ref: c104f4cbdc1c34dcc121340b29aa721d95d18d05
dir: /third_party/googletest/src/include/gtest/gtest-printers.h/
// Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Author: wan@google.com (Zhanyong Wan) // Google Test - The Google C++ Testing Framework // // This file implements a universal value printer that can print a // value of any type T: // // void ::testing::internal::UniversalPrinter<T>::Print(value, ostream_ptr); // // A user can teach this function how to print a class type T by // defining either operator<<() or PrintTo() in the namespace that // defines T. More specifically, the FIRST defined function in the // following list will be used (assuming T is defined in namespace // foo): // // 1. foo::PrintTo(const T&, ostream*) // 2. operator<<(ostream&, const T&) defined in either foo or the // global namespace. // // If none of the above is defined, it will print the debug string of // the value if it is a protocol buffer, or print the raw bytes in the // value otherwise. // // To aid debugging: when T is a reference type, the address of the // value is also printed; when T is a (const) char pointer, both the // pointer value and the NUL-terminated string it points to are // printed. // // We also provide some convenient wrappers: // // // Prints a value to a string. For a (const or not) char // // pointer, the NUL-terminated string (but not the pointer) is // // printed. // std::string ::testing::PrintToString(const T& value); // // // Prints a value tersely: for a reference type, the referenced // // value (but not the address) is printed; for a (const or not) char // // pointer, the NUL-terminated string (but not the pointer) is // // printed. // void ::testing::internal::UniversalTersePrint(const T& value, ostream*); // // // Prints value using the type inferred by the compiler. The difference // // from UniversalTersePrint() is that this function prints both the // // pointer and the NUL-terminated string for a (const or not) char pointer. // void ::testing::internal::UniversalPrint(const T& value, ostream*); // // // Prints the fields of a tuple tersely to a string vector, one // // element for each field. Tuple support must be enabled in // // gtest-port.h. // std::vector<string> UniversalTersePrintTupleFieldsToStrings( // const Tuple& value); // // Known limitation: // // The print primitives print the elements of an STL-style container // using the compiler-inferred type of *iter where iter is a // const_iterator of the container. When const_iterator is an input // iterator but not a forward iterator, this inferred type may not // match value_type, and the print output may be incorrect. In // practice, this is rarely a problem as for most containers // const_iterator is a forward iterator. We'll fix this if there's an // actual need for it. Note that this fix cannot rely on value_type // being defined as many user-defined container types don't have // value_type. #ifndef GTEST_INCLUDE_GTEST_GTEST_PRINTERS_H_ #define GTEST_INCLUDE_GTEST_GTEST_PRINTERS_H_ #include <ostream> // NOLINT #include <sstream> #include <string> #include <utility> #include <vector> #include "gtest/internal/gtest-port.h" #include "gtest/internal/gtest-internal.h" #if GTEST_HAS_STD_TUPLE_ # include <tuple> #endif namespace testing { // Definitions in the 'internal' and 'internal2' name spaces are // subject to change without notice. DO NOT USE THEM IN USER CODE! namespace internal2 { // Prints the given number of bytes in the given object to the given // ostream. GTEST_API_ void PrintBytesInObjectTo(const unsigned char* obj_bytes, size_t count, ::std::ostream* os); // For selecting which printer to use when a given type has neither << // nor PrintTo(). enum TypeKind { kProtobuf, // a protobuf type kConvertibleToInteger, // a type implicitly convertible to BiggestInt // (e.g. a named or unnamed enum type) kOtherType // anything else }; // TypeWithoutFormatter<T, kTypeKind>::PrintValue(value, os) is called // by the universal printer to print a value of type T when neither // operator<< nor PrintTo() is defined for T, where kTypeKind is the // "kind" of T as defined by enum TypeKind. template <typename T, TypeKind kTypeKind> class TypeWithoutFormatter { public: // This default version is called when kTypeKind is kOtherType. static void PrintValue(const T& value, ::std::ostream* os) { PrintBytesInObjectTo(reinterpret_cast<const unsigned char*>(&value), sizeof(value), os); } }; // We print a protobuf using its ShortDebugString() when the string // doesn't exceed this many characters; otherwise we print it using // DebugString() for better readability. const size_t kProtobufOneLinerMaxLength = 50; template <typename T> class TypeWithoutFormatter<T, kProtobuf> { public: static void PrintValue(const T& value, ::std::ostream* os) { const ::testing::internal::string short_str = value.ShortDebugString(); const ::testing::internal::string pretty_str = short_str.length() <= kProtobufOneLinerMaxLength ? short_str : ("\n" + value.DebugString()); *os << ("<" + pretty_str + ">"); } }; template <typename T> class TypeWithoutFormatter<T, kConvertibleToInteger> { public: // Since T has no << operator or PrintTo() but can be implicitly // converted to BiggestInt, we print it as a BiggestInt. // // Most likely T is an enum type (either named or unnamed), in which // case printing it as an integer is the desired behavior. In case // T is not an enum, printing it as an integer is the best we can do // given that it has no user-defined printer. static void PrintValue(const T& value, ::std::ostream* os) { const internal::BiggestInt kBigInt = value; *os << kBigInt; } }; // Prints the given value to the given ostream. If the value is a // protocol message, its debug string is printed; if it's an enum or // of a type implicitly convertible to BiggestInt, it's printed as an // integer; otherwise the bytes in the value are printed. This is // what UniversalPrinter<T>::Print() does when it knows nothing about // type T and T has neither << operator nor PrintTo(). // // A user can override this behavior for a class type Foo by defining // a << operator in the namespace where Foo is defined. // // We put this operator in namespace 'internal2' instead of 'internal' // to simplify the implementation, as much code in 'internal' needs to // use << in STL, which would conflict with our own << were it defined // in 'internal'. // // Note that this operator<< takes a generic std::basic_ostream<Char, // CharTraits> type instead of the more restricted std::ostream. If // we define it to take an std::ostream instead, we'll get an // "ambiguous overloads" compiler error when trying to print a type // Foo that supports streaming to std::basic_ostream<Char, // CharTraits>, as the compiler cannot tell whether // operator<<(std::ostream&, const T&) or // operator<<(std::basic_stream<Char, CharTraits>, const Foo&) is more // specific. template <typename Char, typename CharTraits, typename T> ::std::basic_ostream<Char, CharTraits>& operator<<( ::std::basic_ostream<Char, CharTraits>& os, const T& x) { TypeWithoutFormatter<T, (internal::IsAProtocolMessage<T>::value ? kProtobuf : internal::ImplicitlyConvertible<const T&, internal::BiggestInt>::value ? kConvertibleToInteger : kOtherType)>::PrintValue(x, &os); return os; } } // namespace internal2 } // namespace testing // This namespace MUST NOT BE NESTED IN ::testing, or the name look-up // magic needed for implementing UniversalPrinter won't work. namespace testing_internal { // Used to print a value that is not an STL-style container when the // user doesn't define PrintTo() for it. template <typename T> void DefaultPrintNonContainerTo(const T& value, ::std::ostream* os) { // With the following statement, during unqualified name lookup, // testing::internal2::operator<< appears as if it was declared in // the nearest enclosing namespace that contains both // ::testing_internal and ::testing::internal2, i.e. the global // namespace. For more details, refer to the C++ Standard section // 7.3.4-1 [namespace.udir]. This allows us to fall back onto // testing::internal2::operator<< in case T doesn't come with a << // operator. // // We cannot write 'using ::testing::internal2::operator<<;', which // gcc 3.3 fails to compile due to a compiler bug. using namespace ::testing::internal2; // NOLINT // Assuming T is defined in namespace foo, in the next statement, // the compiler will consider all of: // // 1. foo::operator<< (thanks to Koenig look-up), // 2. ::operator<< (as the current namespace is enclosed in ::), // 3. testing::internal2::operator<< (thanks to the using statement above). // // The operator<< whose type matches T best will be picked. // // We deliberately allow #2 to be a candidate, as sometimes it's // impossible to define #1 (e.g. when foo is ::std, defining // anything in it is undefined behavior unless you are a compiler // vendor.). *os << value; } } // namespace testing_internal namespace testing { namespace internal { // FormatForComparison<ToPrint, OtherOperand>::Format(value) formats a // value of type ToPrint that is an operand of a comparison assertion // (e.g. ASSERT_EQ). OtherOperand is the type of the other operand in // the comparison, and is used to help determine the best way to // format the value. In particular, when the value is a C string // (char pointer) and the other operand is an STL string object, we // want to format the C string as a string, since we know it is // compared by value with the string object. If the value is a char // pointer but the other operand is not an STL string object, we don't // know whether the pointer is supposed to point to a NUL-terminated // string, and thus want to print it as a pointer to be safe. // // INTERNAL IMPLEMENTATION - DO NOT USE IN A USER PROGRAM. // The default case. template <typename ToPrint, typename OtherOperand> class FormatForComparison { public: static ::std::string Format(const ToPrint& value) { return ::testing::PrintToString(value); } }; // Array. template <typename ToPrint, size_t N, typename OtherOperand> class FormatForComparison<ToPrint[N], OtherOperand> { public: static ::std::string Format(const ToPrint* value) { return FormatForComparison<const ToPrint*, OtherOperand>::Format(value); } }; // By default, print C string as pointers to be safe, as we don't know // whether they actually point to a NUL-terminated string. #define GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(CharType) \ template <typename OtherOperand> \ class FormatForComparison<CharType*, OtherOperand> { \ public: \ static ::std::string Format(CharType* value) { \ return ::testing::PrintToString(static_cast<const void*>(value)); \ } \ } GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(char); GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(const char); GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(wchar_t); GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(const wchar_t); #undef GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_ // If a C string is compared with an STL string object, we know it's meant // to point to a NUL-terminated string, and thus can print it as a string. #define GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(CharType, OtherStringType) \ template <> \ class FormatForComparison<CharType*, OtherStringType> { \ public: \ static ::std::string Format(CharType* value) { \ return ::testing::PrintToString(value); \ } \ } GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(char, ::std::string); GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(const char, ::std::string); #if GTEST_HAS_GLOBAL_STRING GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(char, ::string); GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(const char, ::string); #endif #if GTEST_HAS_GLOBAL_WSTRING GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(wchar_t, ::wstring); GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(const wchar_t, ::wstring); #endif #if GTEST_HAS_STD_WSTRING GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(wchar_t, ::std::wstring); GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(const wchar_t, ::std::wstring); #endif #undef GTEST_IMPL_FORMAT_C_STRING_AS_STRING_ // Formats a comparison assertion (e.g. ASSERT_EQ, EXPECT_LT, and etc) // operand to be used in a failure message. The type (but not value) // of the other operand may affect the format. This allows us to // print a char* as a raw pointer when it is compared against another // char* or void*, and print it as a C string when it is compared // against an std::string object, for example. // // INTERNAL IMPLEMENTATION - DO NOT USE IN A USER PROGRAM. template <typename T1, typename T2> std::string FormatForComparisonFailureMessage( const T1& value, const T2& /* other_operand */) { return FormatForComparison<T1, T2>::Format(value); } // UniversalPrinter<T>::Print(value, ostream_ptr) prints the given // value to the given ostream. The caller must ensure that // 'ostream_ptr' is not NULL, or the behavior is undefined. // // We define UniversalPrinter as a class template (as opposed to a // function template), as we need to partially specialize it for // reference types, which cannot be done with function templates. template <typename T> class UniversalPrinter; template <typename T> void UniversalPrint(const T& value, ::std::ostream* os); // Used to print an STL-style container when the user doesn't define // a PrintTo() for it. template <typename C> void DefaultPrintTo(IsContainer /* dummy */, false_type /* is not a pointer */, const C& container, ::std::ostream* os) { const size_t kMaxCount = 32; // The maximum number of elements to print. *os << '{'; size_t count = 0; for (typename C::const_iterator it = container.begin(); it != container.end(); ++it, ++count) { if (count > 0) { *os << ','; if (count == kMaxCount) { // Enough has been printed. *os << " ..."; break; } } *os << ' '; // We cannot call PrintTo(*it, os) here as PrintTo() doesn't // handle *it being a native array. internal::UniversalPrint(*it, os); } if (count > 0) { *os << ' '; } *os << '}'; } // Used to print a pointer that is neither a char pointer nor a member // pointer, when the user doesn't define PrintTo() for it. (A member // variable pointer or member function pointer doesn't really point to // a location in the address space. Their representation is // implementation-defined. Therefore they will be printed as raw // bytes.) template <typename T> void DefaultPrintTo(IsNotContainer /* dummy */, true_type /* is a pointer */, T* p, ::std::ostream* os) { if (p == NULL) { *os << "NULL"; } else { // C++ doesn't allow casting from a function pointer to any object // pointer. // // IsTrue() silences warnings: "Condition is always true", // "unreachable code". if (IsTrue(ImplicitlyConvertible<T*, const void*>::value)) { // T is not a function type. We just call << to print p, // relying on ADL to pick up user-defined << for their pointer // types, if any. *os << p; } else { // T is a function type, so '*os << p' doesn't do what we want // (it just prints p as bool). We want to print p as a const // void*. However, we cannot cast it to const void* directly, // even using reinterpret_cast, as earlier versions of gcc // (e.g. 3.4.5) cannot compile the cast when p is a function // pointer. Casting to UInt64 first solves the problem. *os << reinterpret_cast<const void*>( reinterpret_cast<internal::UInt64>(p)); } } } // Used to print a non-container, non-pointer value when the user // doesn't define PrintTo() for it. template <typename T> void DefaultPrintTo(IsNotContainer /* dummy */, false_type /* is not a pointer */, const T& value, ::std::ostream* os) { ::testing_internal::DefaultPrintNonContainerTo(value, os); } // Prints the given value using the << operator if it has one; // otherwise prints the bytes in it. This is what // UniversalPrinter<T>::Print() does when PrintTo() is not specialized // or overloaded for type T. // // A user can override this behavior for a class type Foo by defining // an overload of PrintTo() in the namespace where Foo is defined. We // give the user this option as sometimes defining a << operator for // Foo is not desirable (e.g. the coding style may prevent doing it, // or there is already a << operator but it doesn't do what the user // wants). template <typename T> void PrintTo(const T& value, ::std::ostream* os) { // DefaultPrintTo() is overloaded. The type of its first two // arguments determine which version will be picked. If T is an // STL-style container, the version for container will be called; if // T is a pointer, the pointer version will be called; otherwise the // generic version will be called. // // Note that we check for container types here, prior to we check // for protocol message types in our operator<<. The rationale is: // // For protocol messages, we want to give people a chance to // override Google Mock's format by defining a PrintTo() or // operator<<. For STL containers, other formats can be // incompatible with Google Mock's format for the container // elements; therefore we check for container types here to ensure // that our format is used. // // The second argument of DefaultPrintTo() is needed to bypass a bug // in Symbian's C++ compiler that prevents it from picking the right // overload between: // // PrintTo(const T& x, ...); // PrintTo(T* x, ...); DefaultPrintTo(IsContainerTest<T>(0), is_pointer<T>(), value, os); } // The following list of PrintTo() overloads tells // UniversalPrinter<T>::Print() how to print standard types (built-in // types, strings, plain arrays, and pointers). // Overloads for various char types. GTEST_API_ void PrintTo(unsigned char c, ::std::ostream* os); GTEST_API_ void PrintTo(signed char c, ::std::ostream* os); inline void PrintTo(char c, ::std::ostream* os) { // When printing a plain char, we always treat it as unsigned. This // way, the output won't be affected by whether the compiler thinks // char is signed or not. PrintTo(static_cast<unsigned char>(c), os); } // Overloads for other simple built-in types. inline void PrintTo(bool x, ::std::ostream* os) { *os << (x ? "true" : "false"); } // Overload for wchar_t type. // Prints a wchar_t as a symbol if it is printable or as its internal // code otherwise and also as its decimal code (except for L'\0'). // The L'\0' char is printed as "L'\\0'". The decimal code is printed // as signed integer when wchar_t is implemented by the compiler // as a signed type and is printed as an unsigned integer when wchar_t // is implemented as an unsigned type. GTEST_API_ void PrintTo(wchar_t wc, ::std::ostream* os); // Overloads for C strings. GTEST_API_ void PrintTo(const char* s, ::std::ostream* os); inline void PrintTo(char* s, ::std::ostream* os) { PrintTo(ImplicitCast_<const char*>(s), os); } // signed/unsigned char is often used for representing binary data, so // we print pointers to it as void* to be safe. inline void PrintTo(const signed char* s, ::std::ostream* os) { PrintTo(ImplicitCast_<const void*>(s), os); } inline void PrintTo(signed char* s, ::std::ostream* os) { PrintTo(ImplicitCast_<const void*>(s), os); } inline void PrintTo(const unsigned char* s, ::std::ostream* os) { PrintTo(ImplicitCast_<const void*>(s), os); } inline void PrintTo(unsigned char* s, ::std::ostream* os) { PrintTo(ImplicitCast_<const void*>(s), os); } // MSVC can be configured to define wchar_t as a typedef of unsigned // short. It defines _NATIVE_WCHAR_T_DEFINED when wchar_t is a native // type. When wchar_t is a typedef, defining an overload for const // wchar_t* would cause unsigned short* be printed as a wide string, // possibly causing invalid memory accesses. #if !defined(_MSC_VER) || defined(_NATIVE_WCHAR_T_DEFINED) // Overloads for wide C strings GTEST_API_ void PrintTo(const wchar_t* s, ::std::ostream* os); inline void PrintTo(wchar_t* s, ::std::ostream* os) { PrintTo(ImplicitCast_<const wchar_t*>(s), os); } #endif // Overload for C arrays. Multi-dimensional arrays are printed // properly. // Prints the given number of elements in an array, without printing // the curly braces. template <typename T> void PrintRawArrayTo(const T a[], size_t count, ::std::ostream* os) { UniversalPrint(a[0], os); for (size_t i = 1; i != count; i++) { *os << ", "; UniversalPrint(a[i], os); } } // Overloads for ::string and ::std::string. #if GTEST_HAS_GLOBAL_STRING GTEST_API_ void PrintStringTo(const ::string&s, ::std::ostream* os); inline void PrintTo(const ::string& s, ::std::ostream* os) { PrintStringTo(s, os); } #endif // GTEST_HAS_GLOBAL_STRING GTEST_API_ void PrintStringTo(const ::std::string&s, ::std::ostream* os); inline void PrintTo(const ::std::string& s, ::std::ostream* os) { PrintStringTo(s, os); } // Overloads for ::wstring and ::std::wstring. #if GTEST_HAS_GLOBAL_WSTRING GTEST_API_ void PrintWideStringTo(const ::wstring&s, ::std::ostream* os); inline void PrintTo(const ::wstring& s, ::std::ostream* os) { PrintWideStringTo(s, os); } #endif // GTEST_HAS_GLOBAL_WSTRING #if GTEST_HAS_STD_WSTRING GTEST_API_ void PrintWideStringTo(const ::std::wstring&s, ::std::ostream* os); inline void PrintTo(const ::std::wstring& s, ::std::ostream* os) { PrintWideStringTo(s, os); } #endif // GTEST_HAS_STD_WSTRING #if GTEST_HAS_TR1_TUPLE || GTEST_HAS_STD_TUPLE_ // Helper function for printing a tuple. T must be instantiated with // a tuple type. template <typename T> void PrintTupleTo(const T& t, ::std::ostream* os); #endif // GTEST_HAS_TR1_TUPLE || GTEST_HAS_STD_TUPLE_ #if GTEST_HAS_TR1_TUPLE // Overload for ::std::tr1::tuple. Needed for printing function arguments, // which are packed as tuples. // Overloaded PrintTo() for tuples of various arities. We support // tuples of up-to 10 fields. The following implementation works // regardless of whether tr1::tuple is implemented using the // non-standard variadic template feature or not. inline void PrintTo(const ::std::tr1::tuple<>& t, ::std::ostream* os) { PrintTupleTo(t, os); } template <typename T1> void PrintTo(const ::std::tr1::tuple<T1>& t, ::std::ostream* os) { PrintTupleTo(t, os); } template <typename T1, typename T2> void PrintTo(const ::std::tr1::tuple<T1, T2>& t, ::std::ostream* os) { PrintTupleTo(t, os); } template <typename T1, typename T2, typename T3> void PrintTo(const ::std::tr1::tuple<T1, T2, T3>& t, ::std::ostream* os) { PrintTupleTo(t, os); } template <typename T1, typename T2, typename T3, typename T4> void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4>& t, ::std::ostream* os) { PrintTupleTo(t, os); } template <typename T1, typename T2, typename T3, typename T4, typename T5> void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5>& t, ::std::ostream* os) { PrintTupleTo(t, os); } template <typename T1, typename T2, typename T3, typename T4, typename T5, typename T6> void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6>& t, ::std::ostream* os) { PrintTupleTo(t, os); } template <typename T1, typename T2, typename T3, typename T4, typename T5, typename T6, typename T7> void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7>& t, ::std::ostream* os) { PrintTupleTo(t, os); } template <typename T1, typename T2, typename T3, typename T4, typename T5, typename T6, typename T7, typename T8> void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7, T8>& t, ::std::ostream* os) { PrintTupleTo(t, os); } template <typename T1, typename T2, typename T3, typename T4, typename T5, typename T6, typename T7, typename T8, typename T9> void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7, T8, T9>& t, ::std::ostream* os) { PrintTupleTo(t, os); } template <typename T1, typename T2, typename T3, typename T4, typename T5, typename T6, typename T7, typename T8, typename T9, typename T10> void PrintTo( const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10>& t, ::std::ostream* os) { PrintTupleTo(t, os); } #endif // GTEST_HAS_TR1_TUPLE #if GTEST_HAS_STD_TUPLE_ template <typename... Types> void PrintTo(const ::std::tuple<Types...>& t, ::std::ostream* os) { PrintTupleTo(t, os); } #endif // GTEST_HAS_STD_TUPLE_ // Overload for std::pair. template <typename T1, typename T2> void PrintTo(const ::std::pair<T1, T2>& value, ::std::ostream* os) { *os << '('; // We cannot use UniversalPrint(value.first, os) here, as T1 may be // a reference type. The same for printing value.second. UniversalPrinter<T1>::Print(value.first, os); *os << ", "; UniversalPrinter<T2>::Print(value.second, os); *os << ')'; } // Implements printing a non-reference type T by letting the compiler // pick the right overload of PrintTo() for T. template <typename T> class UniversalPrinter { public: // MSVC warns about adding const to a function type, so we want to // disable the warning. GTEST_DISABLE_MSC_WARNINGS_PUSH_(4180) // Note: we deliberately don't call this PrintTo(), as that name // conflicts with ::testing::internal::PrintTo in the body of the // function. static void Print(const T& value, ::std::ostream* os) { // By default, ::testing::internal::PrintTo() is used for printing // the value. // // Thanks to Koenig look-up, if T is a class and has its own // PrintTo() function defined in its namespace, that function will // be visible here. Since it is more specific than the generic ones // in ::testing::internal, it will be picked by the compiler in the // following statement - exactly what we want. PrintTo(value, os); } GTEST_DISABLE_MSC_WARNINGS_POP_() }; // UniversalPrintArray(begin, len, os) prints an array of 'len' // elements, starting at address 'begin'. template <typename T> void UniversalPrintArray(const T* begin, size_t len, ::std::ostream* os) { if (len == 0) { *os << "{}"; } else { *os << "{ "; const size_t kThreshold = 18; const size_t kChunkSize = 8; // If the array has more than kThreshold elements, we'll have to // omit some details by printing only the first and the last // kChunkSize elements. // TODO(wan@google.com): let the user control the threshold using a flag. if (len <= kThreshold) { PrintRawArrayTo(begin, len, os); } else { PrintRawArrayTo(begin, kChunkSize, os); *os << ", ..., "; PrintRawArrayTo(begin + len - kChunkSize, kChunkSize, os); } *os << " }"; } } // This overload prints a (const) char array compactly. GTEST_API_ void UniversalPrintArray( const char* begin, size_t len, ::std::ostream* os); // This overload prints a (const) wchar_t array compactly. GTEST_API_ void UniversalPrintArray( const wchar_t* begin, size_t len, ::std::ostream* os); // Implements printing an array type T[N]. template <typename T, size_t N> class UniversalPrinter<T[N]> { public: // Prints the given array, omitting some elements when there are too // many. static void Print(const T (&a)[N], ::std::ostream* os) { UniversalPrintArray(a, N, os); } }; // Implements printing a reference type T&. template <typename T> class UniversalPrinter<T&> { public: // MSVC warns about adding const to a function type, so we want to // disable the warning. GTEST_DISABLE_MSC_WARNINGS_PUSH_(4180) static void Print(const T& value, ::std::ostream* os) { // Prints the address of the value. We use reinterpret_cast here // as static_cast doesn't compile when T is a function type. *os << "@" << reinterpret_cast<const void*>(&value) << " "; // Then prints the value itself. UniversalPrint(value, os); } GTEST_DISABLE_MSC_WARNINGS_POP_() }; // Prints a value tersely: for a reference type, the referenced value // (but not the address) is printed; for a (const) char pointer, the // NUL-terminated string (but not the pointer) is printed. template <typename T> class UniversalTersePrinter { public: static void Print(const T& value, ::std::ostream* os) { UniversalPrint(value, os); } }; template <typename T> class UniversalTersePrinter<T&> { public: static void Print(const T& value, ::std::ostream* os) { UniversalPrint(value, os); } }; template <typename T, size_t N> class UniversalTersePrinter<T[N]> { public: static void Print(const T (&value)[N], ::std::ostream* os) { UniversalPrinter<T[N]>::Print(value, os); } }; template <> class UniversalTersePrinter<const char*> { public: static void Print(const char* str, ::std::ostream* os) { if (str == NULL) { *os << "NULL"; } else { UniversalPrint(string(str), os); } } }; template <> class UniversalTersePrinter<char*> { public: static void Print(char* str, ::std::ostream* os) { UniversalTersePrinter<const char*>::Print(str, os); } }; #if GTEST_HAS_STD_WSTRING template <> class UniversalTersePrinter<const wchar_t*> { public: static void Print(const wchar_t* str, ::std::ostream* os) { if (str == NULL) { *os << "NULL"; } else { UniversalPrint(::std::wstring(str), os); } } }; #endif template <> class UniversalTersePrinter<wchar_t*> { public: static void Print(wchar_t* str, ::std::ostream* os) { UniversalTersePrinter<const wchar_t*>::Print(str, os); } }; template <typename T> void UniversalTersePrint(const T& value, ::std::ostream* os) { UniversalTersePrinter<T>::Print(value, os); } // Prints a value using the type inferred by the compiler. The // difference between this and UniversalTersePrint() is that for a // (const) char pointer, this prints both the pointer and the // NUL-terminated string. template <typename T> void UniversalPrint(const T& value, ::std::ostream* os) { // A workarond for the bug in VC++ 7.1 that prevents us from instantiating // UniversalPrinter with T directly. typedef T T1; UniversalPrinter<T1>::Print(value, os); } typedef ::std::vector<string> Strings; // TuplePolicy<TupleT> must provide: // - tuple_size // size of tuple TupleT. // - get<size_t I>(const TupleT& t) // static function extracting element I of tuple TupleT. // - tuple_element<size_t I>::type // type of element I of tuple TupleT. template <typename TupleT> struct TuplePolicy; #if GTEST_HAS_TR1_TUPLE template <typename TupleT> struct TuplePolicy { typedef TupleT Tuple; static const size_t tuple_size = ::std::tr1::tuple_size<Tuple>::value; template <size_t I> struct tuple_element : ::std::tr1::tuple_element<I, Tuple> {}; template <size_t I> static typename AddReference< const typename ::std::tr1::tuple_element<I, Tuple>::type>::type get( const Tuple& tuple) { return ::std::tr1::get<I>(tuple); } }; template <typename TupleT> const size_t TuplePolicy<TupleT>::tuple_size; #endif // GTEST_HAS_TR1_TUPLE #if GTEST_HAS_STD_TUPLE_ template <typename... Types> struct TuplePolicy< ::std::tuple<Types...> > { typedef ::std::tuple<Types...> Tuple; static const size_t tuple_size = ::std::tuple_size<Tuple>::value; template <size_t I> struct tuple_element : ::std::tuple_element<I, Tuple> {}; template <size_t I> static const typename ::std::tuple_element<I, Tuple>::type& get( const Tuple& tuple) { return ::std::get<I>(tuple); } }; template <typename... Types> const size_t TuplePolicy< ::std::tuple<Types...> >::tuple_size; #endif // GTEST_HAS_STD_TUPLE_ #if GTEST_HAS_TR1_TUPLE || GTEST_HAS_STD_TUPLE_ // This helper template allows PrintTo() for tuples and // UniversalTersePrintTupleFieldsToStrings() to be defined by // induction on the number of tuple fields. The idea is that // TuplePrefixPrinter<N>::PrintPrefixTo(t, os) prints the first N // fields in tuple t, and can be defined in terms of // TuplePrefixPrinter<N - 1>. // // The inductive case. template <size_t N> struct TuplePrefixPrinter { // Prints the first N fields of a tuple. template <typename Tuple> static void PrintPrefixTo(const Tuple& t, ::std::ostream* os) { TuplePrefixPrinter<N - 1>::PrintPrefixTo(t, os); GTEST_INTENTIONAL_CONST_COND_PUSH_() if (N > 1) { GTEST_INTENTIONAL_CONST_COND_POP_() *os << ", "; } UniversalPrinter< typename TuplePolicy<Tuple>::template tuple_element<N - 1>::type> ::Print(TuplePolicy<Tuple>::template get<N - 1>(t), os); } // Tersely prints the first N fields of a tuple to a string vector, // one element for each field. template <typename Tuple> static void TersePrintPrefixToStrings(const Tuple& t, Strings* strings) { TuplePrefixPrinter<N - 1>::TersePrintPrefixToStrings(t, strings); ::std::stringstream ss; UniversalTersePrint(TuplePolicy<Tuple>::template get<N - 1>(t), &ss); strings->push_back(ss.str()); } }; // Base case. template <> struct TuplePrefixPrinter<0> { template <typename Tuple> static void PrintPrefixTo(const Tuple&, ::std::ostream*) {} template <typename Tuple> static void TersePrintPrefixToStrings(const Tuple&, Strings*) {} }; // Helper function for printing a tuple. // Tuple must be either std::tr1::tuple or std::tuple type. template <typename Tuple> void PrintTupleTo(const Tuple& t, ::std::ostream* os) { *os << "("; TuplePrefixPrinter<TuplePolicy<Tuple>::tuple_size>::PrintPrefixTo(t, os); *os << ")"; } // Prints the fields of a tuple tersely to a string vector, one // element for each field. See the comment before // UniversalTersePrint() for how we define "tersely". template <typename Tuple> Strings UniversalTersePrintTupleFieldsToStrings(const Tuple& value) { Strings result; TuplePrefixPrinter<TuplePolicy<Tuple>::tuple_size>:: TersePrintPrefixToStrings(value, &result); return result; } #endif // GTEST_HAS_TR1_TUPLE || GTEST_HAS_STD_TUPLE_ } // namespace internal template <typename T> ::std::string PrintToString(const T& value) { ::std::stringstream ss; internal::UniversalTersePrinter<T>::Print(value, &ss); return ss.str(); } } // namespace testing // Include any custom printer added by the local installation. // We must include this header at the end to make sure it can use the // declarations from this file. #include "gtest/internal/custom/gtest-printers.h" #endif // GTEST_INCLUDE_GTEST_GTEST_PRINTERS_H_