ref: cc5f49767a514686c90a29781a50b0ce5a7da6fe
dir: /vpx_dsp/arm/idct32x32_34_add_neon.c/
/* * Copyright (c) 2016 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <arm_neon.h> #include "./vpx_config.h" #include "./vpx_dsp_rtcd.h" #include "vpx_dsp/arm/transpose_neon.h" #include "vpx_dsp/txfm_common.h" // Multiply a by a_const. Saturate, shift and narrow by 14. static int16x8_t multiply_shift_and_narrow(const int16x8_t a, const int16_t a_const) { // Shift by 14 + rounding will be within 16 bits for well formed streams. // See WRAPLOW and dct_const_round_shift for details. // This instruction doubles the result and returns the high half, essentially // resulting in a right shift by 15. By multiplying the constant first that // becomes a right shift by 14. // The largest possible value used here is // vpx_dsp/txfm_common.h:cospi_1_64 = 16364 (* 2 = 32728) a which falls *just* // within the range of int16_t (+32767 / -32768) even when negated. return vqrdmulhq_n_s16(a, a_const * 2); } // Add a and b, then multiply by ab_const. Shift and narrow by 14. static int16x8_t add_multiply_shift_and_narrow(const int16x8_t a, const int16x8_t b, const int16_t ab_const) { // In both add_ and its pair, sub_, the input for well-formed streams will be // well within 16 bits (input to the idct is the difference between two frames // and will be within -255 to 255, or 9 bits) // However, for inputs over about 25,000 (valid for int16_t, but not for idct // input) this function can not use vaddq_s16. // In order to match existing behavior and intentionally out of range tests, // expand the addition up to 32 bits to prevent truncation. int32x4_t temp_low = vaddl_s16(vget_low_s16(a), vget_low_s16(b)); int32x4_t temp_high = vaddl_s16(vget_high_s16(a), vget_high_s16(b)); temp_low = vmulq_n_s32(temp_low, ab_const); temp_high = vmulq_n_s32(temp_high, ab_const); return vcombine_s16(vrshrn_n_s32(temp_low, 14), vrshrn_n_s32(temp_high, 14)); } // Subtract b from a, then multiply by ab_const. Shift and narrow by 14. static int16x8_t sub_multiply_shift_and_narrow(const int16x8_t a, const int16x8_t b, const int16_t ab_const) { int32x4_t temp_low = vsubl_s16(vget_low_s16(a), vget_low_s16(b)); int32x4_t temp_high = vsubl_s16(vget_high_s16(a), vget_high_s16(b)); temp_low = vmulq_n_s32(temp_low, ab_const); temp_high = vmulq_n_s32(temp_high, ab_const); return vcombine_s16(vrshrn_n_s32(temp_low, 14), vrshrn_n_s32(temp_high, 14)); } // Multiply a by a_const and b by b_const, then accumulate. Shift and narrow by // 14. static int16x8_t multiply_accumulate_shift_and_narrow(const int16x8_t a, const int16_t a_const, const int16x8_t b, const int16_t b_const) { int32x4_t temp_low = vmull_n_s16(vget_low_s16(a), a_const); int32x4_t temp_high = vmull_n_s16(vget_high_s16(a), a_const); temp_low = vmlal_n_s16(temp_low, vget_low_s16(b), b_const); temp_high = vmlal_n_s16(temp_high, vget_high_s16(b), b_const); return vcombine_s16(vrshrn_n_s32(temp_low, 14), vrshrn_n_s32(temp_high, 14)); } // Shift the output down by 6 and add it to the destination buffer. static void add_and_store(const int16x8_t a0, const int16x8_t a1, const int16x8_t a2, const int16x8_t a3, const int16x8_t a4, const int16x8_t a5, const int16x8_t a6, const int16x8_t a7, uint8_t *b, const int b_stride) { uint8x8_t b0, b1, b2, b3, b4, b5, b6, b7; int16x8_t c0, c1, c2, c3, c4, c5, c6, c7; b0 = vld1_u8(b); b += b_stride; b1 = vld1_u8(b); b += b_stride; b2 = vld1_u8(b); b += b_stride; b3 = vld1_u8(b); b += b_stride; b4 = vld1_u8(b); b += b_stride; b5 = vld1_u8(b); b += b_stride; b6 = vld1_u8(b); b += b_stride; b7 = vld1_u8(b); b -= (7 * b_stride); // c = b + (a >> 6) c0 = vrsraq_n_s16(vreinterpretq_s16_u16(vmovl_u8(b0)), a0, 6); c1 = vrsraq_n_s16(vreinterpretq_s16_u16(vmovl_u8(b1)), a1, 6); c2 = vrsraq_n_s16(vreinterpretq_s16_u16(vmovl_u8(b2)), a2, 6); c3 = vrsraq_n_s16(vreinterpretq_s16_u16(vmovl_u8(b3)), a3, 6); c4 = vrsraq_n_s16(vreinterpretq_s16_u16(vmovl_u8(b4)), a4, 6); c5 = vrsraq_n_s16(vreinterpretq_s16_u16(vmovl_u8(b5)), a5, 6); c6 = vrsraq_n_s16(vreinterpretq_s16_u16(vmovl_u8(b6)), a6, 6); c7 = vrsraq_n_s16(vreinterpretq_s16_u16(vmovl_u8(b7)), a7, 6); b0 = vqmovun_s16(c0); b1 = vqmovun_s16(c1); b2 = vqmovun_s16(c2); b3 = vqmovun_s16(c3); b4 = vqmovun_s16(c4); b5 = vqmovun_s16(c5); b6 = vqmovun_s16(c6); b7 = vqmovun_s16(c7); vst1_u8(b, b0); b += b_stride; vst1_u8(b, b1); b += b_stride; vst1_u8(b, b2); b += b_stride; vst1_u8(b, b3); b += b_stride; vst1_u8(b, b4); b += b_stride; vst1_u8(b, b5); b += b_stride; vst1_u8(b, b6); b += b_stride; vst1_u8(b, b7); } // Only for the first pass of the _34_ variant. Since it only uses values from // the top left 8x8 it can safely assume all the remaining values are 0 and skip // an awful lot of calculations. In fact, only the first 6 columns make the cut. // None of the elements in the 7th or 8th column are used so it skips any calls // to input[67] too. // In C this does a single row of 32 for each call. Here it transposes the top // left 8x8 to allow using SIMD. // vp9/common/vp9_scan.c:vp9_default_iscan_32x32 arranges the first 34 non-zero // coefficients as follows: // 0 1 2 3 4 5 6 7 // 0 0 2 5 10 17 25 // 1 1 4 8 15 22 30 // 2 3 7 12 18 28 // 3 6 11 16 23 31 // 4 9 14 19 29 // 5 13 20 26 // 6 21 27 33 // 7 24 32 static void idct32_6_neon(const int16_t *input, int16_t *output) { int16x8_t in0, in1, in2, in3, in4, in5, in6, in7; int16x8_t s1_0, s1_1, s1_2, s1_3, s1_4, s1_5, s1_6, s1_7, s1_8, s1_9, s1_10, s1_11, s1_12, s1_13, s1_14, s1_15, s1_16, s1_17, s1_18, s1_19, s1_20, s1_21, s1_22, s1_23, s1_24, s1_25, s1_26, s1_27, s1_28, s1_29, s1_30, s1_31; int16x8_t s2_0, s2_1, s2_2, s2_3, s2_4, s2_5, s2_6, s2_7, s2_8, s2_9, s2_10, s2_11, s2_12, s2_13, s2_14, s2_15, s2_16, s2_17, s2_18, s2_19, s2_20, s2_21, s2_22, s2_23, s2_24, s2_25, s2_26, s2_27, s2_28, s2_29, s2_30, s2_31; int16x8_t s3_24, s3_25, s3_26, s3_27; in0 = vld1q_s16(input); input += 32; in1 = vld1q_s16(input); input += 32; in2 = vld1q_s16(input); input += 32; in3 = vld1q_s16(input); input += 32; in4 = vld1q_s16(input); input += 32; in5 = vld1q_s16(input); input += 32; in6 = vld1q_s16(input); input += 32; in7 = vld1q_s16(input); transpose_s16_8x8(&in0, &in1, &in2, &in3, &in4, &in5, &in6, &in7); // stage 1 // input[1] * cospi_31_64 - input[31] * cospi_1_64 (but input[31] == 0) s1_16 = multiply_shift_and_narrow(in1, cospi_31_64); // input[1] * cospi_1_64 + input[31] * cospi_31_64 (but input[31] == 0) s1_31 = multiply_shift_and_narrow(in1, cospi_1_64); s1_20 = multiply_shift_and_narrow(in5, cospi_27_64); s1_27 = multiply_shift_and_narrow(in5, cospi_5_64); s1_23 = multiply_shift_and_narrow(in3, -cospi_29_64); s1_24 = multiply_shift_and_narrow(in3, cospi_3_64); // stage 2 s2_8 = multiply_shift_and_narrow(in2, cospi_30_64); s2_15 = multiply_shift_and_narrow(in2, cospi_2_64); // stage 3 s1_4 = multiply_shift_and_narrow(in4, cospi_28_64); s1_7 = multiply_shift_and_narrow(in4, cospi_4_64); s1_17 = multiply_accumulate_shift_and_narrow(s1_16, -cospi_4_64, s1_31, cospi_28_64); s1_30 = multiply_accumulate_shift_and_narrow(s1_16, cospi_28_64, s1_31, cospi_4_64); s1_21 = multiply_accumulate_shift_and_narrow(s1_20, -cospi_20_64, s1_27, cospi_12_64); s1_26 = multiply_accumulate_shift_and_narrow(s1_20, cospi_12_64, s1_27, cospi_20_64); s1_22 = multiply_accumulate_shift_and_narrow(s1_23, -cospi_12_64, s1_24, -cospi_20_64); s1_25 = multiply_accumulate_shift_and_narrow(s1_23, -cospi_20_64, s1_24, cospi_12_64); // stage 4 s1_0 = multiply_shift_and_narrow(in0, cospi_16_64); s2_9 = multiply_accumulate_shift_and_narrow(s2_8, -cospi_8_64, s2_15, cospi_24_64); s2_14 = multiply_accumulate_shift_and_narrow(s2_8, cospi_24_64, s2_15, cospi_8_64); s2_20 = vsubq_s16(s1_23, s1_20); s2_21 = vsubq_s16(s1_22, s1_21); s2_22 = vaddq_s16(s1_21, s1_22); s2_23 = vaddq_s16(s1_20, s1_23); s2_24 = vaddq_s16(s1_24, s1_27); s2_25 = vaddq_s16(s1_25, s1_26); s2_26 = vsubq_s16(s1_25, s1_26); s2_27 = vsubq_s16(s1_24, s1_27); // stage 5 s1_5 = sub_multiply_shift_and_narrow(s1_7, s1_4, cospi_16_64); s1_6 = add_multiply_shift_and_narrow(s1_4, s1_7, cospi_16_64); s1_18 = multiply_accumulate_shift_and_narrow(s1_17, -cospi_8_64, s1_30, cospi_24_64); s1_29 = multiply_accumulate_shift_and_narrow(s1_17, cospi_24_64, s1_30, cospi_8_64); s1_19 = multiply_accumulate_shift_and_narrow(s1_16, -cospi_8_64, s1_31, cospi_24_64); s1_28 = multiply_accumulate_shift_and_narrow(s1_16, cospi_24_64, s1_31, cospi_8_64); s1_20 = multiply_accumulate_shift_and_narrow(s2_20, -cospi_24_64, s2_27, -cospi_8_64); s1_27 = multiply_accumulate_shift_and_narrow(s2_20, -cospi_8_64, s2_27, cospi_24_64); s1_21 = multiply_accumulate_shift_and_narrow(s2_21, -cospi_24_64, s2_26, -cospi_8_64); s1_26 = multiply_accumulate_shift_and_narrow(s2_21, -cospi_8_64, s2_26, cospi_24_64); // stage 6 s2_0 = vaddq_s16(s1_0, s1_7); s2_1 = vaddq_s16(s1_0, s1_6); s2_2 = vaddq_s16(s1_0, s1_5); s2_3 = vaddq_s16(s1_0, s1_4); s2_4 = vsubq_s16(s1_0, s1_4); s2_5 = vsubq_s16(s1_0, s1_5); s2_6 = vsubq_s16(s1_0, s1_6); s2_7 = vsubq_s16(s1_0, s1_7); s2_10 = sub_multiply_shift_and_narrow(s2_14, s2_9, cospi_16_64); s2_13 = add_multiply_shift_and_narrow(s2_9, s2_14, cospi_16_64); s2_11 = sub_multiply_shift_and_narrow(s2_15, s2_8, cospi_16_64); s2_12 = add_multiply_shift_and_narrow(s2_8, s2_15, cospi_16_64); s2_16 = vaddq_s16(s1_16, s2_23); s2_17 = vaddq_s16(s1_17, s2_22); s2_18 = vaddq_s16(s1_18, s1_21); s2_19 = vaddq_s16(s1_19, s1_20); s2_20 = vsubq_s16(s1_19, s1_20); s2_21 = vsubq_s16(s1_18, s1_21); s2_22 = vsubq_s16(s1_17, s2_22); s2_23 = vsubq_s16(s1_16, s2_23); s3_24 = vsubq_s16(s1_31, s2_24); s3_25 = vsubq_s16(s1_30, s2_25); s3_26 = vsubq_s16(s1_29, s1_26); s3_27 = vsubq_s16(s1_28, s1_27); s2_28 = vaddq_s16(s1_27, s1_28); s2_29 = vaddq_s16(s1_26, s1_29); s2_30 = vaddq_s16(s2_25, s1_30); s2_31 = vaddq_s16(s2_24, s1_31); // stage 7 s1_0 = vaddq_s16(s2_0, s2_15); s1_1 = vaddq_s16(s2_1, s2_14); s1_2 = vaddq_s16(s2_2, s2_13); s1_3 = vaddq_s16(s2_3, s2_12); s1_4 = vaddq_s16(s2_4, s2_11); s1_5 = vaddq_s16(s2_5, s2_10); s1_6 = vaddq_s16(s2_6, s2_9); s1_7 = vaddq_s16(s2_7, s2_8); s1_8 = vsubq_s16(s2_7, s2_8); s1_9 = vsubq_s16(s2_6, s2_9); s1_10 = vsubq_s16(s2_5, s2_10); s1_11 = vsubq_s16(s2_4, s2_11); s1_12 = vsubq_s16(s2_3, s2_12); s1_13 = vsubq_s16(s2_2, s2_13); s1_14 = vsubq_s16(s2_1, s2_14); s1_15 = vsubq_s16(s2_0, s2_15); s1_20 = sub_multiply_shift_and_narrow(s3_27, s2_20, cospi_16_64); s1_27 = add_multiply_shift_and_narrow(s2_20, s3_27, cospi_16_64); s1_21 = sub_multiply_shift_and_narrow(s3_26, s2_21, cospi_16_64); s1_26 = add_multiply_shift_and_narrow(s2_21, s3_26, cospi_16_64); s1_22 = sub_multiply_shift_and_narrow(s3_25, s2_22, cospi_16_64); s1_25 = add_multiply_shift_and_narrow(s2_22, s3_25, cospi_16_64); s1_23 = sub_multiply_shift_and_narrow(s3_24, s2_23, cospi_16_64); s1_24 = add_multiply_shift_and_narrow(s2_23, s3_24, cospi_16_64); // final stage vst1q_s16(output, vaddq_s16(s1_0, s2_31)); output += 8; vst1q_s16(output, vaddq_s16(s1_1, s2_30)); output += 8; vst1q_s16(output, vaddq_s16(s1_2, s2_29)); output += 8; vst1q_s16(output, vaddq_s16(s1_3, s2_28)); output += 8; vst1q_s16(output, vaddq_s16(s1_4, s1_27)); output += 8; vst1q_s16(output, vaddq_s16(s1_5, s1_26)); output += 8; vst1q_s16(output, vaddq_s16(s1_6, s1_25)); output += 8; vst1q_s16(output, vaddq_s16(s1_7, s1_24)); output += 8; vst1q_s16(output, vaddq_s16(s1_8, s1_23)); output += 8; vst1q_s16(output, vaddq_s16(s1_9, s1_22)); output += 8; vst1q_s16(output, vaddq_s16(s1_10, s1_21)); output += 8; vst1q_s16(output, vaddq_s16(s1_11, s1_20)); output += 8; vst1q_s16(output, vaddq_s16(s1_12, s2_19)); output += 8; vst1q_s16(output, vaddq_s16(s1_13, s2_18)); output += 8; vst1q_s16(output, vaddq_s16(s1_14, s2_17)); output += 8; vst1q_s16(output, vaddq_s16(s1_15, s2_16)); output += 8; vst1q_s16(output, vsubq_s16(s1_15, s2_16)); output += 8; vst1q_s16(output, vsubq_s16(s1_14, s2_17)); output += 8; vst1q_s16(output, vsubq_s16(s1_13, s2_18)); output += 8; vst1q_s16(output, vsubq_s16(s1_12, s2_19)); output += 8; vst1q_s16(output, vsubq_s16(s1_11, s1_20)); output += 8; vst1q_s16(output, vsubq_s16(s1_10, s1_21)); output += 8; vst1q_s16(output, vsubq_s16(s1_9, s1_22)); output += 8; vst1q_s16(output, vsubq_s16(s1_8, s1_23)); output += 8; vst1q_s16(output, vsubq_s16(s1_7, s1_24)); output += 8; vst1q_s16(output, vsubq_s16(s1_6, s1_25)); output += 8; vst1q_s16(output, vsubq_s16(s1_5, s1_26)); output += 8; vst1q_s16(output, vsubq_s16(s1_4, s1_27)); output += 8; vst1q_s16(output, vsubq_s16(s1_3, s2_28)); output += 8; vst1q_s16(output, vsubq_s16(s1_2, s2_29)); output += 8; vst1q_s16(output, vsubq_s16(s1_1, s2_30)); output += 8; vst1q_s16(output, vsubq_s16(s1_0, s2_31)); } static void idct32_8_neon(const int16_t *input, uint8_t *output, int stride) { int16x8_t in0, in1, in2, in3, in4, in5, in6, in7; int16x8_t out0, out1, out2, out3, out4, out5, out6, out7; int16x8_t s1_0, s1_1, s1_2, s1_3, s1_4, s1_5, s1_6, s1_7, s1_8, s1_9, s1_10, s1_11, s1_12, s1_13, s1_14, s1_15, s1_16, s1_17, s1_18, s1_19, s1_20, s1_21, s1_22, s1_23, s1_24, s1_25, s1_26, s1_27, s1_28, s1_29, s1_30, s1_31; int16x8_t s2_0, s2_1, s2_2, s2_3, s2_4, s2_5, s2_6, s2_7, s2_8, s2_9, s2_10, s2_11, s2_12, s2_13, s2_14, s2_15, s2_16, s2_17, s2_18, s2_19, s2_20, s2_21, s2_22, s2_23, s2_24, s2_25, s2_26, s2_27, s2_28, s2_29, s2_30, s2_31; int16x8_t s3_24, s3_25, s3_26, s3_27; in0 = vld1q_s16(input); input += 8; in1 = vld1q_s16(input); input += 8; in2 = vld1q_s16(input); input += 8; in3 = vld1q_s16(input); input += 8; in4 = vld1q_s16(input); input += 8; in5 = vld1q_s16(input); input += 8; in6 = vld1q_s16(input); input += 8; in7 = vld1q_s16(input); transpose_s16_8x8(&in0, &in1, &in2, &in3, &in4, &in5, &in6, &in7); // stage 1 s1_16 = multiply_shift_and_narrow(in1, cospi_31_64); s1_31 = multiply_shift_and_narrow(in1, cospi_1_64); // Different for _8_ s1_19 = multiply_shift_and_narrow(in7, -cospi_25_64); s1_28 = multiply_shift_and_narrow(in7, cospi_7_64); s1_20 = multiply_shift_and_narrow(in5, cospi_27_64); s1_27 = multiply_shift_and_narrow(in5, cospi_5_64); s1_23 = multiply_shift_and_narrow(in3, -cospi_29_64); s1_24 = multiply_shift_and_narrow(in3, cospi_3_64); // stage 2 s2_8 = multiply_shift_and_narrow(in2, cospi_30_64); s2_15 = multiply_shift_and_narrow(in2, cospi_2_64); s2_11 = multiply_shift_and_narrow(in6, -cospi_26_64); s2_12 = multiply_shift_and_narrow(in6, cospi_6_64); // stage 3 s1_4 = multiply_shift_and_narrow(in4, cospi_28_64); s1_7 = multiply_shift_and_narrow(in4, cospi_4_64); s1_17 = multiply_accumulate_shift_and_narrow(s1_16, -cospi_4_64, s1_31, cospi_28_64); s1_30 = multiply_accumulate_shift_and_narrow(s1_16, cospi_28_64, s1_31, cospi_4_64); // Different for _8_ s1_18 = multiply_accumulate_shift_and_narrow(s1_19, -cospi_28_64, s1_28, -cospi_4_64); s1_29 = multiply_accumulate_shift_and_narrow(s1_19, -cospi_4_64, s1_28, cospi_28_64); s1_21 = multiply_accumulate_shift_and_narrow(s1_20, -cospi_20_64, s1_27, cospi_12_64); s1_26 = multiply_accumulate_shift_and_narrow(s1_20, cospi_12_64, s1_27, cospi_20_64); s1_22 = multiply_accumulate_shift_and_narrow(s1_23, -cospi_12_64, s1_24, -cospi_20_64); s1_25 = multiply_accumulate_shift_and_narrow(s1_23, -cospi_20_64, s1_24, cospi_12_64); // stage 4 s1_0 = multiply_shift_and_narrow(in0, cospi_16_64); s2_9 = multiply_accumulate_shift_and_narrow(s2_8, -cospi_8_64, s2_15, cospi_24_64); s2_14 = multiply_accumulate_shift_and_narrow(s2_8, cospi_24_64, s2_15, cospi_8_64); s2_10 = multiply_accumulate_shift_and_narrow(s2_11, -cospi_24_64, s2_12, -cospi_8_64); s2_13 = multiply_accumulate_shift_and_narrow(s2_11, -cospi_8_64, s2_12, cospi_24_64); s2_16 = vaddq_s16(s1_16, s1_19); s2_17 = vaddq_s16(s1_17, s1_18); s2_18 = vsubq_s16(s1_17, s1_18); s2_19 = vsubq_s16(s1_16, s1_19); s2_20 = vsubq_s16(s1_23, s1_20); s2_21 = vsubq_s16(s1_22, s1_21); s2_22 = vaddq_s16(s1_21, s1_22); s2_23 = vaddq_s16(s1_20, s1_23); s2_24 = vaddq_s16(s1_24, s1_27); s2_25 = vaddq_s16(s1_25, s1_26); s2_26 = vsubq_s16(s1_25, s1_26); s2_27 = vsubq_s16(s1_24, s1_27); s2_28 = vsubq_s16(s1_31, s1_28); s2_29 = vsubq_s16(s1_30, s1_29); s2_30 = vaddq_s16(s1_29, s1_30); s2_31 = vaddq_s16(s1_28, s1_31); // stage 5 s1_5 = sub_multiply_shift_and_narrow(s1_7, s1_4, cospi_16_64); s1_6 = add_multiply_shift_and_narrow(s1_4, s1_7, cospi_16_64); s1_8 = vaddq_s16(s2_8, s2_11); s1_9 = vaddq_s16(s2_9, s2_10); s1_10 = vsubq_s16(s2_9, s2_10); s1_11 = vsubq_s16(s2_8, s2_11); s1_12 = vsubq_s16(s2_15, s2_12); s1_13 = vsubq_s16(s2_14, s2_13); s1_14 = vaddq_s16(s2_13, s2_14); s1_15 = vaddq_s16(s2_12, s2_15); s1_18 = multiply_accumulate_shift_and_narrow(s2_18, -cospi_8_64, s2_29, cospi_24_64); s1_29 = multiply_accumulate_shift_and_narrow(s2_18, cospi_24_64, s2_29, cospi_8_64); s1_19 = multiply_accumulate_shift_and_narrow(s2_19, -cospi_8_64, s2_28, cospi_24_64); s1_28 = multiply_accumulate_shift_and_narrow(s2_19, cospi_24_64, s2_28, cospi_8_64); s1_20 = multiply_accumulate_shift_and_narrow(s2_20, -cospi_24_64, s2_27, -cospi_8_64); s1_27 = multiply_accumulate_shift_and_narrow(s2_20, -cospi_8_64, s2_27, cospi_24_64); s1_21 = multiply_accumulate_shift_and_narrow(s2_21, -cospi_24_64, s2_26, -cospi_8_64); s1_26 = multiply_accumulate_shift_and_narrow(s2_21, -cospi_8_64, s2_26, cospi_24_64); // stage 6 s2_0 = vaddq_s16(s1_0, s1_7); s2_1 = vaddq_s16(s1_0, s1_6); s2_2 = vaddq_s16(s1_0, s1_5); s2_3 = vaddq_s16(s1_0, s1_4); s2_4 = vsubq_s16(s1_0, s1_4); s2_5 = vsubq_s16(s1_0, s1_5); s2_6 = vsubq_s16(s1_0, s1_6); s2_7 = vsubq_s16(s1_0, s1_7); s2_10 = sub_multiply_shift_and_narrow(s1_13, s1_10, cospi_16_64); s2_13 = add_multiply_shift_and_narrow(s1_10, s1_13, cospi_16_64); s2_11 = sub_multiply_shift_and_narrow(s1_12, s1_11, cospi_16_64); s2_12 = add_multiply_shift_and_narrow(s1_11, s1_12, cospi_16_64); s1_16 = vaddq_s16(s2_16, s2_23); s1_17 = vaddq_s16(s2_17, s2_22); s2_18 = vaddq_s16(s1_18, s1_21); s2_19 = vaddq_s16(s1_19, s1_20); s2_20 = vsubq_s16(s1_19, s1_20); s2_21 = vsubq_s16(s1_18, s1_21); s1_22 = vsubq_s16(s2_17, s2_22); s1_23 = vsubq_s16(s2_16, s2_23); s3_24 = vsubq_s16(s2_31, s2_24); s3_25 = vsubq_s16(s2_30, s2_25); s3_26 = vsubq_s16(s1_29, s1_26); s3_27 = vsubq_s16(s1_28, s1_27); s2_28 = vaddq_s16(s1_27, s1_28); s2_29 = vaddq_s16(s1_26, s1_29); s2_30 = vaddq_s16(s2_25, s2_30); s2_31 = vaddq_s16(s2_24, s2_31); // stage 7 s1_0 = vaddq_s16(s2_0, s1_15); s1_1 = vaddq_s16(s2_1, s1_14); s1_2 = vaddq_s16(s2_2, s2_13); s1_3 = vaddq_s16(s2_3, s2_12); s1_4 = vaddq_s16(s2_4, s2_11); s1_5 = vaddq_s16(s2_5, s2_10); s1_6 = vaddq_s16(s2_6, s1_9); s1_7 = vaddq_s16(s2_7, s1_8); s1_8 = vsubq_s16(s2_7, s1_8); s1_9 = vsubq_s16(s2_6, s1_9); s1_10 = vsubq_s16(s2_5, s2_10); s1_11 = vsubq_s16(s2_4, s2_11); s1_12 = vsubq_s16(s2_3, s2_12); s1_13 = vsubq_s16(s2_2, s2_13); s1_14 = vsubq_s16(s2_1, s1_14); s1_15 = vsubq_s16(s2_0, s1_15); s1_20 = sub_multiply_shift_and_narrow(s3_27, s2_20, cospi_16_64); s1_27 = add_multiply_shift_and_narrow(s2_20, s3_27, cospi_16_64); s1_21 = sub_multiply_shift_and_narrow(s3_26, s2_21, cospi_16_64); s1_26 = add_multiply_shift_and_narrow(s2_21, s3_26, cospi_16_64); s2_22 = sub_multiply_shift_and_narrow(s3_25, s1_22, cospi_16_64); s1_25 = add_multiply_shift_and_narrow(s1_22, s3_25, cospi_16_64); s2_23 = sub_multiply_shift_and_narrow(s3_24, s1_23, cospi_16_64); s1_24 = add_multiply_shift_and_narrow(s1_23, s3_24, cospi_16_64); // final stage out0 = vaddq_s16(s1_0, s2_31); out1 = vaddq_s16(s1_1, s2_30); out2 = vaddq_s16(s1_2, s2_29); out3 = vaddq_s16(s1_3, s2_28); out4 = vaddq_s16(s1_4, s1_27); out5 = vaddq_s16(s1_5, s1_26); out6 = vaddq_s16(s1_6, s1_25); out7 = vaddq_s16(s1_7, s1_24); add_and_store(out0, out1, out2, out3, out4, out5, out6, out7, output, stride); out0 = vaddq_s16(s1_8, s2_23); out1 = vaddq_s16(s1_9, s2_22); out2 = vaddq_s16(s1_10, s1_21); out3 = vaddq_s16(s1_11, s1_20); out4 = vaddq_s16(s1_12, s2_19); out5 = vaddq_s16(s1_13, s2_18); out6 = vaddq_s16(s1_14, s1_17); out7 = vaddq_s16(s1_15, s1_16); add_and_store(out0, out1, out2, out3, out4, out5, out6, out7, output + (8 * stride), stride); out0 = vsubq_s16(s1_15, s1_16); out1 = vsubq_s16(s1_14, s1_17); out2 = vsubq_s16(s1_13, s2_18); out3 = vsubq_s16(s1_12, s2_19); out4 = vsubq_s16(s1_11, s1_20); out5 = vsubq_s16(s1_10, s1_21); out6 = vsubq_s16(s1_9, s2_22); out7 = vsubq_s16(s1_8, s2_23); add_and_store(out0, out1, out2, out3, out4, out5, out6, out7, output + (16 * stride), stride); out0 = vsubq_s16(s1_7, s1_24); out1 = vsubq_s16(s1_6, s1_25); out2 = vsubq_s16(s1_5, s1_26); out3 = vsubq_s16(s1_4, s1_27); out4 = vsubq_s16(s1_3, s2_28); out5 = vsubq_s16(s1_2, s2_29); out6 = vsubq_s16(s1_1, s2_30); out7 = vsubq_s16(s1_0, s2_31); add_and_store(out0, out1, out2, out3, out4, out5, out6, out7, output + (24 * stride), stride); } void vpx_idct32x32_34_add_neon(const int16_t *input, uint8_t *dest, int stride) { int i; int16_t temp[32 * 8]; int16_t *t = temp; idct32_6_neon(input, t); for (i = 0; i < 32; i += 8) { idct32_8_neon(t, dest, stride); t += (8 * 8); dest += 8; } }