mm_adds_epi16(stp2_0, stp2_3); stp1_1 = _mm_adds_epi16(stp2_1, stp2_2); stp1_2 = _mm_subs_epi16(stp2_1, stp2_2); stp1_3 = _mm_subs_epi16(stp2_0, stp2_3); tmp0 = _mm_madd_epi16(lo_56, stg3_0); tmp2 = _mm_madd_epi16(lo_56, stg2_0); // stg3_1 = stg2_0 tmp0 = _mm_add_epi32(tmp0, rounding); tmp2 = _mm_add_epi32(tmp2, rounding); tmp0 = _mm_srai_epi32(tmp0, DCT_CONST_BITS); tmp2 = _mm_srai_epi32(tmp2, DCT_CONST_BITS); stp1_5 = _mm_packs_epi32(tmp0, zero); stp1_6 = _mm_packs_epi32(tmp2, zero); } // Stage4 in0 = _mm_adds_epi16(stp1_0, stp2_7); in1 = _mm_adds_epi16(stp1_1, stp1_6); in2 = _mm_adds_epi16(stp1_2, stp1_5); in3 = _mm_adds_epi16(stp1_3, stp2_4); in4 = _mm_subs_epi16(stp1_3, stp2_4); in5 = _mm_subs_epi16(stp1_2, stp1_5); in6 = _mm_subs_epi16(stp1_1, stp1_6); in7 = _mm_subs_epi16(stp1_0, stp2_7); // Columns. 4x8 Transpose { const __m128i tr0_0 = _mm_unpacklo_epi16(in0, in1); const __m128i tr0_1 = _mm_unpacklo_epi16(in2, in3); const __m128i tr0_4 = _mm_unpacklo_epi16(in4, in5); const __m128i tr0_5 = _mm_unpacklo_epi16(in6, in7); const __m128i tr1_0 = _mm_unpacklo_epi32(tr0_0, tr0_1); const __m128i tr1_2 = _mm_unpackhi_epi32(tr0_0, tr0_1); const __m128i tr1_4 = _mm_unpacklo_epi32(tr0_4, tr0_5); const __m128i tr1_6 = _mm_unpackhi_epi32(tr0_4, tr0_5); in0 = _mm_unpacklo_epi64(tr1_0, tr1_4); in1 = _mm_unpackhi_epi64(tr1_0, tr1_4); in2 = _mm_unpacklo_epi64(tr1_2, tr1_6); in3 = _mm_unpackhi_epi64(tr1_2, tr1_6); in4 = _mm_setzero_si128(); in5 = _mm_setzero_si128(); in6 = _mm_setzero_si128(); in7 = _mm_setzero_si128(); } // 1D idct8x8 IDCT8x8_1D // Final rounding and shift in0 = _mm_add_epi16(in0, final_rounding); in1 = _mm_add_epi16(in1, final_rounding); in2 = _mm_add_epi16(in2, final_rounding); in3 = _mm_add_epi16(in3, final_rounding); in4 = _mm_add_epi16(in4, final_rounding); in5 = _mm_add_epi16(in5, final_rounding); in6 = _mm_add_epi16(in6, final_rounding); in7 = _mm_add_epi16(in7, final_rounding); in0 = _mm_srai_epi16(in0, 5); in1 = _mm_srai_epi16(in1, 5); in2 = _mm_srai_epi16(in2, 5); in3 = _mm_srai_epi16(in3, 5); in4 = _mm_srai_epi16(in4, 5); in5 = _mm_srai_epi16(in5, 5); in6 = _mm_srai_epi16(in6, 5); in7 = _mm_srai_epi16(in7, 5); // Store results _mm_store_si128((__m128i *)output, in0); _mm_store_si128((__m128i *)(output + half_pitch * 1), in1); _mm_store_si128((__m128i *)(output + half_pitch * 2), in2); _mm_store_si128((__m128i *)(output + half_pitch * 3), in3); _mm_store_si128((__m128i *)(output + half_pitch * 4), in4); _mm_store_si128((__m128i *)(output + half_pitch * 5), in5); _mm_store_si128((__m128i *)(output + half_pitch * 6), in6); _mm_store_si128((__m128i *)(output + half_pitch * 7), in7); } #endif