shithub: libvpx

ref: e65f5987f6eea95bfbb0876cc0a966d1d82f5841
dir: /vp8/encoder/firstpass.c/

View raw version
/*
 *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "math.h"
#include "limits.h"
#include "block.h"
#include "onyx_int.h"
#include "variance.h"
#include "encodeintra.h"
#include "vp8/common/setupintrarecon.h"
#include "mcomp.h"
#include "firstpass.h"
#include "vpx_scale/vpxscale.h"
#include "encodemb.h"
#include "vp8/common/extend.h"
#include "vp8/common/systemdependent.h"
#include "vpx_scale/yv12extend.h"
#include "vpx_mem/vpx_mem.h"
#include "vp8/common/swapyv12buffer.h"
#include <stdio.h>
#include "rdopt.h"
#include "ratectrl.h"
#include "vp8/common/quant_common.h"
#include "encodemv.h"

//#define OUTPUT_FPF 1

#if CONFIG_RUNTIME_CPU_DETECT
#define IF_RTCD(x) (x)
#else
#define IF_RTCD(x) NULL
#endif

#if CONFIG_HIGH_PRECISION_MV
#define XMVCOST (x->e_mbd.allow_high_precision_mv?x->mvcost_hp:x->mvcost)
#else
#define XMVCOST (x->mvcost)
#endif

extern void vp8_build_block_offsets(MACROBLOCK *x);
extern void vp8_setup_block_ptrs(MACROBLOCK *x);
extern void vp8cx_frame_init_quantizer(VP8_COMP *cpi);
extern void vp8_set_mbmode_and_mvs(MACROBLOCK *x, MB_PREDICTION_MODE mb, int_mv *mv);
extern void vp8_alloc_compressor_data(VP8_COMP *cpi);

#define IIFACTOR   12.5
#define IIKFACTOR1 12.5
#define IIKFACTOR2 15.0
#define RMAX       128.0
#define GF_RMAX    96.0
#define ERR_DIVISOR   150.0

#define KF_MB_INTRA_MIN 300
#define GF_MB_INTRA_MIN 200

#define DOUBLE_DIVIDE_CHECK(X) ((X)<0?(X)-.000001:(X)+.000001)

#define POW1 (double)cpi->oxcf.two_pass_vbrbias/100.0
#define POW2 (double)cpi->oxcf.two_pass_vbrbias/100.0

static void find_next_key_frame(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame);

static int select_cq_level( int qindex )
{
    int ret_val = QINDEX_RANGE - 1;
    int i;

    double target_q = ( vp8_convert_qindex_to_q( qindex ) * 0.5847 ) + 1.0;

    for ( i = 0; i < QINDEX_RANGE; i++ )
    {
        if ( target_q <= vp8_convert_qindex_to_q( i ) )
        {
            ret_val = i;
            break;
        }
    }

    return ret_val;
}


// Resets the first pass file to the given position using a relative seek from the current position
static void reset_fpf_position(VP8_COMP *cpi, FIRSTPASS_STATS *Position)
{
    cpi->twopass.stats_in = Position;
}

static int lookup_next_frame_stats(VP8_COMP *cpi, FIRSTPASS_STATS *next_frame)
{
    if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end)
        return EOF;

    *next_frame = *cpi->twopass.stats_in;
    return 1;
}

// Read frame stats at an offset from the current position
static int read_frame_stats( VP8_COMP *cpi,
                             FIRSTPASS_STATS *frame_stats,
                             int offset )
{
    FIRSTPASS_STATS * fps_ptr = cpi->twopass.stats_in;

    // Check legality of offset
    if ( offset >= 0 )
    {
        if ( &fps_ptr[offset] >= cpi->twopass.stats_in_end )
             return EOF;
    }
    else if ( offset < 0 )
    {
        if ( &fps_ptr[offset] < cpi->twopass.stats_in_start )
             return EOF;
    }

    *frame_stats = fps_ptr[offset];
    return 1;
}

static int input_stats(VP8_COMP *cpi, FIRSTPASS_STATS *fps)
{
    if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end)
        return EOF;

    *fps = *cpi->twopass.stats_in;
    cpi->twopass.stats_in =
         (void*)((char *)cpi->twopass.stats_in + sizeof(FIRSTPASS_STATS));
    return 1;
}

static void output_stats(const VP8_COMP            *cpi,
                         struct vpx_codec_pkt_list *pktlist,
                         FIRSTPASS_STATS            *stats)
{
    struct vpx_codec_cx_pkt pkt;
    pkt.kind = VPX_CODEC_STATS_PKT;
    pkt.data.twopass_stats.buf = stats;
    pkt.data.twopass_stats.sz = sizeof(FIRSTPASS_STATS);
    vpx_codec_pkt_list_add(pktlist, &pkt);

// TEMP debug code
#if OUTPUT_FPF

    {
        FILE *fpfile;
        fpfile = fopen("firstpass.stt", "a");

        fprintf(fpfile, "%12.0f %12.0f %12.0f %12.0f %12.0f %12.4f %12.4f"
                        "%12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f"
                        "%12.0f %12.0f %12.4f %12.0f %12.0f %12.4f\n",
                stats->frame,
                stats->intra_error,
                stats->coded_error,
                stats->sr_coded_error,
                stats->ssim_weighted_pred_err,
                stats->pcnt_inter,
                stats->pcnt_motion,
                stats->pcnt_second_ref,
                stats->pcnt_neutral,
                stats->MVr,
                stats->mvr_abs,
                stats->MVc,
                stats->mvc_abs,
                stats->MVrv,
                stats->MVcv,
                stats->mv_in_out_count,
                stats->new_mv_count,
                stats->count,
                stats->duration);
        fclose(fpfile);
    }
#endif
}

static void zero_stats(FIRSTPASS_STATS *section)
{
    section->frame      = 0.0;
    section->intra_error = 0.0;
    section->coded_error = 0.0;
    section->sr_coded_error = 0.0;
    section->ssim_weighted_pred_err = 0.0;
    section->pcnt_inter  = 0.0;
    section->pcnt_motion  = 0.0;
    section->pcnt_second_ref = 0.0;
    section->pcnt_neutral = 0.0;
    section->MVr        = 0.0;
    section->mvr_abs     = 0.0;
    section->MVc        = 0.0;
    section->mvc_abs     = 0.0;
    section->MVrv       = 0.0;
    section->MVcv       = 0.0;
    section->mv_in_out_count  = 0.0;
    section->new_mv_count = 0.0;
    section->count      = 0.0;
    section->duration   = 1.0;
}

static void accumulate_stats(FIRSTPASS_STATS *section, FIRSTPASS_STATS *frame)
{
    section->frame += frame->frame;
    section->intra_error += frame->intra_error;
    section->coded_error += frame->coded_error;
    section->sr_coded_error += frame->sr_coded_error;
    section->ssim_weighted_pred_err += frame->ssim_weighted_pred_err;
    section->pcnt_inter  += frame->pcnt_inter;
    section->pcnt_motion += frame->pcnt_motion;
    section->pcnt_second_ref += frame->pcnt_second_ref;
    section->pcnt_neutral += frame->pcnt_neutral;
    section->MVr        += frame->MVr;
    section->mvr_abs     += frame->mvr_abs;
    section->MVc        += frame->MVc;
    section->mvc_abs     += frame->mvc_abs;
    section->MVrv       += frame->MVrv;
    section->MVcv       += frame->MVcv;
    section->mv_in_out_count  += frame->mv_in_out_count;
    section->new_mv_count += frame->new_mv_count;
    section->count      += frame->count;
    section->duration   += frame->duration;
}

static void subtract_stats(FIRSTPASS_STATS *section, FIRSTPASS_STATS *frame)
{
    section->frame -= frame->frame;
    section->intra_error -= frame->intra_error;
    section->coded_error -= frame->coded_error;
    section->sr_coded_error -= frame->sr_coded_error;
    section->ssim_weighted_pred_err -= frame->ssim_weighted_pred_err;
    section->pcnt_inter  -= frame->pcnt_inter;
    section->pcnt_motion -= frame->pcnt_motion;
    section->pcnt_second_ref -= frame->pcnt_second_ref;
    section->pcnt_neutral -= frame->pcnt_neutral;
    section->MVr        -= frame->MVr;
    section->mvr_abs     -= frame->mvr_abs;
    section->MVc        -= frame->MVc;
    section->mvc_abs     -= frame->mvc_abs;
    section->MVrv       -= frame->MVrv;
    section->MVcv       -= frame->MVcv;
    section->mv_in_out_count  -= frame->mv_in_out_count;
    section->new_mv_count -= frame->new_mv_count;
    section->count      -= frame->count;
    section->duration   -= frame->duration;
}

static void avg_stats(FIRSTPASS_STATS *section)
{
    if (section->count < 1.0)
        return;

    section->intra_error /= section->count;
    section->coded_error /= section->count;
    section->sr_coded_error /= section->count;
    section->ssim_weighted_pred_err /= section->count;
    section->pcnt_inter  /= section->count;
    section->pcnt_second_ref /= section->count;
    section->pcnt_neutral /= section->count;
    section->pcnt_motion /= section->count;
    section->MVr        /= section->count;
    section->mvr_abs     /= section->count;
    section->MVc        /= section->count;
    section->mvc_abs     /= section->count;
    section->MVrv       /= section->count;
    section->MVcv       /= section->count;
    section->mv_in_out_count   /= section->count;
    section->duration   /= section->count;
}

// Calculate a modified Error used in distributing bits between easier and harder frames
static double calculate_modified_err(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame)
{
    double av_err = ( cpi->twopass.total_stats->ssim_weighted_pred_err /
                      cpi->twopass.total_stats->count );
    double this_err = this_frame->ssim_weighted_pred_err;
    double modified_err;

    if (this_err > av_err)
        modified_err = av_err * pow((this_err / DOUBLE_DIVIDE_CHECK(av_err)), POW1);
    else
        modified_err = av_err * pow((this_err / DOUBLE_DIVIDE_CHECK(av_err)), POW2);

    return modified_err;
}

static const double weight_table[256] = {
0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000,
0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000,
0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000,
0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000,
0.020000, 0.031250, 0.062500, 0.093750, 0.125000, 0.156250, 0.187500, 0.218750,
0.250000, 0.281250, 0.312500, 0.343750, 0.375000, 0.406250, 0.437500, 0.468750,
0.500000, 0.531250, 0.562500, 0.593750, 0.625000, 0.656250, 0.687500, 0.718750,
0.750000, 0.781250, 0.812500, 0.843750, 0.875000, 0.906250, 0.937500, 0.968750,
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000
};

static double simple_weight(YV12_BUFFER_CONFIG *source)
{
    int i, j;

    unsigned char *src = source->y_buffer;
    double sum_weights = 0.0;

    // Loop throught the Y plane raw examining levels and creating a weight for the image
    i = source->y_height;
    do
    {
        j = source->y_width;
        do
        {
            sum_weights += weight_table[ *src];
            src++;
        }while(--j);
        src -= source->y_width;
        src += source->y_stride;
    }while(--i);

    sum_weights /= (source->y_height * source->y_width);

    return sum_weights;
}


// This function returns the current per frame maximum bitrate target
static int frame_max_bits(VP8_COMP *cpi)
{
    // Max allocation for a single frame based on the max section guidelines passed in and how many bits are left
    int max_bits;

    // For VBR base this on the bits and frames left plus the two_pass_vbrmax_section rate passed in by the user
    max_bits = (int)(((double)cpi->twopass.bits_left / (cpi->twopass.total_stats->count - (double)cpi->common.current_video_frame)) * ((double)cpi->oxcf.two_pass_vbrmax_section / 100.0));

    // Trap case where we are out of bits
    if (max_bits < 0)
        max_bits = 0;

    return max_bits;
}

void vp8_init_first_pass(VP8_COMP *cpi)
{
    zero_stats(cpi->twopass.total_stats);
}

void vp8_end_first_pass(VP8_COMP *cpi)
{
    output_stats(cpi, cpi->output_pkt_list, cpi->twopass.total_stats);
}

static void zz_motion_search( VP8_COMP *cpi, MACROBLOCK * x, YV12_BUFFER_CONFIG * recon_buffer, int * best_motion_err, int recon_yoffset )
{
    MACROBLOCKD * const xd = & x->e_mbd;
    BLOCK *b = &x->block[0];
    BLOCKD *d = &x->e_mbd.block[0];

    unsigned char *src_ptr = (*(b->base_src) + b->src);
    int src_stride = b->src_stride;
    unsigned char *ref_ptr;
    int ref_stride=d->pre_stride;

    // Set up pointers for this macro block recon buffer
    xd->pre.y_buffer = recon_buffer->y_buffer + recon_yoffset;

    ref_ptr = (unsigned char *)(*(d->base_pre) + d->pre );

    VARIANCE_INVOKE(IF_RTCD(&cpi->rtcd.variance), mse16x16) ( src_ptr, src_stride, ref_ptr, ref_stride, (unsigned int *)(best_motion_err));
}

static void first_pass_motion_search(VP8_COMP *cpi, MACROBLOCK *x,
                                     int_mv *ref_mv, MV *best_mv,
                                     YV12_BUFFER_CONFIG *recon_buffer,
                                     int *best_motion_err, int recon_yoffset )
{
    MACROBLOCKD *const xd = & x->e_mbd;
    BLOCK *b = &x->block[0];
    BLOCKD *d = &x->e_mbd.block[0];
    int num00;

    int_mv tmp_mv;
    int_mv ref_mv_full;

    int tmp_err;
    int step_param = 3;
    int further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param;
    int n;
    vp8_variance_fn_ptr_t v_fn_ptr = cpi->fn_ptr[BLOCK_16X16];
    int new_mv_mode_penalty = 256;

    // override the default variance function to use MSE
    v_fn_ptr.vf    = VARIANCE_INVOKE(IF_RTCD(&cpi->rtcd.variance), mse16x16);

    // Set up pointers for this macro block recon buffer
    xd->pre.y_buffer = recon_buffer->y_buffer + recon_yoffset;

    // Initial step/diamond search centred on best mv
    tmp_mv.as_int = 0;
    ref_mv_full.as_mv.col = ref_mv->as_mv.col>>3;
    ref_mv_full.as_mv.row = ref_mv->as_mv.row>>3;
    tmp_err = cpi->diamond_search_sad(x, b, d, &ref_mv_full, &tmp_mv, step_param,
                                      x->sadperbit16, &num00, &v_fn_ptr,
                                      XMVCOST, ref_mv);
    if ( tmp_err < INT_MAX-new_mv_mode_penalty )
        tmp_err += new_mv_mode_penalty;

    if (tmp_err < *best_motion_err)
    {
        *best_motion_err = tmp_err;
        best_mv->row = tmp_mv.as_mv.row;
        best_mv->col = tmp_mv.as_mv.col;
    }

    // Further step/diamond searches as necessary
    n = num00;
    num00 = 0;

    while (n < further_steps)
    {
        n++;

        if (num00)
            num00--;
        else
        {
            tmp_err = cpi->diamond_search_sad(x, b, d, &ref_mv_full, &tmp_mv,
                                              step_param + n, x->sadperbit16,
                                              &num00, &v_fn_ptr,
                                              XMVCOST, ref_mv);
            if ( tmp_err < INT_MAX-new_mv_mode_penalty )
                tmp_err += new_mv_mode_penalty;

            if (tmp_err < *best_motion_err)
            {
                *best_motion_err = tmp_err;
                best_mv->row = tmp_mv.as_mv.row;
                best_mv->col = tmp_mv.as_mv.col;
            }
        }
    }
}

void vp8_first_pass(VP8_COMP *cpi)
{
    int mb_row, mb_col;
    MACROBLOCK *const x = & cpi->mb;
    VP8_COMMON *const cm = & cpi->common;
    MACROBLOCKD *const xd = & x->e_mbd;

    int recon_yoffset, recon_uvoffset;
    YV12_BUFFER_CONFIG *lst_yv12 = &cm->yv12_fb[cm->lst_fb_idx];
    YV12_BUFFER_CONFIG *new_yv12 = &cm->yv12_fb[cm->new_fb_idx];
    YV12_BUFFER_CONFIG *gld_yv12 = &cm->yv12_fb[cm->gld_fb_idx];
    int recon_y_stride = lst_yv12->y_stride;
    int recon_uv_stride = lst_yv12->uv_stride;
    int64_t intra_error = 0;
    int64_t coded_error = 0;
    int64_t sr_coded_error = 0;

    int sum_mvr = 0, sum_mvc = 0;
    int sum_mvr_abs = 0, sum_mvc_abs = 0;
    int sum_mvrs = 0, sum_mvcs = 0;
    int mvcount = 0;
    int intercount = 0;
    int second_ref_count = 0;
    int intrapenalty = 256;
    int neutral_count = 0;
    int new_mv_count = 0;
    int sum_in_vectors = 0;
    uint32_t lastmv_as_int = 0;

    int_mv zero_ref_mv;

    zero_ref_mv.as_int = 0;

    vp8_clear_system_state();  //__asm emms;

    x->src = * cpi->Source;
    xd->pre = *lst_yv12;
    xd->dst = *new_yv12;

    x->partition_info = x->pi;

    xd->mode_info_context = cm->mi;

    vp8_build_block_offsets(x);

    vp8_setup_block_dptrs(&x->e_mbd);

    vp8_setup_block_ptrs(x);

    // set up frame new frame for intra coded blocks
    vp8_setup_intra_recon(new_yv12);
    vp8cx_frame_init_quantizer(cpi);

    // Initialise the MV cost table to the defaults
    //if( cm->current_video_frame == 0)
    //if ( 0 )
    {
        int flag[2] = {1, 1};
        vp8_initialize_rd_consts(cpi, cm->base_qindex + cm->y1dc_delta_q);
        vpx_memcpy(cm->fc.mvc, vp8_default_mv_context, sizeof(vp8_default_mv_context));
        vp8_build_component_cost_table(cpi->mb.mvcost, (const MV_CONTEXT *) cm->fc.mvc, flag);
#if CONFIG_HIGH_PRECISION_MV
        vpx_memcpy(cm->fc.mvc_hp, vp8_default_mv_context_hp, sizeof(vp8_default_mv_context_hp));
        vp8_build_component_cost_table_hp(cpi->mb.mvcost_hp, (const MV_CONTEXT_HP *) cm->fc.mvc_hp, flag);
#endif
    }

    // for each macroblock row in image
    for (mb_row = 0; mb_row < cm->mb_rows; mb_row++)
    {
        int_mv best_ref_mv;

        best_ref_mv.as_int = 0;

        // reset above block coeffs
        xd->up_available = (mb_row != 0);
        recon_yoffset = (mb_row * recon_y_stride * 16);
        recon_uvoffset = (mb_row * recon_uv_stride * 8);

        // Set up limit values for motion vectors to prevent them extending outside the UMV borders
        x->mv_row_min = -((mb_row * 16) + (VP8BORDERINPIXELS - 16));
        x->mv_row_max = ((cm->mb_rows - 1 - mb_row) * 16) + (VP8BORDERINPIXELS - 16);


        // for each macroblock col in image
        for (mb_col = 0; mb_col < cm->mb_cols; mb_col++)
        {
            int this_error;
            int gf_motion_error = INT_MAX;
            int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row);

            xd->dst.y_buffer = new_yv12->y_buffer + recon_yoffset;
            xd->dst.u_buffer = new_yv12->u_buffer + recon_uvoffset;
            xd->dst.v_buffer = new_yv12->v_buffer + recon_uvoffset;
            xd->left_available = (mb_col != 0);

            //Copy current mb to a buffer
            RECON_INVOKE(&xd->rtcd->recon, copy16x16)(x->src.y_buffer, x->src.y_stride, x->thismb, 16);

            // do intra 16x16 prediction
            this_error = vp8_encode_intra(cpi, x, use_dc_pred);

            // "intrapenalty" below deals with situations where the intra and inter error scores are very low (eg a plain black frame)
            // We do not have special cases in first pass for 0,0 and nearest etc so all inter modes carry an overhead cost estimate fot the mv.
            // When the error score is very low this causes us to pick all or lots of INTRA modes and throw lots of key frames.
            // This penalty adds a cost matching that of a 0,0 mv to the intra case.
            this_error += intrapenalty;

            // Cumulative intra error total
            intra_error += (int64_t)this_error;

            // Set up limit values for motion vectors to prevent them extending outside the UMV borders
            x->mv_col_min = -((mb_col * 16) + (VP8BORDERINPIXELS - 16));
            x->mv_col_max = ((cm->mb_cols - 1 - mb_col) * 16) + (VP8BORDERINPIXELS - 16);

            // Other than for the first frame do a motion search
            if (cm->current_video_frame > 0)
            {
                int tmp_err;
                int motion_error = INT_MAX;
                int_mv mv, tmp_mv;

                // Simple 0,0 motion with no mv overhead
                zz_motion_search( cpi, x, lst_yv12, &motion_error, recon_yoffset );
                mv.as_int = tmp_mv.as_int = 0;

                // Test last reference frame using the previous best mv as the
                // starting point (best reference) for the search
                first_pass_motion_search(cpi, x, &best_ref_mv,
                                        &mv.as_mv, lst_yv12,
                                        &motion_error, recon_yoffset);

                // If the current best reference mv is not centred on 0,0 then do a 0,0 based search as well
                if (best_ref_mv.as_int)
                {
                   tmp_err = INT_MAX;
                   first_pass_motion_search(cpi, x, &zero_ref_mv, &tmp_mv.as_mv,
                                     lst_yv12, &tmp_err, recon_yoffset);

                   if ( tmp_err < motion_error )
                   {
                        motion_error = tmp_err;
                        mv.as_int = tmp_mv.as_int;
                   }
                }

                // Experimental search in an older reference frame
                if (cm->current_video_frame > 1)
                {
                    // Simple 0,0 motion with no mv overhead
                    zz_motion_search( cpi, x, gld_yv12,
                                      &gf_motion_error, recon_yoffset );

                    first_pass_motion_search(cpi, x, &zero_ref_mv,
                                             &tmp_mv.as_mv, gld_yv12,
                                             &gf_motion_error, recon_yoffset);

                    if ( (gf_motion_error < motion_error) &&
                         (gf_motion_error < this_error))
                    {
                        second_ref_count++;
                    }

                    // Reset to last frame as reference buffer
                    xd->pre.y_buffer = lst_yv12->y_buffer + recon_yoffset;
                    xd->pre.u_buffer = lst_yv12->u_buffer + recon_uvoffset;
                    xd->pre.v_buffer = lst_yv12->v_buffer + recon_uvoffset;

                    // In accumulating a score for the older reference frame
                    // take the best of the motion predicted score and
                    // the intra coded error (just as will be done for)
                    // accumulation of "coded_error" for the last frame.
                    if ( gf_motion_error < this_error )
                        sr_coded_error += gf_motion_error;
                    else
                        sr_coded_error += this_error;
                }
                else
                    sr_coded_error += motion_error;

                /* Intra assumed best */
                best_ref_mv.as_int = 0;

                if (motion_error <= this_error)
                {
                    // Keep a count of cases where the inter and intra were
                    // very close and very low. This helps with scene cut
                    // detection for example in cropped clips with black bars
                    // at the sides or top and bottom.
                    if( (((this_error-intrapenalty) * 9) <=
                         (motion_error*10)) &&
                        (this_error < (2*intrapenalty)) )
                    {
                        neutral_count++;
                    }

                    mv.as_mv.row <<= 3;
                    mv.as_mv.col <<= 3;
                    this_error = motion_error;
                    vp8_set_mbmode_and_mvs(x, NEWMV, &mv);
                    vp8_encode_inter16x16y(IF_RTCD(&cpi->rtcd), x);
                    sum_mvr += mv.as_mv.row;
                    sum_mvr_abs += abs(mv.as_mv.row);
                    sum_mvc += mv.as_mv.col;
                    sum_mvc_abs += abs(mv.as_mv.col);
                    sum_mvrs += mv.as_mv.row * mv.as_mv.row;
                    sum_mvcs += mv.as_mv.col * mv.as_mv.col;
                    intercount++;

                    best_ref_mv.as_int = mv.as_int;

                    // Was the vector non-zero
                    if (mv.as_int)
                    {
                        mvcount++;

                        // Was it different from the last non zero vector
                        if ( mv.as_int != lastmv_as_int )
                            new_mv_count++;
                        lastmv_as_int = mv.as_int;

                        // Does the Row vector point inwards or outwards
                        if (mb_row < cm->mb_rows / 2)
                        {
                            if (mv.as_mv.row > 0)
                                sum_in_vectors--;
                            else if (mv.as_mv.row < 0)
                                sum_in_vectors++;
                        }
                        else if (mb_row > cm->mb_rows / 2)
                        {
                            if (mv.as_mv.row > 0)
                                sum_in_vectors++;
                            else if (mv.as_mv.row < 0)
                                sum_in_vectors--;
                        }

                        // Does the Row vector point inwards or outwards
                        if (mb_col < cm->mb_cols / 2)
                        {
                            if (mv.as_mv.col > 0)
                                sum_in_vectors--;
                            else if (mv.as_mv.col < 0)
                                sum_in_vectors++;
                        }
                        else if (mb_col > cm->mb_cols / 2)
                        {
                            if (mv.as_mv.col > 0)
                                sum_in_vectors++;
                            else if (mv.as_mv.col < 0)
                                sum_in_vectors--;
                        }
                    }
                }
            }
            else
                sr_coded_error += (int64_t)this_error;

            coded_error += (int64_t)this_error;

            // adjust to the next column of macroblocks
            x->src.y_buffer += 16;
            x->src.u_buffer += 8;
            x->src.v_buffer += 8;

            recon_yoffset += 16;
            recon_uvoffset += 8;
        }

        // adjust to the next row of mbs
        x->src.y_buffer += 16 * x->src.y_stride - 16 * cm->mb_cols;
        x->src.u_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols;
        x->src.v_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols;

        //extend the recon for intra prediction
        vp8_extend_mb_row(new_yv12, xd->dst.y_buffer + 16, xd->dst.u_buffer + 8, xd->dst.v_buffer + 8);
        vp8_clear_system_state();  //__asm emms;
    }

    vp8_clear_system_state();  //__asm emms;
    {
        double weight = 0.0;

        FIRSTPASS_STATS fps;

        fps.frame      = cm->current_video_frame ;
        fps.intra_error = intra_error >> 8;
        fps.coded_error = coded_error >> 8;
        fps.sr_coded_error = sr_coded_error >> 8;
        weight = simple_weight(cpi->Source);


        if (weight < 0.1)
            weight = 0.1;

        fps.ssim_weighted_pred_err = fps.coded_error * weight;

        fps.pcnt_inter  = 0.0;
        fps.pcnt_motion = 0.0;
        fps.MVr        = 0.0;
        fps.mvr_abs     = 0.0;
        fps.MVc        = 0.0;
        fps.mvc_abs     = 0.0;
        fps.MVrv       = 0.0;
        fps.MVcv       = 0.0;
        fps.mv_in_out_count  = 0.0;
        fps.new_mv_count = 0.0;
        fps.count      = 1.0;

        fps.pcnt_inter   = 1.0 * (double)intercount / cm->MBs;
        fps.pcnt_second_ref = 1.0 * (double)second_ref_count / cm->MBs;
        fps.pcnt_neutral = 1.0 * (double)neutral_count / cm->MBs;

        if (mvcount > 0)
        {
            fps.MVr = (double)sum_mvr / (double)mvcount;
            fps.mvr_abs = (double)sum_mvr_abs / (double)mvcount;
            fps.MVc = (double)sum_mvc / (double)mvcount;
            fps.mvc_abs = (double)sum_mvc_abs / (double)mvcount;
            fps.MVrv = ((double)sum_mvrs - (fps.MVr * fps.MVr / (double)mvcount)) / (double)mvcount;
            fps.MVcv = ((double)sum_mvcs - (fps.MVc * fps.MVc / (double)mvcount)) / (double)mvcount;
            fps.mv_in_out_count = (double)sum_in_vectors / (double)(mvcount * 2);
            fps.new_mv_count = new_mv_count;

            fps.pcnt_motion = 1.0 * (double)mvcount / cpi->common.MBs;
        }

        // TODO:  handle the case when duration is set to 0, or something less
        // than the full time between subsequent cpi->source_time_stamp s  .
        fps.duration = cpi->source->ts_end
                       - cpi->source->ts_start;

        // don't want to do output stats with a stack variable!
        memcpy(cpi->twopass.this_frame_stats,
               &fps,
               sizeof(FIRSTPASS_STATS));
        output_stats(cpi, cpi->output_pkt_list, cpi->twopass.this_frame_stats);
        accumulate_stats(cpi->twopass.total_stats, &fps);
    }

    // Copy the previous Last Frame back into gf and and arf buffers if
    // the prediction is good enough... but also dont allow it to lag too far
    if ((cpi->twopass.sr_update_lag > 3) ||
        ((cm->current_video_frame > 0) &&
         (cpi->twopass.this_frame_stats->pcnt_inter > 0.20) &&
         ((cpi->twopass.this_frame_stats->intra_error /
           cpi->twopass.this_frame_stats->coded_error) > 2.0)))
    {
        vp8_yv12_copy_frame_ptr(lst_yv12, gld_yv12);
        cpi->twopass.sr_update_lag = 1;
    }
    else
        cpi->twopass.sr_update_lag ++;

    // swap frame pointers so last frame refers to the frame we just compressed
    vp8_swap_yv12_buffer(lst_yv12, new_yv12);
    vp8_yv12_extend_frame_borders(lst_yv12);

    // Special case for the first frame. Copy into the GF buffer as a second reference.
    if (cm->current_video_frame == 0)
    {
        vp8_yv12_copy_frame_ptr(lst_yv12, gld_yv12);
    }


    // use this to see what the first pass reconstruction looks like
    if (0)
    {
        char filename[512];
        FILE *recon_file;
        sprintf(filename, "enc%04d.yuv", (int) cm->current_video_frame);

        if (cm->current_video_frame == 0)
            recon_file = fopen(filename, "wb");
        else
            recon_file = fopen(filename, "ab");

        if(fwrite(lst_yv12->buffer_alloc, lst_yv12->frame_size, 1, recon_file));
        fclose(recon_file);
    }

    cm->current_video_frame++;

}

// Estimate a cost per mb attributable to overheads such as the coding of
// modes and motion vectors.
// Currently simplistic in its assumptions for testing.
//


double bitcost( double prob )
{
    return -(log( prob ) / log( 2.0 ));
}
static long long estimate_modemvcost(VP8_COMP *cpi,
                                     FIRSTPASS_STATS * fpstats)
{
    int mv_cost;
    int mode_cost;

    double av_pct_inter = fpstats->pcnt_inter / fpstats->count;
    double av_pct_motion = fpstats->pcnt_motion / fpstats->count;
    double av_intra = (1.0 - av_pct_inter);

    double zz_cost;
    double motion_cost;
    double intra_cost;

    zz_cost = bitcost(av_pct_inter - av_pct_motion);
    motion_cost = bitcost(av_pct_motion);
    intra_cost = bitcost(av_intra);

    // Estimate of extra bits per mv overhead for mbs
    // << 9 is the normalization to the (bits * 512) used in vp8_bits_per_mb
    mv_cost = ((int)(fpstats->new_mv_count / fpstats->count) * 8) << 9;

    // Crude estimate of overhead cost from modes
    // << 9 is the normalization to (bits * 512) used in vp8_bits_per_mb
    mode_cost =
        (int)( ( ((av_pct_inter - av_pct_motion) * zz_cost) +
                 (av_pct_motion * motion_cost) +
                 (av_intra * intra_cost) ) * cpi->common.MBs ) << 9;

    //return mv_cost + mode_cost;
    // TODO PGW Fix overhead costs for extended Q range
    return 0;
}

static double calc_correction_factor( double err_per_mb,
                                      double err_divisor,
                                      double pt_low,
                                      double pt_high,
                                      int Q )
{
    double power_term;
    double error_term = err_per_mb / err_divisor;
    double correction_factor;

    // Adjustment based on actual quantizer to power term.
    power_term = (vp8_convert_qindex_to_q(Q) * 0.01) + pt_low;
    power_term = (power_term > pt_high) ? pt_high : power_term;

    // Adjustments to error term
    // TBD

    // Calculate correction factor
    correction_factor = pow(error_term, power_term);

    // Clip range
    correction_factor =
        (correction_factor < 0.05)
            ? 0.05 : (correction_factor > 2.0) ? 2.0 : correction_factor;

    return correction_factor;
}

// Given a current maxQ value sets a range for future values.
// PGW TODO..
// This code removes direct dependency on QIndex to determin the range
// (now uses the actual quantizer) but has not been tuned.
static void adjust_maxq_qrange(VP8_COMP *cpi)
{
    int i;
    double q;

    // Set the max corresponding to cpi->avg_q * 2.0
    q = cpi->avg_q * 2.0;
    cpi->twopass.maxq_max_limit = cpi->worst_quality;
    for ( i = cpi->best_quality; i <= cpi->worst_quality; i++ )
    {
        cpi->twopass.maxq_max_limit = i;
        if ( vp8_convert_qindex_to_q(i) >= q )
            break;
    }

    // Set the min corresponding to cpi->avg_q * 0.5
    q = cpi->avg_q * 0.5;
    cpi->twopass.maxq_min_limit = cpi->best_quality;
    for ( i = cpi->worst_quality; i >= cpi->best_quality; i-- )
    {
        cpi->twopass.maxq_min_limit = i;
        if ( vp8_convert_qindex_to_q(i) <= q )
            break;
    }
}

static int estimate_max_q(VP8_COMP *cpi,
                          FIRSTPASS_STATS * fpstats,
                          int section_target_bandwitdh,
                          int overhead_bits )
{
    int Q;
    int num_mbs = cpi->common.MBs;
    int target_norm_bits_per_mb;

    double section_err = (fpstats->coded_error / fpstats->count);
    double sr_err_diff;
    double sr_correction;
    double err_per_mb = section_err / num_mbs;
    double err_correction_factor;
    double speed_correction = 1.0;
    int overhead_bits_per_mb;

    if (section_target_bandwitdh <= 0)
        return cpi->twopass.maxq_max_limit;          // Highest value allowed

    target_norm_bits_per_mb =
        (section_target_bandwitdh < (1 << 20))
            ? (512 * section_target_bandwitdh) / num_mbs
            : 512 * (section_target_bandwitdh / num_mbs);

    // Look at the drop in prediction quality between the last frame
    // and the GF buffer (which contained an older frame).
    sr_err_diff =
            (fpstats->sr_coded_error - fpstats->coded_error) /
            (fpstats->count * cpi->common.MBs);
    sr_correction = (sr_err_diff / 32.0);
    sr_correction = pow( sr_correction, 0.25 );
    if ( sr_correction < 0.75 )
        sr_correction = 0.75;
    else if ( sr_correction > 1.25 )
        sr_correction = 1.25;

    // Calculate a corrective factor based on a rolling ratio of bits spent
    // vs target bits
    if ((cpi->rolling_target_bits > 0) &&
        (cpi->active_worst_quality < cpi->worst_quality))
    {
        double rolling_ratio;

        rolling_ratio = (double)cpi->rolling_actual_bits /
                        (double)cpi->rolling_target_bits;

        if (rolling_ratio < 0.95)
            cpi->twopass.est_max_qcorrection_factor -= 0.005;
        else if (rolling_ratio > 1.05)
            cpi->twopass.est_max_qcorrection_factor += 0.005;

        cpi->twopass.est_max_qcorrection_factor =
            (cpi->twopass.est_max_qcorrection_factor < 0.1)
                ? 0.1
                : (cpi->twopass.est_max_qcorrection_factor > 10.0)
                    ? 10.0 : cpi->twopass.est_max_qcorrection_factor;
    }

    // Corrections for higher compression speed settings
    // (reduced compression expected)
    if (cpi->compressor_speed == 1)
    {
        if (cpi->oxcf.cpu_used <= 5)
            speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04);
        else
            speed_correction = 1.25;
    }

    // Estimate of overhead bits per mb
    // Correction to overhead bits for min allowed Q.
    // PGW TODO.. This code is broken for the extended Q range
    //            for now overhead set to 0.
    overhead_bits_per_mb = overhead_bits / num_mbs;
    overhead_bits_per_mb *= pow( 0.98, (double)cpi->twopass.maxq_min_limit );

    // Try and pick a max Q that will be high enough to encode the
    // content at the given rate.
    for (Q = cpi->twopass.maxq_min_limit; Q < cpi->twopass.maxq_max_limit; Q++)
    {
        int bits_per_mb_at_this_q;

        err_correction_factor =
            calc_correction_factor(err_per_mb, ERR_DIVISOR, 0.4, 0.90, Q) *
            sr_correction * speed_correction *
            cpi->twopass.est_max_qcorrection_factor;

        if ( err_correction_factor < 0.05 )
            err_correction_factor = 0.05;
        else if ( err_correction_factor > 5.0 )
            err_correction_factor = 5.0;

        bits_per_mb_at_this_q =
            vp8_bits_per_mb(INTER_FRAME, Q) + overhead_bits_per_mb;

        bits_per_mb_at_this_q = (int)(.5 + err_correction_factor *
                                      (double)bits_per_mb_at_this_q);

        // Mode and motion overhead
        // As Q rises in real encode loop rd code will force overhead down
        // We make a crude adjustment for this here as *.98 per Q step.
        // PGW TODO.. This code is broken for the extended Q range
        //            for now overhead set to 0.
        //overhead_bits_per_mb = (int)((double)overhead_bits_per_mb * 0.98);

        if (bits_per_mb_at_this_q <= target_norm_bits_per_mb)
            break;
    }

    // Restriction on active max q for constrained quality mode.
    if ( (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) &&
         (Q < cpi->cq_target_quality) )
    {
        Q = cpi->cq_target_quality;
    }

    // Adjust maxq_min_limit and maxq_max_limit limits based on
    // averaga q observed in clip for non kf/gf/arf frames
    // Give average a chance to settle though.
    // PGW TODO.. This code is broken for the extended Q range
    if ( (cpi->ni_frames >
                  ((unsigned int)cpi->twopass.total_stats->count >> 8)) &&
         (cpi->ni_frames > 150) )
    {
        adjust_maxq_qrange( cpi );
    }

    return Q;
}

// For cq mode estimate a cq level that matches the observed
// complexity and data rate.
static int estimate_cq( VP8_COMP *cpi,
                        FIRSTPASS_STATS * fpstats,
                        int section_target_bandwitdh,
                        int overhead_bits )
{
    int Q;
    int num_mbs = cpi->common.MBs;
    int target_norm_bits_per_mb;

    double section_err = (fpstats->coded_error / fpstats->count);
    double err_per_mb = section_err / num_mbs;
    double err_correction_factor;
    double sr_err_diff;
    double sr_correction;
    double speed_correction = 1.0;
    double clip_iiratio;
    double clip_iifactor;
    int overhead_bits_per_mb;


    target_norm_bits_per_mb = (section_target_bandwitdh < (1 << 20))
                              ? (512 * section_target_bandwitdh) / num_mbs
                              : 512 * (section_target_bandwitdh / num_mbs);

    // Estimate of overhead bits per mb
    overhead_bits_per_mb = overhead_bits / num_mbs;

    // Corrections for higher compression speed settings
    // (reduced compression expected)
    if (cpi->compressor_speed == 1)
    {
        if (cpi->oxcf.cpu_used <= 5)
            speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04);
        else
            speed_correction = 1.25;
    }

    // Look at the drop in prediction quality between the last frame
    // and the GF buffer (which contained an older frame).
    sr_err_diff =
            (fpstats->sr_coded_error - fpstats->coded_error) /
            (fpstats->count * cpi->common.MBs);
    sr_correction = (sr_err_diff / 32.0);
    sr_correction = pow( sr_correction, 0.25 );
    if ( sr_correction < 0.75 )
        sr_correction = 0.75;
    else if ( sr_correction > 1.25 )
        sr_correction = 1.25;

    // II ratio correction factor for clip as a whole
    clip_iiratio = cpi->twopass.total_stats->intra_error /
                   DOUBLE_DIVIDE_CHECK(cpi->twopass.total_stats->coded_error);
    clip_iifactor = 1.0 - ((clip_iiratio - 10.0) * 0.025);
    if (clip_iifactor < 0.80)
        clip_iifactor = 0.80;

    // Try and pick a Q that can encode the content at the given rate.
    for (Q = 0; Q < MAXQ; Q++)
    {
        int bits_per_mb_at_this_q;

        // Error per MB based correction factor
        err_correction_factor =
            calc_correction_factor(err_per_mb, 100.0, 0.4, 0.90, Q) *
            sr_correction * speed_correction * clip_iifactor;

        if ( err_correction_factor < 0.05 )
            err_correction_factor = 0.05;
        else if ( err_correction_factor > 5.0 )
            err_correction_factor = 5.0;

        bits_per_mb_at_this_q =
            vp8_bits_per_mb(INTER_FRAME, Q) + overhead_bits_per_mb;

        bits_per_mb_at_this_q = (int)(.5 + err_correction_factor *
                                      (double)bits_per_mb_at_this_q);

        // Mode and motion overhead
        // As Q rises in real encode loop rd code will force overhead down
        // We make a crude adjustment for this here as *.98 per Q step.
        // PGW TODO.. This code is broken for the extended Q range
        //            for now overhead set to 0.
        overhead_bits_per_mb = (int)((double)overhead_bits_per_mb * 0.98);

        if (bits_per_mb_at_this_q <= target_norm_bits_per_mb)
            break;
    }

    // Clip value to range "best allowed to (worst allowed - 1)"
    Q = select_cq_level( Q );
    if ( Q >= cpi->worst_quality )
        Q = cpi->worst_quality - 1;
    if ( Q < cpi->best_quality )
        Q = cpi->best_quality;

    return Q;
}


extern void vp8_new_frame_rate(VP8_COMP *cpi, double framerate);

void vp8_init_second_pass(VP8_COMP *cpi)
{
    FIRSTPASS_STATS this_frame;
    FIRSTPASS_STATS *start_pos;

    double lower_bounds_min_rate = FRAME_OVERHEAD_BITS*cpi->oxcf.frame_rate;
    double two_pass_min_rate = (double)(cpi->oxcf.target_bandwidth
                               * cpi->oxcf.two_pass_vbrmin_section / 100);

    if (two_pass_min_rate < lower_bounds_min_rate)
        two_pass_min_rate = lower_bounds_min_rate;

    zero_stats(cpi->twopass.total_stats);
    zero_stats(cpi->twopass.total_left_stats);

    if (!cpi->twopass.stats_in_end)
        return;

    *cpi->twopass.total_stats = *cpi->twopass.stats_in_end;
    *cpi->twopass.total_left_stats = *cpi->twopass.total_stats;

    // each frame can have a different duration, as the frame rate in the source
    // isn't guaranteed to be constant.   The frame rate prior to the first frame
    // encoded in the second pass is a guess.  However the sum duration is not.
    // Its calculated based on the actual durations of all frames from the first
    // pass.
    vp8_new_frame_rate(cpi, 10000000.0 * cpi->twopass.total_stats->count / cpi->twopass.total_stats->duration);

    cpi->output_frame_rate = cpi->oxcf.frame_rate;
    cpi->twopass.bits_left = (int64_t)(cpi->twopass.total_stats->duration * cpi->oxcf.target_bandwidth / 10000000.0) ;
    cpi->twopass.bits_left -= (int64_t)(cpi->twopass.total_stats->duration * two_pass_min_rate / 10000000.0);

    // Calculate a minimum intra value to be used in determining the IIratio
    // scores used in the second pass. We have this minimum to make sure
    // that clips that are static but "low complexity" in the intra domain
    // are still boosted appropriately for KF/GF/ARF
    cpi->twopass.kf_intra_err_min = KF_MB_INTRA_MIN * cpi->common.MBs;
    cpi->twopass.gf_intra_err_min = GF_MB_INTRA_MIN * cpi->common.MBs;

    // This variable monitors how far behind the second ref update is lagging
    cpi->twopass.sr_update_lag = 1;

    // Scan the first pass file and calculate an average Intra / Inter error score ratio for the sequence
    {
        double sum_iiratio = 0.0;
        double IIRatio;

        start_pos = cpi->twopass.stats_in;               // Note starting "file" position

        while (input_stats(cpi, &this_frame) != EOF)
        {
            IIRatio = this_frame.intra_error / DOUBLE_DIVIDE_CHECK(this_frame.coded_error);
            IIRatio = (IIRatio < 1.0) ? 1.0 : (IIRatio > 20.0) ? 20.0 : IIRatio;
            sum_iiratio += IIRatio;
        }

        cpi->twopass.avg_iiratio = sum_iiratio / DOUBLE_DIVIDE_CHECK((double)cpi->twopass.total_stats->count);

        // Reset file position
        reset_fpf_position(cpi, start_pos);
    }

    // Scan the first pass file and calculate a modified total error based upon the bias/power function
    // used to allocate bits
    {
        start_pos = cpi->twopass.stats_in;               // Note starting "file" position

        cpi->twopass.modified_error_total = 0.0;
        cpi->twopass.modified_error_used = 0.0;

        while (input_stats(cpi, &this_frame) != EOF)
        {
            cpi->twopass.modified_error_total += calculate_modified_err(cpi, &this_frame);
        }
        cpi->twopass.modified_error_left = cpi->twopass.modified_error_total;

        reset_fpf_position(cpi, start_pos);            // Reset file position

    }
}

void vp8_end_second_pass(VP8_COMP *cpi)
{
}

// This function gives and estimate of how badly we believe
// the prediction quality is decaying from frame to frame.
static double get_prediction_decay_rate( VP8_COMP *cpi,
                                         FIRSTPASS_STATS *next_frame)
{
    double prediction_decay_rate;
    double second_ref_decay;
    double mb_sr_err_diff;

    // Initial basis is the % mbs inter coded
    prediction_decay_rate = next_frame->pcnt_inter;

    // Look at the observed drop in prediction quality between the last frame
    // and the GF buffer (which contains an older frame).
    mb_sr_err_diff =
            (next_frame->sr_coded_error - next_frame->coded_error) /
            (cpi->common.MBs);
    second_ref_decay = 1.0 - (mb_sr_err_diff / 512.0);
    second_ref_decay = pow( second_ref_decay, 0.5 );
    if ( second_ref_decay < 0.85 )
        second_ref_decay = 0.85;
    else if ( second_ref_decay > 1.0 )
        second_ref_decay = 1.0;

    if ( second_ref_decay < prediction_decay_rate )
        prediction_decay_rate = second_ref_decay;

    return prediction_decay_rate;
}

// Function to test for a condition where a complex transition is followed
// by a static section. For example in slide shows where there is a fade
// between slides. This is to help with more optimal kf and gf positioning.
static int detect_transition_to_still(
    VP8_COMP *cpi,
    int frame_interval,
    int still_interval,
    double loop_decay_rate,
    double last_decay_rate )
{
    BOOL trans_to_still = FALSE;

    // Break clause to detect very still sections after motion
    // For example a static image after a fade or other transition
    // instead of a clean scene cut.
    if ( (frame_interval > MIN_GF_INTERVAL) &&
         (loop_decay_rate >= 0.999) &&
         (last_decay_rate < 0.9) )
    {
        int j;
        FIRSTPASS_STATS * position = cpi->twopass.stats_in;
        FIRSTPASS_STATS tmp_next_frame;
        double zz_inter;

        // Look ahead a few frames to see if static condition
        // persists...
        for ( j = 0; j < still_interval; j++ )
        {
            if (EOF == input_stats(cpi, &tmp_next_frame))
                break;

            zz_inter =
                (tmp_next_frame.pcnt_inter - tmp_next_frame.pcnt_motion);
            if ( zz_inter < 0.999 )
                break;
        }
        // Reset file position
        reset_fpf_position(cpi, position);

        // Only if it does do we signal a transition to still
        if ( j == still_interval )
            trans_to_still = TRUE;
    }

    return trans_to_still;
}

// This function detects a flash through the high relative pcnt_second_ref
// score in the frame following a flash frame. The offset passed in should
// reflect this
static BOOL detect_flash( VP8_COMP *cpi, int offset )
{
    FIRSTPASS_STATS next_frame;

    BOOL flash_detected = FALSE;

    // Read the frame data.
    // The return is FALSE (no flash detected) if not a valid frame
    if ( read_frame_stats(cpi, &next_frame, offset) != EOF )
    {
        // What we are looking for here is a situation where there is a
        // brief break in prediction (such as a flash) but subsequent frames
        // are reasonably well predicted by an earlier (pre flash) frame.
        // The recovery after a flash is indicated by a high pcnt_second_ref
        // comapred to pcnt_inter.
        if ( (next_frame.pcnt_second_ref > next_frame.pcnt_inter) &&
             (next_frame.pcnt_second_ref >= 0.5 ) )
        {
            flash_detected = TRUE;
        }
    }

    return flash_detected;
}

// Update the motion related elements to the GF arf boost calculation
static void accumulate_frame_motion_stats(
    VP8_COMP *cpi,
    FIRSTPASS_STATS * this_frame,
    double * this_frame_mv_in_out,
    double * mv_in_out_accumulator,
    double * abs_mv_in_out_accumulator,
    double * mv_ratio_accumulator )
{
    //double this_frame_mv_in_out;
    double this_frame_mvr_ratio;
    double this_frame_mvc_ratio;
    double motion_pct;

    // Accumulate motion stats.
    motion_pct = this_frame->pcnt_motion;

    // Accumulate Motion In/Out of frame stats
    *this_frame_mv_in_out = this_frame->mv_in_out_count * motion_pct;
    *mv_in_out_accumulator += this_frame->mv_in_out_count * motion_pct;
    *abs_mv_in_out_accumulator +=
        fabs(this_frame->mv_in_out_count * motion_pct);

    // Accumulate a measure of how uniform (or conversely how random)
    // the motion field is. (A ratio of absmv / mv)
    if (motion_pct > 0.05)
    {
        this_frame_mvr_ratio = fabs(this_frame->mvr_abs) /
                               DOUBLE_DIVIDE_CHECK(fabs(this_frame->MVr));

        this_frame_mvc_ratio = fabs(this_frame->mvc_abs) /
                               DOUBLE_DIVIDE_CHECK(fabs(this_frame->MVc));

         *mv_ratio_accumulator +=
            (this_frame_mvr_ratio < this_frame->mvr_abs)
                ? (this_frame_mvr_ratio * motion_pct)
                : this_frame->mvr_abs * motion_pct;

        *mv_ratio_accumulator +=
            (this_frame_mvc_ratio < this_frame->mvc_abs)
                ? (this_frame_mvc_ratio * motion_pct)
                : this_frame->mvc_abs * motion_pct;

    }
}

// Calculate a baseline boost number for the current frame.
static double calc_frame_boost(
    VP8_COMP *cpi,
    FIRSTPASS_STATS * this_frame,
    double this_frame_mv_in_out )
{
    double frame_boost;

    // Underlying boost factor is based on inter intra error ratio
    if (this_frame->intra_error > cpi->twopass.gf_intra_err_min)
        frame_boost = (IIFACTOR * this_frame->intra_error /
                      DOUBLE_DIVIDE_CHECK(this_frame->coded_error));
    else
        frame_boost = (IIFACTOR * cpi->twopass.gf_intra_err_min /
                      DOUBLE_DIVIDE_CHECK(this_frame->coded_error));

    // Increase boost for frames where new data coming into frame
    // (eg zoom out). Slightly reduce boost if there is a net balance
    // of motion out of the frame (zoom in).
    // The range for this_frame_mv_in_out is -1.0 to +1.0
    if (this_frame_mv_in_out > 0.0)
        frame_boost += frame_boost * (this_frame_mv_in_out * 2.0);
    // In extreme case boost is halved
    else
        frame_boost += frame_boost * (this_frame_mv_in_out / 2.0);

    // Clip to maximum
    if (frame_boost > GF_RMAX)
        frame_boost = GF_RMAX;

    return frame_boost;
}

static int calc_arf_boost(
    VP8_COMP *cpi,
    int offset,
    int f_frames,
    int b_frames,
    int *f_boost,
    int *b_boost )
{
    FIRSTPASS_STATS this_frame;

    int i;
    double boost_score = 0.0;
    double mv_ratio_accumulator = 0.0;
    double decay_accumulator = 1.0;
    double this_frame_mv_in_out = 0.0;
    double mv_in_out_accumulator = 0.0;
    double abs_mv_in_out_accumulator = 0.0;
    int arf_boost;
    BOOL flash_detected = FALSE;

    // Search forward from the proposed arf/next gf position
    for ( i = 0; i < f_frames; i++ )
    {
        if ( read_frame_stats(cpi, &this_frame, (i+offset)) == EOF )
            break;

        // Update the motion related elements to the boost calculation
        accumulate_frame_motion_stats( cpi, &this_frame,
            &this_frame_mv_in_out, &mv_in_out_accumulator,
            &abs_mv_in_out_accumulator, &mv_ratio_accumulator );

        // We want to discount the the flash frame itself and the recovery
        // frame that follows as both will have poor scores.
        flash_detected = detect_flash(cpi, (i+offset)) ||
                         detect_flash(cpi, (i+offset+1));

        // Cumulative effect of prediction quality decay
        if ( !flash_detected )
        {
            decay_accumulator =
                decay_accumulator *
                get_prediction_decay_rate(cpi, &this_frame);
            decay_accumulator =
                decay_accumulator < 0.1 ? 0.1 : decay_accumulator;
        }

        boost_score += (decay_accumulator *
            calc_frame_boost( cpi, &this_frame, this_frame_mv_in_out ));
    }

    *f_boost = boost_score;

    // Reset for backward looking loop
    boost_score = 0.0;
    mv_ratio_accumulator = 0.0;
    decay_accumulator = 1.0;
    this_frame_mv_in_out = 0.0;
    mv_in_out_accumulator = 0.0;
    abs_mv_in_out_accumulator = 0.0;

    // Search backward towards last gf position
    for ( i = -1; i >= -b_frames; i-- )
    {
        if ( read_frame_stats(cpi, &this_frame, (i+offset)) == EOF )
            break;

        // Update the motion related elements to the boost calculation
        accumulate_frame_motion_stats( cpi, &this_frame,
            &this_frame_mv_in_out, &mv_in_out_accumulator,
            &abs_mv_in_out_accumulator, &mv_ratio_accumulator );

        // We want to discount the the flash frame itself and the recovery
        // frame that follows as both will have poor scores.
        flash_detected = detect_flash(cpi, (i+offset)) ||
                         detect_flash(cpi, (i+offset+1));

        // Cumulative effect of prediction quality decay
        if ( !flash_detected )
        {
            decay_accumulator =
                decay_accumulator *
                get_prediction_decay_rate(cpi, &this_frame);
            decay_accumulator =
                decay_accumulator < 0.1 ? 0.1 : decay_accumulator;
        }

        boost_score += (decay_accumulator *
            calc_frame_boost( cpi, &this_frame, this_frame_mv_in_out ));

    }
    *b_boost = boost_score;

    arf_boost = (*f_boost + *b_boost);
    if ( arf_boost < ((b_frames + f_frames) * 20) )
         arf_boost = ((b_frames + f_frames) * 20);

    return arf_boost;
}

static void configure_arnr_filter( VP8_COMP *cpi, FIRSTPASS_STATS *this_frame )
{
    int half_gf_int;
    int frames_after_arf;
    int frames_bwd = cpi->oxcf.arnr_max_frames - 1;
    int frames_fwd = cpi->oxcf.arnr_max_frames - 1;

    // Define the arnr filter width for this group of frames:
    // We only filter frames that lie within a distance of half
    // the GF interval from the ARF frame. We also have to trap
    // cases where the filter extends beyond the end of clip.
    // Note: this_frame->frame has been updated in the loop
    // so it now points at the ARF frame.
    half_gf_int = cpi->baseline_gf_interval >> 1;
    frames_after_arf = cpi->twopass.total_stats->count -
                       this_frame->frame - 1;

    switch (cpi->oxcf.arnr_type)
    {
    case 1: // Backward filter
        frames_fwd = 0;
        if (frames_bwd > half_gf_int)
            frames_bwd = half_gf_int;
        break;

    case 2: // Forward filter
        if (frames_fwd > half_gf_int)
            frames_fwd = half_gf_int;
        if (frames_fwd > frames_after_arf)
            frames_fwd = frames_after_arf;
        frames_bwd = 0;
        break;

    case 3: // Centered filter
    default:
        frames_fwd >>= 1;
        if (frames_fwd > frames_after_arf)
            frames_fwd = frames_after_arf;
        if (frames_fwd > half_gf_int)
            frames_fwd = half_gf_int;

        frames_bwd = frames_fwd;

        // For even length filter there is one more frame backward
        // than forward: e.g. len=6 ==> bbbAff, len=7 ==> bbbAfff.
        if (frames_bwd < half_gf_int)
            frames_bwd += (cpi->oxcf.arnr_max_frames+1) & 0x1;
        break;
    }

    cpi->active_arnr_frames = frames_bwd + 1 + frames_fwd;
}

// Analyse and define a gf/arf group .
static void define_gf_group(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame)
{
    FIRSTPASS_STATS next_frame;
    FIRSTPASS_STATS *start_pos;
    int i;
    double boost_score = 0.0;
    double old_boost_score = 0.0;
    double gf_group_err = 0.0;
    double gf_first_frame_err = 0.0;
    double mod_frame_err = 0.0;

    double mv_ratio_accumulator = 0.0;
    double decay_accumulator = 1.0;
    double zero_motion_accumulator = 1.0;

    double loop_decay_rate = 1.00;          // Starting decay rate
    double last_loop_decay_rate = 1.00;

    double this_frame_mv_in_out = 0.0;
    double mv_in_out_accumulator = 0.0;
    double abs_mv_in_out_accumulator = 0.0;

    int max_bits = frame_max_bits(cpi);     // Max for a single frame

    unsigned int allow_alt_ref =
                    cpi->oxcf.play_alternate && cpi->oxcf.lag_in_frames;

    int f_boost = 0;
    int b_boost = 0;
    BOOL flash_detected;

    cpi->twopass.gf_group_bits = 0;

    vp8_clear_system_state();  //__asm emms;

    start_pos = cpi->twopass.stats_in;

    vpx_memset(&next_frame, 0, sizeof(next_frame)); // assure clean

    // Load stats for the current frame.
    mod_frame_err = calculate_modified_err(cpi, this_frame);

    // Note the error of the frame at the start of the group (this will be
    // the GF frame error if we code a normal gf
    gf_first_frame_err = mod_frame_err;

    // Special treatment if the current frame is a key frame (which is also
    // a gf). If it is then its error score (and hence bit allocation) need
    // to be subtracted out from the calculation for the GF group
    if (cpi->common.frame_type == KEY_FRAME)
        gf_group_err -= gf_first_frame_err;

    // Scan forward to try and work out how many frames the next gf group
    // should contain and what level of boost is appropriate for the GF
    // or ARF that will be coded with the group
    i = 0;

    while (((i < cpi->twopass.static_scene_max_gf_interval) ||
            ((cpi->twopass.frames_to_key - i) < MIN_GF_INTERVAL)) &&
           (i < cpi->twopass.frames_to_key))
    {
        i++;    // Increment the loop counter

        // Accumulate error score of frames in this gf group
        mod_frame_err = calculate_modified_err(cpi, this_frame);
        gf_group_err += mod_frame_err;

        if (EOF == input_stats(cpi, &next_frame))
            break;

        // Test for the case where there is a brief flash but the prediction
        // quality back to an earlier frame is then restored.
        flash_detected = detect_flash(cpi, 0);

        // Update the motion related elements to the boost calculation
        accumulate_frame_motion_stats( cpi, &next_frame,
            &this_frame_mv_in_out, &mv_in_out_accumulator,
            &abs_mv_in_out_accumulator, &mv_ratio_accumulator );

        // Cumulative effect of prediction quality decay
        if ( !flash_detected )
        {
            last_loop_decay_rate = loop_decay_rate;
            loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame);
            decay_accumulator = decay_accumulator * loop_decay_rate;

            // Monitor for static sections.
            if ( (next_frame.pcnt_inter - next_frame.pcnt_motion) <
                 zero_motion_accumulator )
            {
                zero_motion_accumulator =
                    (next_frame.pcnt_inter - next_frame.pcnt_motion);
            }

            // Break clause to detect very still sections after motion
            // (for example a staic image after a fade or other transition).
            if ( detect_transition_to_still( cpi, i, 5, loop_decay_rate,
                                             last_loop_decay_rate ) )
            {
                allow_alt_ref = FALSE;
                break;
            }
        }

        // Calculate a boost number for this frame
        boost_score +=
            ( decay_accumulator *
              calc_frame_boost( cpi, &next_frame, this_frame_mv_in_out ) );

        // Break out conditions.
        if  (
            // Break at cpi->max_gf_interval unless almost totally static
            (i >= cpi->max_gf_interval && (zero_motion_accumulator < 0.995)) ||
            (
                // Dont break out with a very short interval
                (i > MIN_GF_INTERVAL) &&
                // Dont break out very close to a key frame
                ((cpi->twopass.frames_to_key - i) >= MIN_GF_INTERVAL) &&
                ((boost_score > 125.0) || (next_frame.pcnt_inter < 0.75)) &&
                (!flash_detected) &&
                ((mv_ratio_accumulator > 100.0) ||
                 (abs_mv_in_out_accumulator > 3.0) ||
                 (mv_in_out_accumulator < -2.0) ||
                 ((boost_score - old_boost_score) < 12.5))
            ) )
        {
            boost_score = old_boost_score;
            break;
        }

        vpx_memcpy(this_frame, &next_frame, sizeof(*this_frame));

        old_boost_score = boost_score;
    }

    // Dont allow a gf too near the next kf
    if ((cpi->twopass.frames_to_key - i) < MIN_GF_INTERVAL)
    {
        while (i < cpi->twopass.frames_to_key)
        {
            i++;

            if (EOF == input_stats(cpi, this_frame))
                break;

            if (i < cpi->twopass.frames_to_key)
            {
                mod_frame_err = calculate_modified_err(cpi, this_frame);
                gf_group_err += mod_frame_err;
            }
        }
    }

     // Set the interval till the next gf or arf.
    cpi->baseline_gf_interval = i;

    // Should we use the alternate refernce frame
    if (allow_alt_ref &&
        (i < cpi->oxcf.lag_in_frames ) &&
        (i >= MIN_GF_INTERVAL) &&
        // dont use ARF very near next kf
        (i <= (cpi->twopass.frames_to_key - MIN_GF_INTERVAL)) &&
        ((next_frame.pcnt_inter > 0.75) ||
         (next_frame.pcnt_second_ref > 0.5)) &&
        ((mv_in_out_accumulator / (double)i > -0.2) ||
         (mv_in_out_accumulator > -2.0)) &&
        (boost_score > 100))
    {
        // Alterrnative boost calculation for alt ref
        cpi->gfu_boost = calc_arf_boost( cpi, 0, (i-1), (i-1), &f_boost, &b_boost );
        cpi->source_alt_ref_pending = TRUE;

        configure_arnr_filter( cpi, this_frame );
    }
    else
    {
        cpi->gfu_boost = (int)boost_score;
        cpi->source_alt_ref_pending = FALSE;
    }

    // Now decide how many bits should be allocated to the GF group as  a
    // proportion of those remaining in the kf group.
    // The final key frame group in the clip is treated as a special case
    // where cpi->twopass.kf_group_bits is tied to cpi->twopass.bits_left.
    // This is also important for short clips where there may only be one
    // key frame.
    if (cpi->twopass.frames_to_key >= (int)(cpi->twopass.total_stats->count -
                                            cpi->common.current_video_frame))
    {
        cpi->twopass.kf_group_bits =
            (cpi->twopass.bits_left > 0) ? cpi->twopass.bits_left : 0;
    }

    // Calculate the bits to be allocated to the group as a whole
    if ((cpi->twopass.kf_group_bits > 0) &&
        (cpi->twopass.kf_group_error_left > 0))
    {
        cpi->twopass.gf_group_bits =
            (int)((double)cpi->twopass.kf_group_bits *
                  (gf_group_err / (double)cpi->twopass.kf_group_error_left));
    }
    else
        cpi->twopass.gf_group_bits = 0;

    cpi->twopass.gf_group_bits =
        (cpi->twopass.gf_group_bits < 0)
            ? 0
            : (cpi->twopass.gf_group_bits > cpi->twopass.kf_group_bits)
                ? cpi->twopass.kf_group_bits : cpi->twopass.gf_group_bits;

    // Clip cpi->twopass.gf_group_bits based on user supplied data rate
    // variability limit (cpi->oxcf.two_pass_vbrmax_section)
    if (cpi->twopass.gf_group_bits > max_bits * cpi->baseline_gf_interval)
        cpi->twopass.gf_group_bits = max_bits * cpi->baseline_gf_interval;

    // Reset the file position
    reset_fpf_position(cpi, start_pos);

    // Update the record of error used so far (only done once per gf group)
    cpi->twopass.modified_error_used += gf_group_err;

    // Assign  bits to the arf or gf.
    for (i = 0; i <= (cpi->source_alt_ref_pending && cpi->common.frame_type != KEY_FRAME); i++)
    {
        int boost;
        int allocation_chunks;
        int Q = (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q;
        int gf_bits;

        boost = (cpi->gfu_boost * vp8_gfboost_qadjust(Q)) / 100;

        // Set max and minimum boost and hence minimum allocation
        if (boost > ((cpi->baseline_gf_interval + 1) * 200))
            boost = ((cpi->baseline_gf_interval + 1) * 200);
        else if (boost < 125)
            boost = 125;

        if ( cpi->source_alt_ref_pending && i == 0 )
            allocation_chunks =
                ((cpi->baseline_gf_interval + 1) * 100) + boost;
        else
            allocation_chunks =
                (cpi->baseline_gf_interval * 100) + (boost - 100);

        // Prevent overflow
        if ( boost > 1028 )
        {
            int divisor = boost >> 10;
            boost/= divisor;
            allocation_chunks /= divisor;
        }

        // Calculate the number of bits to be spent on the gf or arf based on
        // the boost number
        gf_bits = (int)((double)boost *
                        (cpi->twopass.gf_group_bits /
                         (double)allocation_chunks));

        // If the frame that is to be boosted is simpler than the average for
        // the gf/arf group then use an alternative calculation
        // based on the error score of the frame itself
        if (mod_frame_err < gf_group_err / (double)cpi->baseline_gf_interval)
        {
            double  alt_gf_grp_bits;
            int     alt_gf_bits;

            alt_gf_grp_bits =
                (double)cpi->twopass.kf_group_bits  *
                (mod_frame_err * (double)cpi->baseline_gf_interval) /
                DOUBLE_DIVIDE_CHECK((double)cpi->twopass.kf_group_error_left);

            alt_gf_bits = (int)((double)boost * (alt_gf_grp_bits /
                                                 (double)allocation_chunks));

            if (gf_bits > alt_gf_bits)
            {
                gf_bits = alt_gf_bits;
            }
        }
        // Else if it is harder than other frames in the group make sure it at
        // least receives an allocation in keeping with its relative error
        // score, otherwise it may be worse off than an "un-boosted" frame
        else
        {
            int alt_gf_bits =
                (int)((double)cpi->twopass.kf_group_bits *
                      mod_frame_err /
                      DOUBLE_DIVIDE_CHECK((double)cpi->twopass.kf_group_error_left));

            if (alt_gf_bits > gf_bits)
            {
                gf_bits = alt_gf_bits;
            }
        }

        // Dont allow a negative value for gf_bits
        if (gf_bits < 0)
            gf_bits = 0;

        gf_bits += cpi->min_frame_bandwidth;                     // Add in minimum for a frame

        if (i == 0)
        {
            cpi->twopass.gf_bits = gf_bits;
        }
        if (i == 1 || (!cpi->source_alt_ref_pending && (cpi->common.frame_type != KEY_FRAME)))
        {
            cpi->per_frame_bandwidth = gf_bits;                 // Per frame bit target for this frame
        }
    }

    {
        // Adjust KF group bits and error remainin
        cpi->twopass.kf_group_error_left -= gf_group_err;
        cpi->twopass.kf_group_bits -= cpi->twopass.gf_group_bits;

        if (cpi->twopass.kf_group_bits < 0)
            cpi->twopass.kf_group_bits = 0;

        // Note the error score left in the remaining frames of the group.
        // For normal GFs we want to remove the error score for the first frame
        // of the group (except in Key frame case where this has already
        // happened)
        if (!cpi->source_alt_ref_pending && cpi->common.frame_type != KEY_FRAME)
            cpi->twopass.gf_group_error_left = gf_group_err - gf_first_frame_err;
        else
            cpi->twopass.gf_group_error_left = gf_group_err;

        cpi->twopass.gf_group_bits -= cpi->twopass.gf_bits - cpi->min_frame_bandwidth;

        if (cpi->twopass.gf_group_bits < 0)
            cpi->twopass.gf_group_bits = 0;

        // This condition could fail if there are two kfs very close together
        // despite (MIN_GF_INTERVAL) and would cause a devide by 0 in the
        // calculation of cpi->twopass.alt_extra_bits.
        if ( cpi->baseline_gf_interval >= 3 )
        {
            int boost = (cpi->source_alt_ref_pending)
                        ? b_boost : cpi->gfu_boost;

            if ( boost >= 150 )
            {
                int pct_extra;

                pct_extra = (boost - 100) / 50;
                pct_extra = (pct_extra > 20) ? 20 : pct_extra;

                cpi->twopass.alt_extra_bits =
                    (cpi->twopass.gf_group_bits * pct_extra) / 100;
                cpi->twopass.gf_group_bits -= cpi->twopass.alt_extra_bits;
                cpi->twopass.alt_extra_bits /=
                    ((cpi->baseline_gf_interval-1)>>1);
            }
            else
                cpi->twopass.alt_extra_bits = 0;
        }
        else
            cpi->twopass.alt_extra_bits = 0;
    }

    if (cpi->common.frame_type != KEY_FRAME)
    {
        FIRSTPASS_STATS sectionstats;

        zero_stats(&sectionstats);
        reset_fpf_position(cpi, start_pos);

        for (i = 0 ; i < cpi->baseline_gf_interval ; i++)
        {
            input_stats(cpi, &next_frame);
            accumulate_stats(&sectionstats, &next_frame);
        }

        avg_stats(&sectionstats);

        cpi->twopass.section_intra_rating =
            sectionstats.intra_error /
            DOUBLE_DIVIDE_CHECK(sectionstats.coded_error);

        reset_fpf_position(cpi, start_pos);
    }
}

// Allocate bits to a normal frame that is neither a gf an arf or a key frame.
static void assign_std_frame_bits(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame)
{
    int    target_frame_size;                                                             // gf_group_error_left

    double modified_err;
    double err_fraction;                                                                 // What portion of the remaining GF group error is used by this frame

    int max_bits = frame_max_bits(cpi);    // Max for a single frame

    // Calculate modified prediction error used in bit allocation
    modified_err = calculate_modified_err(cpi, this_frame);

    if (cpi->twopass.gf_group_error_left > 0)
        err_fraction = modified_err / cpi->twopass.gf_group_error_left;                              // What portion of the remaining GF group error is used by this frame
    else
        err_fraction = 0.0;

    target_frame_size = (int)((double)cpi->twopass.gf_group_bits * err_fraction);                    // How many of those bits available for allocation should we give it?

    // Clip to target size to 0 - max_bits (or cpi->twopass.gf_group_bits) at the top end.
    if (target_frame_size < 0)
        target_frame_size = 0;
    else
    {
        if (target_frame_size > max_bits)
            target_frame_size = max_bits;

        if (target_frame_size > cpi->twopass.gf_group_bits)
            target_frame_size = cpi->twopass.gf_group_bits;
    }

    cpi->twopass.gf_group_error_left -= modified_err;                                               // Adjust error remaining
    cpi->twopass.gf_group_bits -= target_frame_size;                                                // Adjust bits remaining

    if (cpi->twopass.gf_group_bits < 0)
        cpi->twopass.gf_group_bits = 0;

    target_frame_size += cpi->min_frame_bandwidth;                                          // Add in the minimum number of bits that is set aside for every frame.


    cpi->per_frame_bandwidth = target_frame_size;                                           // Per frame bit target for this frame
}

// Make a damped adjustment to the active max q.
int adjust_active_maxq( int old_maxqi, int new_maxqi )
{
    int i;
    int ret_val = new_maxqi;
    double old_q;
    double new_q;
    double target_q;

    old_q = vp8_convert_qindex_to_q( old_maxqi );
    new_q = vp8_convert_qindex_to_q( new_maxqi );

    target_q = ((old_q * 7.0) + new_q) / 8.0;

    if ( target_q > old_q )
    {
        for ( i = old_maxqi; i <= new_maxqi; i++ )
        {
            if ( vp8_convert_qindex_to_q( i ) >= target_q )
            {
                ret_val = i;
                break;
            }
        }
    }
    else
    {
        for ( i = old_maxqi; i >= new_maxqi; i-- )
        {
            if ( vp8_convert_qindex_to_q( i ) <= target_q )
            {
                ret_val = i;
                break;
            }
        }
    }

    return ret_val;
}

void vp8_second_pass(VP8_COMP *cpi)
{
    int tmp_q;
    int frames_left = (int)(cpi->twopass.total_stats->count - cpi->common.current_video_frame);

    FIRSTPASS_STATS this_frame;
    FIRSTPASS_STATS this_frame_copy;

    double this_frame_error;
    double this_frame_intra_error;
    double this_frame_coded_error;

    FIRSTPASS_STATS *start_pos;

    int overhead_bits;

    if (!cpi->twopass.stats_in)
    {
        return ;
    }

    vp8_clear_system_state();

    if (EOF == input_stats(cpi, &this_frame))
        return;

    this_frame_error = this_frame.ssim_weighted_pred_err;
    this_frame_intra_error = this_frame.intra_error;
    this_frame_coded_error = this_frame.coded_error;

    start_pos = cpi->twopass.stats_in;

    // keyframe and section processing !
    if (cpi->twopass.frames_to_key == 0)
    {
        // Define next KF group and assign bits to it
        vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame));
        find_next_key_frame(cpi, &this_frame_copy);
    }

    // Is this a GF / ARF (Note that a KF is always also a GF)
    if (cpi->frames_till_gf_update_due == 0)
    {
        // Define next gf group and assign bits to it
        vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame));
        define_gf_group(cpi, &this_frame_copy);

        // If we are going to code an altref frame at the end of the group and the current frame is not a key frame....
        // If the previous group used an arf this frame has already benefited from that arf boost and it should not be given extra bits
        // If the previous group was NOT coded using arf we may want to apply some boost to this GF as well
        if (cpi->source_alt_ref_pending && (cpi->common.frame_type != KEY_FRAME))
        {
            // Assign a standard frames worth of bits from those allocated to the GF group
            int bak = cpi->per_frame_bandwidth;
            vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame));
            assign_std_frame_bits(cpi, &this_frame_copy);
            cpi->per_frame_bandwidth = bak;
        }
    }

    // Otherwise this is an ordinary frame
    else
    {
        // Assign bits from those allocated to the GF group
        vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame));
        assign_std_frame_bits(cpi, &this_frame_copy);
    }

    // Keep a globally available copy of this and the next frame's iiratio.
    cpi->twopass.this_iiratio = this_frame_intra_error /
                        DOUBLE_DIVIDE_CHECK(this_frame_coded_error);
    {
        FIRSTPASS_STATS next_frame;
        if ( lookup_next_frame_stats(cpi, &next_frame) != EOF )
        {
            cpi->twopass.next_iiratio = next_frame.intra_error /
                                DOUBLE_DIVIDE_CHECK(next_frame.coded_error);
        }
    }

    // Set nominal per second bandwidth for this frame
    cpi->target_bandwidth = cpi->per_frame_bandwidth * cpi->output_frame_rate;
    if (cpi->target_bandwidth < 0)
        cpi->target_bandwidth = 0;


    // Account for mv, mode and other overheads.
    overhead_bits = estimate_modemvcost(
                        cpi, cpi->twopass.total_left_stats );

    // Special case code for first frame.
    if (cpi->common.current_video_frame == 0)
    {
        cpi->twopass.est_max_qcorrection_factor = 1.0;

        // Set a cq_level in constrained quality mode.
        if ( cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY )
        {
            int est_cq;

            est_cq =
                estimate_cq( cpi,
                             cpi->twopass.total_left_stats,
                             (int)(cpi->twopass.bits_left / frames_left),
                             overhead_bits );

            cpi->cq_target_quality = cpi->oxcf.cq_level;
            if ( est_cq > cpi->cq_target_quality )
                cpi->cq_target_quality = est_cq;
        }

        // guess at maxq needed in 2nd pass
        cpi->twopass.maxq_max_limit = cpi->worst_quality;
        cpi->twopass.maxq_min_limit = cpi->best_quality;

        tmp_q = estimate_max_q(
                    cpi,
                    cpi->twopass.total_left_stats,
                    (int)(cpi->twopass.bits_left / frames_left),
                    overhead_bits );

        cpi->active_worst_quality         = tmp_q;
        cpi->ni_av_qi                     = tmp_q;
        cpi->avg_q                        = vp8_convert_qindex_to_q( tmp_q );

        // Limit the maxq value returned subsequently.
        // This increases the risk of overspend or underspend if the initial
        // estimate for the clip is bad, but helps prevent excessive
        // variation in Q, especially near the end of a clip
        // where for example a small overspend may cause Q to crash
        adjust_maxq_qrange(cpi);
    }

    // The last few frames of a clip almost always have to few or too many
    // bits and for the sake of over exact rate control we dont want to make
    // radical adjustments to the allowed quantizer range just to use up a
    // few surplus bits or get beneath the target rate.
    else if ( (cpi->common.current_video_frame <
                 (((unsigned int)cpi->twopass.total_stats->count * 255)>>8)) &&
              ((cpi->common.current_video_frame + cpi->baseline_gf_interval) <
                 (unsigned int)cpi->twopass.total_stats->count) )
    {
        if (frames_left < 1)
            frames_left = 1;

        tmp_q = estimate_max_q(
                    cpi,
                    cpi->twopass.total_left_stats,
                    (int)(cpi->twopass.bits_left / frames_left),
                    overhead_bits );

        // Make a damped adjustment to active max Q
        cpi->active_worst_quality =
            adjust_active_maxq( cpi->active_worst_quality, tmp_q );
    }

    cpi->twopass.frames_to_key --;

    // Update the total stats remaining sturcture
    subtract_stats(cpi->twopass.total_left_stats, &this_frame );
}


static BOOL test_candidate_kf(VP8_COMP *cpi,  FIRSTPASS_STATS *last_frame, FIRSTPASS_STATS *this_frame, FIRSTPASS_STATS *next_frame)
{
    BOOL is_viable_kf = FALSE;

    // Does the frame satisfy the primary criteria of a key frame
    //      If so, then examine how well it predicts subsequent frames
    if ((this_frame->pcnt_second_ref < 0.10) &&
        (next_frame->pcnt_second_ref < 0.10) &&
        ((this_frame->pcnt_inter < 0.05) ||
         (
             ((this_frame->pcnt_inter - this_frame->pcnt_neutral) < .35) &&
             ((this_frame->intra_error / DOUBLE_DIVIDE_CHECK(this_frame->coded_error)) < 2.5) &&
             ((fabs(last_frame->coded_error - this_frame->coded_error) / DOUBLE_DIVIDE_CHECK(this_frame->coded_error) > .40) ||
              (fabs(last_frame->intra_error - this_frame->intra_error) / DOUBLE_DIVIDE_CHECK(this_frame->intra_error) > .40) ||
              ((next_frame->intra_error / DOUBLE_DIVIDE_CHECK(next_frame->coded_error)) > 3.5)
             )
         )
        )
       )
    {
        int i;
        FIRSTPASS_STATS *start_pos;

        FIRSTPASS_STATS local_next_frame;

        double boost_score = 0.0;
        double old_boost_score = 0.0;
        double decay_accumulator = 1.0;
        double next_iiratio;

        vpx_memcpy(&local_next_frame, next_frame, sizeof(*next_frame));

        // Note the starting file position so we can reset to it
        start_pos = cpi->twopass.stats_in;

        // Examine how well the key frame predicts subsequent frames
        for (i = 0 ; i < 16; i++)
        {
            next_iiratio = (IIKFACTOR1 * local_next_frame.intra_error / DOUBLE_DIVIDE_CHECK(local_next_frame.coded_error)) ;

            if (next_iiratio > RMAX)
                next_iiratio = RMAX;

            // Cumulative effect of decay in prediction quality
            if (local_next_frame.pcnt_inter > 0.85)
                decay_accumulator = decay_accumulator * local_next_frame.pcnt_inter;
            else
                decay_accumulator = decay_accumulator * ((0.85 + local_next_frame.pcnt_inter) / 2.0);

            //decay_accumulator = decay_accumulator * local_next_frame.pcnt_inter;

            // Keep a running total
            boost_score += (decay_accumulator * next_iiratio);

            // Test various breakout clauses
            if ((local_next_frame.pcnt_inter < 0.05) ||
                (next_iiratio < 1.5) ||
                (((local_next_frame.pcnt_inter -
                   local_next_frame.pcnt_neutral) < 0.20) &&
                 (next_iiratio < 3.0)) ||
                ((boost_score - old_boost_score) < 3.0) ||
                (local_next_frame.intra_error < 200)
               )
            {
                break;
            }

            old_boost_score = boost_score;

            // Get the next frame details
            if (EOF == input_stats(cpi, &local_next_frame))
                break;
        }

        // If there is tolerable prediction for at least the next 3 frames then break out else discard this pottential key frame and move on
        if (boost_score > 30.0 && (i > 3))
            is_viable_kf = TRUE;
        else
        {
            // Reset the file position
            reset_fpf_position(cpi, start_pos);

            is_viable_kf = FALSE;
        }
    }

    return is_viable_kf;
}
static void find_next_key_frame(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame)
{
    int i,j;
    FIRSTPASS_STATS last_frame;
    FIRSTPASS_STATS first_frame;
    FIRSTPASS_STATS next_frame;
    FIRSTPASS_STATS *start_position;

    double decay_accumulator = 1.0;
    double zero_motion_accumulator = 1.0;
    double boost_score = 0;
    double old_boost_score = 0.0;
    double loop_decay_rate;

    double kf_mod_err = 0.0;
    double kf_group_err = 0.0;
    double kf_group_intra_err = 0.0;
    double kf_group_coded_err = 0.0;
    double recent_loop_decay[8] = {1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0};

    vpx_memset(&next_frame, 0, sizeof(next_frame)); // assure clean

    vp8_clear_system_state();  //__asm emms;
    start_position = cpi->twopass.stats_in;

    cpi->common.frame_type = KEY_FRAME;

    // is this a forced key frame by interval
    cpi->this_key_frame_forced = cpi->next_key_frame_forced;

    // Clear the alt ref active flag as this can never be active on a key frame
    cpi->source_alt_ref_active = FALSE;

    // Kf is always a gf so clear frames till next gf counter
    cpi->frames_till_gf_update_due = 0;

    cpi->twopass.frames_to_key = 1;

    // Take a copy of the initial frame details
    vpx_memcpy(&first_frame, this_frame, sizeof(*this_frame));

    cpi->twopass.kf_group_bits = 0;        // Total bits avaialable to kf group
    cpi->twopass.kf_group_error_left = 0;  // Group modified error score.

    kf_mod_err = calculate_modified_err(cpi, this_frame);

    // find the next keyframe
    i = 0;
    while (cpi->twopass.stats_in < cpi->twopass.stats_in_end)
    {
        // Accumulate kf group error
        kf_group_err += calculate_modified_err(cpi, this_frame);

        // These figures keep intra and coded error counts for all frames including key frames in the group.
        // The effect of the key frame itself can be subtracted out using the first_frame data collected above
        kf_group_intra_err += this_frame->intra_error;
        kf_group_coded_err += this_frame->coded_error;

        // load a the next frame's stats
        vpx_memcpy(&last_frame, this_frame, sizeof(*this_frame));
        input_stats(cpi, this_frame);

        // Provided that we are not at the end of the file...
        if (cpi->oxcf.auto_key
            && lookup_next_frame_stats(cpi, &next_frame) != EOF)
        {
            // Normal scene cut check
            if ( test_candidate_kf(cpi, &last_frame, this_frame, &next_frame) )
            {
                break;
            }

            // How fast is prediction quality decaying
            loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame);

            // We want to know something about the recent past... rather than
            // as used elsewhere where we are concened with decay in prediction
            // quality since the last GF or KF.
            recent_loop_decay[i%8] = loop_decay_rate;
            decay_accumulator = 1.0;
            for (j = 0; j < 8; j++)
            {
                decay_accumulator = decay_accumulator * recent_loop_decay[j];
            }

            // Special check for transition or high motion followed by a
            // to a static scene.
            if ( detect_transition_to_still( cpi, i,
                                             (cpi->key_frame_frequency-i),
                                             loop_decay_rate,
                                             decay_accumulator ) )
            {
                break;
            }


            // Step on to the next frame
            cpi->twopass.frames_to_key ++;

            // If we don't have a real key frame within the next two
            // forcekeyframeevery intervals then break out of the loop.
            if (cpi->twopass.frames_to_key >= 2 *(int)cpi->key_frame_frequency)
                break;
        } else
            cpi->twopass.frames_to_key ++;

        i++;
    }

    // If there is a max kf interval set by the user we must obey it.
    // We already breakout of the loop above at 2x max.
    // This code centers the extra kf if the actual natural
    // interval is between 1x and 2x
    if (cpi->oxcf.auto_key
        && cpi->twopass.frames_to_key > (int)cpi->key_frame_frequency )
    {
        FIRSTPASS_STATS *current_pos = cpi->twopass.stats_in;
        FIRSTPASS_STATS tmp_frame;

        cpi->twopass.frames_to_key /= 2;

        // Copy first frame details
        vpx_memcpy(&tmp_frame, &first_frame, sizeof(first_frame));

        // Reset to the start of the group
        reset_fpf_position(cpi, start_position);

        kf_group_err = 0;
        kf_group_intra_err = 0;
        kf_group_coded_err = 0;

        // Rescan to get the correct error data for the forced kf group
        for( i = 0; i < cpi->twopass.frames_to_key; i++ )
        {
            // Accumulate kf group errors
            kf_group_err += calculate_modified_err(cpi, &tmp_frame);
            kf_group_intra_err += tmp_frame.intra_error;
            kf_group_coded_err += tmp_frame.coded_error;

            // Load a the next frame's stats
            input_stats(cpi, &tmp_frame);
        }

        // Reset to the start of the group
        reset_fpf_position(cpi, current_pos);

        cpi->next_key_frame_forced = TRUE;
    }
    else
        cpi->next_key_frame_forced = FALSE;

    // Special case for the last frame of the file
    if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end)
    {
        // Accumulate kf group error
        kf_group_err += calculate_modified_err(cpi, this_frame);

        // These figures keep intra and coded error counts for all frames including key frames in the group.
        // The effect of the key frame itself can be subtracted out using the first_frame data collected above
        kf_group_intra_err += this_frame->intra_error;
        kf_group_coded_err += this_frame->coded_error;
    }

    // Calculate the number of bits that should be assigned to the kf group.
    if ((cpi->twopass.bits_left > 0) && (cpi->twopass.modified_error_left > 0.0))
    {
        // Max for a single normal frame (not key frame)
        int max_bits = frame_max_bits(cpi);

        // Maximum bits for the kf group
        int64_t max_grp_bits;

        // Default allocation based on bits left and relative
        // complexity of the section
        cpi->twopass.kf_group_bits = (int64_t)( cpi->twopass.bits_left *
                                          ( kf_group_err /
                                            cpi->twopass.modified_error_left ));

        // Clip based on maximum per frame rate defined by the user.
        max_grp_bits = (int64_t)max_bits * (int64_t)cpi->twopass.frames_to_key;
        if (cpi->twopass.kf_group_bits > max_grp_bits)
            cpi->twopass.kf_group_bits = max_grp_bits;
    }
    else
        cpi->twopass.kf_group_bits = 0;

    // Reset the first pass file position
    reset_fpf_position(cpi, start_position);

    // determine how big to make this keyframe based on how well the subsequent frames use inter blocks
    decay_accumulator = 1.0;
    boost_score = 0.0;
    loop_decay_rate = 1.00;       // Starting decay rate

    for (i = 0 ; i < cpi->twopass.frames_to_key ; i++)
    {
        double r;

        if (EOF == input_stats(cpi, &next_frame))
            break;

        if (next_frame.intra_error > cpi->twopass.kf_intra_err_min)
            r = (IIKFACTOR2 * next_frame.intra_error /
                     DOUBLE_DIVIDE_CHECK(next_frame.coded_error));
        else
            r = (IIKFACTOR2 * cpi->twopass.kf_intra_err_min /
                     DOUBLE_DIVIDE_CHECK(next_frame.coded_error));

        if (r > RMAX)
            r = RMAX;

        // Monitor for static sections.
        if ( (next_frame.pcnt_inter - next_frame.pcnt_motion) <
             zero_motion_accumulator )
        {
            zero_motion_accumulator =
                (next_frame.pcnt_inter - next_frame.pcnt_motion);
        }

        // How fast is prediction quality decaying
        if ( !detect_flash(cpi, 0) )
        {
            loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame);
            decay_accumulator = decay_accumulator * loop_decay_rate;
            decay_accumulator = decay_accumulator < 0.1 ? 0.1 : decay_accumulator;
        }

        boost_score += (decay_accumulator * r);

        if ((i > MIN_GF_INTERVAL) &&
            ((boost_score - old_boost_score) < 6.25))
        {
            break;
        }

        old_boost_score = boost_score;
    }

    {
        FIRSTPASS_STATS sectionstats;

        zero_stats(&sectionstats);
        reset_fpf_position(cpi, start_position);

        for (i = 0 ; i < cpi->twopass.frames_to_key ; i++)
        {
            input_stats(cpi, &next_frame);
            accumulate_stats(&sectionstats, &next_frame);
        }

        avg_stats(&sectionstats);

        cpi->twopass.section_intra_rating =
            sectionstats.intra_error
            / DOUBLE_DIVIDE_CHECK(sectionstats.coded_error);
    }

    // Reset the first pass file position
    reset_fpf_position(cpi, start_position);

    // Work out how many bits to allocate for the key frame itself
    if (1)
    {
        int kf_boost = boost_score;
        int allocation_chunks;
        int alt_kf_bits;

        if ( kf_boost < 300 )
        {
            kf_boost += (cpi->twopass.frames_to_key * 3);
            if ( kf_boost > 300 )
                kf_boost = 300;
        }

        if (kf_boost < 250)                                                      // Min KF boost
            kf_boost = 250;

        // Make a note of baseline boost and the zero motion
        // accumulator value for use elsewhere.
        cpi->kf_boost = kf_boost;
        cpi->kf_zeromotion_pct = (int)(zero_motion_accumulator * 100.0);

        // We do three calculations for kf size.
        // The first is based on the error score for the whole kf group.
        // The second (optionaly) on the key frames own error if this is
        // smaller than the average for the group.
        // The final one insures that the frame receives at least the
        // allocation it would have received based on its own error score vs
        // the error score remaining
        // Special case if the sequence appears almost totaly static
        // In this case we want to spend almost all of the bits on the
        // key frame.
        // cpi->twopass.frames_to_key-1 because key frame itself is taken
        // care of by kf_boost.
        if ( zero_motion_accumulator >= 0.99 )
        {
            allocation_chunks =
                ((cpi->twopass.frames_to_key - 1) * 10) + kf_boost;
        }
        else
        {
            allocation_chunks =
                ((cpi->twopass.frames_to_key - 1) * 100) + kf_boost;
        }

        // Prevent overflow
        if ( kf_boost > 1028 )
        {
            int divisor = kf_boost >> 10;
            kf_boost /= divisor;
            allocation_chunks /= divisor;
        }

        cpi->twopass.kf_group_bits = (cpi->twopass.kf_group_bits < 0) ? 0 : cpi->twopass.kf_group_bits;

        // Calculate the number of bits to be spent on the key frame
        cpi->twopass.kf_bits  = (int)((double)kf_boost * ((double)cpi->twopass.kf_group_bits / (double)allocation_chunks));

        // If the key frame is actually easier than the average for the
        // kf group (which does sometimes happen... eg a blank intro frame)
        // Then use an alternate calculation based on the kf error score
        // which should give a smaller key frame.
        if (kf_mod_err < kf_group_err / cpi->twopass.frames_to_key)
        {
            double  alt_kf_grp_bits =
                        ((double)cpi->twopass.bits_left *
                         (kf_mod_err * (double)cpi->twopass.frames_to_key) /
                         DOUBLE_DIVIDE_CHECK(cpi->twopass.modified_error_left));

            alt_kf_bits = (int)((double)kf_boost *
                                (alt_kf_grp_bits / (double)allocation_chunks));

            if (cpi->twopass.kf_bits > alt_kf_bits)
            {
                cpi->twopass.kf_bits = alt_kf_bits;
            }
        }
        // Else if it is much harder than other frames in the group make sure
        // it at least receives an allocation in keeping with its relative
        // error score
        else
        {
            alt_kf_bits =
                (int)((double)cpi->twopass.bits_left *
                      (kf_mod_err /
                       DOUBLE_DIVIDE_CHECK(cpi->twopass.modified_error_left)));

            if (alt_kf_bits > cpi->twopass.kf_bits)
            {
                cpi->twopass.kf_bits = alt_kf_bits;
            }
        }

        cpi->twopass.kf_group_bits -= cpi->twopass.kf_bits;
        cpi->twopass.kf_bits += cpi->min_frame_bandwidth;                                          // Add in the minimum frame allowance

        cpi->per_frame_bandwidth = cpi->twopass.kf_bits;                                           // Peer frame bit target for this frame
        cpi->target_bandwidth = cpi->twopass.kf_bits * cpi->output_frame_rate;                      // Convert to a per second bitrate
    }

    // Note the total error score of the kf group minus the key frame itself
    cpi->twopass.kf_group_error_left = (int)(kf_group_err - kf_mod_err);

    // Adjust the count of total modified error left.
    // The count of bits left is adjusted elsewhere based on real coded frame sizes
    cpi->twopass.modified_error_left -= kf_group_err;
}