ref: c12398fe812e75173ff5df43bb283a7d80d88b75
dir: /vpx_dsp/x86/quantize_ssse3.c/
/* * Copyright (c) 2017 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <assert.h> #include <tmmintrin.h> #include "./vpx_dsp_rtcd.h" #include "vpx/vpx_integer.h" #include "vpx_dsp/x86/bitdepth_conversion_sse2.h" #include "vpx_dsp/x86/quantize_x86.h" void vpx_quantize_b_ssse3(const tran_low_t *coeff_ptr, intptr_t n_coeffs, int skip_block, const int16_t *zbin_ptr, const int16_t *round_ptr, const int16_t *quant_ptr, const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr, const int16_t *scan_ptr, const int16_t *iscan_ptr) { const __m128i zero = _mm_setzero_si128(); int index = 16; __m128i zbin, round, quant, dequant, shift; __m128i coeff0, coeff1; __m128i qcoeff0, qcoeff1; __m128i cmp_mask0, cmp_mask1; __m128i eob, eob0; (void)scan_ptr; (void)skip_block; assert(!skip_block); load_b_values(zbin_ptr, &zbin, round_ptr, &round, quant_ptr, &quant, dequant_ptr, &dequant, quant_shift_ptr, &shift); // Do DC and first 15 AC. coeff0 = load_tran_low(coeff_ptr); coeff1 = load_tran_low(coeff_ptr + 8); qcoeff0 = _mm_abs_epi16(coeff0); qcoeff1 = _mm_abs_epi16(coeff1); cmp_mask0 = _mm_cmpgt_epi16(qcoeff0, zbin); zbin = _mm_unpackhi_epi64(zbin, zbin); // Switch DC to AC cmp_mask1 = _mm_cmpgt_epi16(qcoeff1, zbin); calculate_qcoeff(&qcoeff0, round, quant, shift); round = _mm_unpackhi_epi64(round, round); quant = _mm_unpackhi_epi64(quant, quant); shift = _mm_unpackhi_epi64(shift, shift); calculate_qcoeff(&qcoeff1, round, quant, shift); // Reinsert signs qcoeff0 = _mm_sign_epi16(qcoeff0, coeff0); qcoeff1 = _mm_sign_epi16(qcoeff1, coeff1); // Mask out zbin threshold coeffs qcoeff0 = _mm_and_si128(qcoeff0, cmp_mask0); qcoeff1 = _mm_and_si128(qcoeff1, cmp_mask1); store_tran_low(qcoeff0, qcoeff_ptr); store_tran_low(qcoeff1, qcoeff_ptr + 8); coeff0 = calculate_dqcoeff(qcoeff0, dequant); dequant = _mm_unpackhi_epi64(dequant, dequant); coeff1 = calculate_dqcoeff(qcoeff1, dequant); store_tran_low(coeff0, dqcoeff_ptr); store_tran_low(coeff1, dqcoeff_ptr + 8); eob = scan_for_eob(&coeff0, &coeff1, cmp_mask0, cmp_mask1, iscan_ptr, 0, zero); // AC only loop. while (index < n_coeffs) { coeff0 = load_tran_low(coeff_ptr + index); coeff1 = load_tran_low(coeff_ptr + index + 8); qcoeff0 = _mm_abs_epi16(coeff0); qcoeff1 = _mm_abs_epi16(coeff1); cmp_mask0 = _mm_cmpgt_epi16(qcoeff0, zbin); cmp_mask1 = _mm_cmpgt_epi16(qcoeff1, zbin); calculate_qcoeff(&qcoeff0, round, quant, shift); calculate_qcoeff(&qcoeff1, round, quant, shift); qcoeff0 = _mm_sign_epi16(qcoeff0, coeff0); qcoeff1 = _mm_sign_epi16(qcoeff1, coeff1); qcoeff0 = _mm_and_si128(qcoeff0, cmp_mask0); qcoeff1 = _mm_and_si128(qcoeff1, cmp_mask1); store_tran_low(qcoeff0, qcoeff_ptr + index); store_tran_low(qcoeff1, qcoeff_ptr + index + 8); coeff0 = calculate_dqcoeff(qcoeff0, dequant); coeff1 = calculate_dqcoeff(qcoeff1, dequant); store_tran_low(coeff0, dqcoeff_ptr + index); store_tran_low(coeff1, dqcoeff_ptr + index + 8); eob0 = scan_for_eob(&coeff0, &coeff1, cmp_mask0, cmp_mask1, iscan_ptr, index, zero); eob = _mm_max_epi16(eob, eob0); index += 16; } *eob_ptr = accumulate_eob(eob); } void vpx_quantize_b_32x32_ssse3( const tran_low_t *coeff_ptr, intptr_t n_coeffs, int skip_block, const int16_t *zbin_ptr, const int16_t *round_ptr, const int16_t *quant_ptr, const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr, const int16_t *scan_ptr, const int16_t *iscan_ptr) { const __m128i zero = _mm_setzero_si128(); const __m128i one = _mm_set1_epi16(1); int index; __m128i zbin, round, quant, dequant, shift; __m128i coeff0, coeff1; __m128i qcoeff0, qcoeff1; __m128i cmp_mask0, cmp_mask1; __m128i all_zero; __m128i eob = zero, eob0; (void)scan_ptr; (void)n_coeffs; (void)skip_block; assert(!skip_block); // Setup global values. // The 32x32 halves zbin and round. zbin = _mm_load_si128((const __m128i *)zbin_ptr); // Shift with rounding. zbin = _mm_add_epi16(zbin, one); zbin = _mm_srli_epi16(zbin, 1); // x86 has no "greater *or equal*" comparison. Subtract 1 from zbin so // it is a strict "greater" comparison. zbin = _mm_sub_epi16(zbin, one); round = _mm_load_si128((const __m128i *)round_ptr); round = _mm_add_epi16(round, one); round = _mm_srli_epi16(round, 1); quant = _mm_load_si128((const __m128i *)quant_ptr); dequant = _mm_load_si128((const __m128i *)dequant_ptr); shift = _mm_load_si128((const __m128i *)quant_shift_ptr); // I suspect this is not technically OK because quant_shift can be up // to 1 << 16 and shifting up again will outrange that, but the test is not // comprehensive enough to catch that and "it's been that way forever" shift = _mm_slli_epi16(shift, 1); // Do DC and first 15 AC. coeff0 = load_tran_low(coeff_ptr); coeff1 = load_tran_low(coeff_ptr + 8); qcoeff0 = _mm_abs_epi16(coeff0); qcoeff1 = _mm_abs_epi16(coeff1); cmp_mask0 = _mm_cmpgt_epi16(qcoeff0, zbin); zbin = _mm_unpackhi_epi64(zbin, zbin); // Switch DC to AC. cmp_mask1 = _mm_cmpgt_epi16(qcoeff1, zbin); all_zero = _mm_or_si128(cmp_mask0, cmp_mask1); if (_mm_movemask_epi8(all_zero) == 0) { _mm_store_si128((__m128i *)(qcoeff_ptr), zero); _mm_store_si128((__m128i *)(qcoeff_ptr + 8), zero); _mm_store_si128((__m128i *)(dqcoeff_ptr), zero); _mm_store_si128((__m128i *)(dqcoeff_ptr + 8), zero); #if CONFIG_VP9_HIGHBITDEPTH _mm_store_si128((__m128i *)(qcoeff_ptr + 4), zero); _mm_store_si128((__m128i *)(qcoeff_ptr + 12), zero); _mm_store_si128((__m128i *)(dqcoeff_ptr + 4), zero); _mm_store_si128((__m128i *)(dqcoeff_ptr + 12), zero); #endif // CONFIG_HIGHBITDEPTH round = _mm_unpackhi_epi64(round, round); quant = _mm_unpackhi_epi64(quant, quant); shift = _mm_unpackhi_epi64(shift, shift); dequant = _mm_unpackhi_epi64(dequant, dequant); } else { calculate_qcoeff(&qcoeff0, round, quant, shift); round = _mm_unpackhi_epi64(round, round); quant = _mm_unpackhi_epi64(quant, quant); shift = _mm_unpackhi_epi64(shift, shift); calculate_qcoeff(&qcoeff1, round, quant, shift); // Reinsert signs. qcoeff0 = _mm_sign_epi16(qcoeff0, coeff0); qcoeff1 = _mm_sign_epi16(qcoeff1, coeff1); // Mask out zbin threshold coeffs. qcoeff0 = _mm_and_si128(qcoeff0, cmp_mask0); qcoeff1 = _mm_and_si128(qcoeff1, cmp_mask1); store_tran_low(qcoeff0, qcoeff_ptr); store_tran_low(qcoeff1, qcoeff_ptr + 8); // Un-sign to bias rounding like C. // dequant is almost always negative, so this is probably the backwards way // to handle the sign. However, it matches the previous assembly. coeff0 = _mm_abs_epi16(qcoeff0); coeff1 = _mm_abs_epi16(qcoeff1); coeff0 = calculate_dqcoeff(coeff0, dequant); dequant = _mm_unpackhi_epi64(dequant, dequant); coeff1 = calculate_dqcoeff(coeff1, dequant); // "Divide" by 2. coeff0 = _mm_srli_epi16(coeff0, 1); coeff1 = _mm_srli_epi16(coeff1, 1); coeff0 = _mm_sign_epi16(coeff0, qcoeff0); coeff1 = _mm_sign_epi16(coeff1, qcoeff1); store_tran_low(coeff0, dqcoeff_ptr); store_tran_low(coeff1, dqcoeff_ptr + 8); eob = scan_for_eob(&coeff0, &coeff1, cmp_mask0, cmp_mask1, iscan_ptr, 0, zero); } // AC only loop. for (index = 16; index < 32 * 32; index += 16) { coeff0 = load_tran_low(coeff_ptr + index); coeff1 = load_tran_low(coeff_ptr + index + 8); qcoeff0 = _mm_abs_epi16(coeff0); qcoeff1 = _mm_abs_epi16(coeff1); cmp_mask0 = _mm_cmpgt_epi16(qcoeff0, zbin); cmp_mask1 = _mm_cmpgt_epi16(qcoeff1, zbin); all_zero = _mm_or_si128(cmp_mask0, cmp_mask1); if (_mm_movemask_epi8(all_zero) == 0) { _mm_store_si128((__m128i *)(qcoeff_ptr + index), zero); _mm_store_si128((__m128i *)(qcoeff_ptr + index + 8), zero); _mm_store_si128((__m128i *)(dqcoeff_ptr + index), zero); _mm_store_si128((__m128i *)(dqcoeff_ptr + index + 8), zero); #if CONFIG_VP9_HIGHBITDEPTH _mm_store_si128((__m128i *)(qcoeff_ptr + index + 4), zero); _mm_store_si128((__m128i *)(qcoeff_ptr + index + 12), zero); _mm_store_si128((__m128i *)(dqcoeff_ptr + index + 4), zero); _mm_store_si128((__m128i *)(dqcoeff_ptr + index + 12), zero); #endif // CONFIG_VP9_HIGHBITDEPTH continue; } calculate_qcoeff(&qcoeff0, round, quant, shift); calculate_qcoeff(&qcoeff1, round, quant, shift); qcoeff0 = _mm_sign_epi16(qcoeff0, coeff0); qcoeff1 = _mm_sign_epi16(qcoeff1, coeff1); qcoeff0 = _mm_and_si128(qcoeff0, cmp_mask0); qcoeff1 = _mm_and_si128(qcoeff1, cmp_mask1); store_tran_low(qcoeff0, qcoeff_ptr + index); store_tran_low(qcoeff1, qcoeff_ptr + index + 8); coeff0 = _mm_abs_epi16(qcoeff0); coeff1 = _mm_abs_epi16(qcoeff1); coeff0 = calculate_dqcoeff(coeff0, dequant); coeff1 = calculate_dqcoeff(coeff1, dequant); coeff0 = _mm_srli_epi16(coeff0, 1); coeff1 = _mm_srli_epi16(coeff1, 1); coeff0 = _mm_sign_epi16(coeff0, qcoeff0); coeff1 = _mm_sign_epi16(coeff1, qcoeff1); store_tran_low(coeff0, dqcoeff_ptr + index); store_tran_low(coeff1, dqcoeff_ptr + index + 8); eob0 = scan_for_eob(&coeff0, &coeff1, cmp_mask0, cmp_mask1, iscan_ptr, index, zero); eob = _mm_max_epi16(eob, eob0); } *eob_ptr = accumulate_eob(eob); }