ref: afc8c4836fa711501f81a6d54cf0ffa49a2fb99f
dir: /vpx_dsp/arm/idct_neon.h/
/* * Copyright (c) 2016 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #ifndef VPX_DSP_ARM_IDCT_NEON_H_ #define VPX_DSP_ARM_IDCT_NEON_H_ #include <arm_neon.h> #include "./vpx_config.h" #include "vpx_dsp/arm/transpose_neon.h" #include "vpx_dsp/vpx_dsp_common.h" DECLARE_ALIGNED(16, static const int16_t, kCospi[8]) = { 16384 /* cospi_0_64 */, 15137 /* cospi_8_64 */, 11585 /* cospi_16_64 */, 6270 /* cospi_24_64 */, 16069 /* cospi_4_64 */, 13623 /* cospi_12_64 */, -9102 /* -cospi_20_64 */, 3196 /* cospi_28_64 */ }; //------------------------------------------------------------------------------ // Helper functions used to load tran_low_t into int16, narrowing if necessary. static INLINE int16x8x2_t load_tran_low_to_s16x2q(const tran_low_t *buf) { #if CONFIG_VP9_HIGHBITDEPTH const int32x4x2_t v0 = vld2q_s32(buf); const int32x4x2_t v1 = vld2q_s32(buf + 8); const int16x4_t s0 = vmovn_s32(v0.val[0]); const int16x4_t s1 = vmovn_s32(v0.val[1]); const int16x4_t s2 = vmovn_s32(v1.val[0]); const int16x4_t s3 = vmovn_s32(v1.val[1]); int16x8x2_t res; res.val[0] = vcombine_s16(s0, s2); res.val[1] = vcombine_s16(s1, s3); return res; #else return vld2q_s16(buf); #endif } static INLINE int16x8_t load_tran_low_to_s16q(const tran_low_t *buf) { #if CONFIG_VP9_HIGHBITDEPTH const int32x4_t v0 = vld1q_s32(buf); const int32x4_t v1 = vld1q_s32(buf + 4); const int16x4_t s0 = vmovn_s32(v0); const int16x4_t s1 = vmovn_s32(v1); return vcombine_s16(s0, s1); #else return vld1q_s16(buf); #endif } static INLINE int16x4_t load_tran_low_to_s16d(const tran_low_t *buf) { #if CONFIG_VP9_HIGHBITDEPTH const int32x4_t v0 = vld1q_s32(buf); return vmovn_s32(v0); #else return vld1_s16(buf); #endif } //------------------------------------------------------------------------------ // Multiply a by a_const. Saturate, shift and narrow by 14. static INLINE int16x8_t multiply_shift_and_narrow_s16(const int16x8_t a, const int16_t a_const) { // Shift by 14 + rounding will be within 16 bits for well formed streams. // See WRAPLOW and dct_const_round_shift for details. // This instruction doubles the result and returns the high half, essentially // resulting in a right shift by 15. By multiplying the constant first that // becomes a right shift by 14. // The largest possible value used here is // vpx_dsp/txfm_common.h:cospi_1_64 = 16364 (* 2 = 32728) a which falls *just* // within the range of int16_t (+32767 / -32768) even when negated. return vqrdmulhq_n_s16(a, a_const * 2); } // Add a and b, then multiply by ab_const. Shift and narrow by 14. static INLINE int16x8_t add_multiply_shift_and_narrow_s16( const int16x8_t a, const int16x8_t b, const int16_t ab_const) { // In both add_ and it's pair, sub_, the input for well-formed streams will be // well within 16 bits (input to the idct is the difference between two frames // and will be within -255 to 255, or 9 bits) // However, for inputs over about 25,000 (valid for int16_t, but not for idct // input) this function can not use vaddq_s16. // In order to match existing behavior and intentionally out of range tests, // expand the addition up to 32 bits to prevent truncation. int32x4_t temp_low = vaddl_s16(vget_low_s16(a), vget_low_s16(b)); int32x4_t temp_high = vaddl_s16(vget_high_s16(a), vget_high_s16(b)); temp_low = vmulq_n_s32(temp_low, ab_const); temp_high = vmulq_n_s32(temp_high, ab_const); return vcombine_s16(vrshrn_n_s32(temp_low, 14), vrshrn_n_s32(temp_high, 14)); } // Subtract b from a, then multiply by ab_const. Shift and narrow by 14. static INLINE int16x8_t sub_multiply_shift_and_narrow_s16( const int16x8_t a, const int16x8_t b, const int16_t ab_const) { int32x4_t temp_low = vsubl_s16(vget_low_s16(a), vget_low_s16(b)); int32x4_t temp_high = vsubl_s16(vget_high_s16(a), vget_high_s16(b)); temp_low = vmulq_n_s32(temp_low, ab_const); temp_high = vmulq_n_s32(temp_high, ab_const); return vcombine_s16(vrshrn_n_s32(temp_low, 14), vrshrn_n_s32(temp_high, 14)); } // Multiply a by a_const and b by b_const, then accumulate. Shift and narrow by // 14. static INLINE int16x8_t multiply_accumulate_shift_and_narrow_s16( const int16x8_t a, const int16_t a_const, const int16x8_t b, const int16_t b_const) { int32x4_t temp_low = vmull_n_s16(vget_low_s16(a), a_const); int32x4_t temp_high = vmull_n_s16(vget_high_s16(a), a_const); temp_low = vmlal_n_s16(temp_low, vget_low_s16(b), b_const); temp_high = vmlal_n_s16(temp_high, vget_high_s16(b), b_const); return vcombine_s16(vrshrn_n_s32(temp_low, 14), vrshrn_n_s32(temp_high, 14)); } // Shift the output down by 6 and add it to the destination buffer. static INLINE void add_and_store_u8_s16(const int16x8_t a0, const int16x8_t a1, const int16x8_t a2, const int16x8_t a3, const int16x8_t a4, const int16x8_t a5, const int16x8_t a6, const int16x8_t a7, uint8_t *b, const int b_stride) { uint8x8_t b0, b1, b2, b3, b4, b5, b6, b7; int16x8_t c0, c1, c2, c3, c4, c5, c6, c7; b0 = vld1_u8(b); b += b_stride; b1 = vld1_u8(b); b += b_stride; b2 = vld1_u8(b); b += b_stride; b3 = vld1_u8(b); b += b_stride; b4 = vld1_u8(b); b += b_stride; b5 = vld1_u8(b); b += b_stride; b6 = vld1_u8(b); b += b_stride; b7 = vld1_u8(b); b -= (7 * b_stride); // c = b + (a >> 6) c0 = vrsraq_n_s16(vreinterpretq_s16_u16(vmovl_u8(b0)), a0, 6); c1 = vrsraq_n_s16(vreinterpretq_s16_u16(vmovl_u8(b1)), a1, 6); c2 = vrsraq_n_s16(vreinterpretq_s16_u16(vmovl_u8(b2)), a2, 6); c3 = vrsraq_n_s16(vreinterpretq_s16_u16(vmovl_u8(b3)), a3, 6); c4 = vrsraq_n_s16(vreinterpretq_s16_u16(vmovl_u8(b4)), a4, 6); c5 = vrsraq_n_s16(vreinterpretq_s16_u16(vmovl_u8(b5)), a5, 6); c6 = vrsraq_n_s16(vreinterpretq_s16_u16(vmovl_u8(b6)), a6, 6); c7 = vrsraq_n_s16(vreinterpretq_s16_u16(vmovl_u8(b7)), a7, 6); b0 = vqmovun_s16(c0); b1 = vqmovun_s16(c1); b2 = vqmovun_s16(c2); b3 = vqmovun_s16(c3); b4 = vqmovun_s16(c4); b5 = vqmovun_s16(c5); b6 = vqmovun_s16(c6); b7 = vqmovun_s16(c7); vst1_u8(b, b0); b += b_stride; vst1_u8(b, b1); b += b_stride; vst1_u8(b, b2); b += b_stride; vst1_u8(b, b3); b += b_stride; vst1_u8(b, b4); b += b_stride; vst1_u8(b, b5); b += b_stride; vst1_u8(b, b6); b += b_stride; vst1_u8(b, b7); } static INLINE void idct4x4_16_kernel_bd8(const int16x4_t cospis, int16x8_t *const a0, int16x8_t *const a1) { int16x4_t b0, b1, b2, b3; int32x4_t c0, c1, c2, c3; int16x8_t d0, d1; transpose_s16_4x4q(a0, a1); b0 = vget_low_s16(*a0); b1 = vget_high_s16(*a0); b2 = vget_low_s16(*a1); b3 = vget_high_s16(*a1); c0 = vmull_lane_s16(b0, cospis, 2); c2 = vmull_lane_s16(b1, cospis, 2); c1 = vsubq_s32(c0, c2); c0 = vaddq_s32(c0, c2); c2 = vmull_lane_s16(b2, cospis, 3); c3 = vmull_lane_s16(b2, cospis, 1); c2 = vmlsl_lane_s16(c2, b3, cospis, 1); c3 = vmlal_lane_s16(c3, b3, cospis, 3); b0 = vrshrn_n_s32(c0, 14); b1 = vrshrn_n_s32(c1, 14); b2 = vrshrn_n_s32(c2, 14); b3 = vrshrn_n_s32(c3, 14); d0 = vcombine_s16(b0, b1); d1 = vcombine_s16(b3, b2); *a0 = vaddq_s16(d0, d1); *a1 = vsubq_s16(d0, d1); } #endif // VPX_DSP_ARM_IDCT_NEON_H_