ref: afa4b9780ae0c10f22995ee96ba40b2cc15b29f9
dir: /vpx_dsp/x86/fwd_txfm_impl_sse2.h/
/* * Copyright (c) 2014 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <emmintrin.h> // SSE2 #include "./vpx_dsp_rtcd.h" #include "vpx_dsp/txfm_common.h" #include "vpx_dsp/x86/fwd_txfm_sse2.h" #include "vpx_dsp/x86/txfm_common_sse2.h" #include "vpx_ports/mem.h" // TODO(jingning) The high bit-depth functions need rework for performance. // After we properly fix the high bit-depth function implementations, this // file's dependency should be substantially simplified. #if DCT_HIGH_BIT_DEPTH #define ADD_EPI16 _mm_adds_epi16 #define SUB_EPI16 _mm_subs_epi16 #else #define ADD_EPI16 _mm_add_epi16 #define SUB_EPI16 _mm_sub_epi16 #endif void FDCT4x4_2D(const int16_t *input, tran_low_t *output, int stride) { // This 2D transform implements 4 vertical 1D transforms followed // by 4 horizontal 1D transforms. The multiplies and adds are as given // by Chen, Smith and Fralick ('77). The commands for moving the data // around have been minimized by hand. // For the purposes of the comments, the 16 inputs are referred to at i0 // through iF (in raster order), intermediate variables are a0, b0, c0 // through f, and correspond to the in-place computations mapped to input // locations. The outputs, o0 through oF are labeled according to the // output locations. // Constants // These are the coefficients used for the multiplies. // In the comments, pN means cos(N pi /64) and mN is -cos(N pi /64), // where cospi_N_64 = cos(N pi /64) const __m128i k__cospi_A = octa_set_epi16(cospi_16_64, cospi_16_64, cospi_16_64, cospi_16_64, cospi_16_64, -cospi_16_64, cospi_16_64, -cospi_16_64); const __m128i k__cospi_B = octa_set_epi16(cospi_16_64, -cospi_16_64, cospi_16_64, -cospi_16_64, cospi_16_64, cospi_16_64, cospi_16_64, cospi_16_64); const __m128i k__cospi_C = octa_set_epi16(cospi_8_64, cospi_24_64, cospi_8_64, cospi_24_64, cospi_24_64, -cospi_8_64, cospi_24_64, -cospi_8_64); const __m128i k__cospi_D = octa_set_epi16(cospi_24_64, -cospi_8_64, cospi_24_64, -cospi_8_64, cospi_8_64, cospi_24_64, cospi_8_64, cospi_24_64); const __m128i k__cospi_E = octa_set_epi16(cospi_16_64, cospi_16_64, cospi_16_64, cospi_16_64, cospi_16_64, cospi_16_64, cospi_16_64, cospi_16_64); const __m128i k__cospi_F = octa_set_epi16(cospi_16_64, -cospi_16_64, cospi_16_64, -cospi_16_64, cospi_16_64, -cospi_16_64, cospi_16_64, -cospi_16_64); const __m128i k__cospi_G = octa_set_epi16(cospi_8_64, cospi_24_64, cospi_8_64, cospi_24_64, -cospi_8_64, -cospi_24_64, -cospi_8_64, -cospi_24_64); const __m128i k__cospi_H = octa_set_epi16(cospi_24_64, -cospi_8_64, cospi_24_64, -cospi_8_64, -cospi_24_64, cospi_8_64, -cospi_24_64, cospi_8_64); const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING); // This second rounding constant saves doing some extra adds at the end const __m128i k__DCT_CONST_ROUNDING2 = _mm_set1_epi32(DCT_CONST_ROUNDING + (DCT_CONST_ROUNDING << 1)); const int DCT_CONST_BITS2 = DCT_CONST_BITS + 2; const __m128i k__nonzero_bias_a = _mm_setr_epi16(0, 1, 1, 1, 1, 1, 1, 1); const __m128i k__nonzero_bias_b = _mm_setr_epi16(1, 0, 0, 0, 0, 0, 0, 0); __m128i in0, in1; #if DCT_HIGH_BIT_DEPTH __m128i cmp0, cmp1; int test, overflow; #endif // Load inputs. in0 = _mm_loadl_epi64((const __m128i *)(input + 0 * stride)); in1 = _mm_loadl_epi64((const __m128i *)(input + 1 * stride)); in1 = _mm_unpacklo_epi64( in1, _mm_loadl_epi64((const __m128i *)(input + 2 * stride))); in0 = _mm_unpacklo_epi64( in0, _mm_loadl_epi64((const __m128i *)(input + 3 * stride))); // in0 = [i0 i1 i2 i3 iC iD iE iF] // in1 = [i4 i5 i6 i7 i8 i9 iA iB] #if DCT_HIGH_BIT_DEPTH // Check inputs small enough to use optimised code cmp0 = _mm_xor_si128(_mm_cmpgt_epi16(in0, _mm_set1_epi16(0x3ff)), _mm_cmplt_epi16(in0, _mm_set1_epi16(0xfc00))); cmp1 = _mm_xor_si128(_mm_cmpgt_epi16(in1, _mm_set1_epi16(0x3ff)), _mm_cmplt_epi16(in1, _mm_set1_epi16(0xfc00))); test = _mm_movemask_epi8(_mm_or_si128(cmp0, cmp1)); if (test) { vpx_highbd_fdct4x4_c(input, output, stride); return; } #endif // DCT_HIGH_BIT_DEPTH // multiply by 16 to give some extra precision in0 = _mm_slli_epi16(in0, 4); in1 = _mm_slli_epi16(in1, 4); // if (i == 0 && input[0]) input[0] += 1; // add 1 to the upper left pixel if it is non-zero, which helps reduce // the round-trip error { // The mask will only contain whether the first value is zero, all // other comparison will fail as something shifted by 4 (above << 4) // can never be equal to one. To increment in the non-zero case, we // add the mask and one for the first element: // - if zero, mask = -1, v = v - 1 + 1 = v // - if non-zero, mask = 0, v = v + 0 + 1 = v + 1 __m128i mask = _mm_cmpeq_epi16(in0, k__nonzero_bias_a); in0 = _mm_add_epi16(in0, mask); in0 = _mm_add_epi16(in0, k__nonzero_bias_b); } // There are 4 total stages, alternating between an add/subtract stage // followed by an multiply-and-add stage. { // Stage 1: Add/subtract // in0 = [i0 i1 i2 i3 iC iD iE iF] // in1 = [i4 i5 i6 i7 i8 i9 iA iB] const __m128i r0 = _mm_unpacklo_epi16(in0, in1); const __m128i r1 = _mm_unpackhi_epi16(in0, in1); // r0 = [i0 i4 i1 i5 i2 i6 i3 i7] // r1 = [iC i8 iD i9 iE iA iF iB] const __m128i r2 = _mm_shuffle_epi32(r0, 0xB4); const __m128i r3 = _mm_shuffle_epi32(r1, 0xB4); // r2 = [i0 i4 i1 i5 i3 i7 i2 i6] // r3 = [iC i8 iD i9 iF iB iE iA] const __m128i t0 = _mm_add_epi16(r2, r3); const __m128i t1 = _mm_sub_epi16(r2, r3); // t0 = [a0 a4 a1 a5 a3 a7 a2 a6] // t1 = [aC a8 aD a9 aF aB aE aA] // Stage 2: multiply by constants (which gets us into 32 bits). // The constants needed here are: // k__cospi_A = [p16 p16 p16 p16 p16 m16 p16 m16] // k__cospi_B = [p16 m16 p16 m16 p16 p16 p16 p16] // k__cospi_C = [p08 p24 p08 p24 p24 m08 p24 m08] // k__cospi_D = [p24 m08 p24 m08 p08 p24 p08 p24] const __m128i u0 = _mm_madd_epi16(t0, k__cospi_A); const __m128i u2 = _mm_madd_epi16(t0, k__cospi_B); const __m128i u1 = _mm_madd_epi16(t1, k__cospi_C); const __m128i u3 = _mm_madd_epi16(t1, k__cospi_D); // Then add and right-shift to get back to 16-bit range const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING); const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING); const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING); const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING); const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS); const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS); const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS); const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS); // w0 = [b0 b1 b7 b6] // w1 = [b8 b9 bF bE] // w2 = [b4 b5 b3 b2] // w3 = [bC bD bB bA] const __m128i x0 = _mm_packs_epi32(w0, w1); const __m128i x1 = _mm_packs_epi32(w2, w3); #if DCT_HIGH_BIT_DEPTH overflow = check_epi16_overflow_x2(&x0, &x1); if (overflow) { vpx_highbd_fdct4x4_c(input, output, stride); return; } #endif // DCT_HIGH_BIT_DEPTH // x0 = [b0 b1 b7 b6 b8 b9 bF bE] // x1 = [b4 b5 b3 b2 bC bD bB bA] in0 = _mm_shuffle_epi32(x0, 0xD8); in1 = _mm_shuffle_epi32(x1, 0x8D); // in0 = [b0 b1 b8 b9 b7 b6 bF bE] // in1 = [b3 b2 bB bA b4 b5 bC bD] } { // vertical DCTs finished. Now we do the horizontal DCTs. // Stage 3: Add/subtract const __m128i t0 = ADD_EPI16(in0, in1); const __m128i t1 = SUB_EPI16(in0, in1); // t0 = [c0 c1 c8 c9 c4 c5 cC cD] // t1 = [c3 c2 cB cA -c7 -c6 -cF -cE] #if DCT_HIGH_BIT_DEPTH overflow = check_epi16_overflow_x2(&t0, &t1); if (overflow) { vpx_highbd_fdct4x4_c(input, output, stride); return; } #endif // DCT_HIGH_BIT_DEPTH // Stage 4: multiply by constants (which gets us into 32 bits). { // The constants needed here are: // k__cospi_E = [p16 p16 p16 p16 p16 p16 p16 p16] // k__cospi_F = [p16 m16 p16 m16 p16 m16 p16 m16] // k__cospi_G = [p08 p24 p08 p24 m08 m24 m08 m24] // k__cospi_H = [p24 m08 p24 m08 m24 p08 m24 p08] const __m128i u0 = _mm_madd_epi16(t0, k__cospi_E); const __m128i u1 = _mm_madd_epi16(t0, k__cospi_F); const __m128i u2 = _mm_madd_epi16(t1, k__cospi_G); const __m128i u3 = _mm_madd_epi16(t1, k__cospi_H); // Then add and right-shift to get back to 16-bit range // but this combines the final right-shift as well to save operations // This unusual rounding operations is to maintain bit-accurate // compatibility with the c version of this function which has two // rounding steps in a row. const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING2); const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING2); const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING2); const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING2); const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS2); const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS2); const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS2); const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS2); // w0 = [o0 o4 o8 oC] // w1 = [o2 o6 oA oE] // w2 = [o1 o5 o9 oD] // w3 = [o3 o7 oB oF] // remember the o's are numbered according to the correct output location const __m128i x0 = _mm_packs_epi32(w0, w1); const __m128i x1 = _mm_packs_epi32(w2, w3); #if DCT_HIGH_BIT_DEPTH overflow = check_epi16_overflow_x2(&x0, &x1); if (overflow) { vpx_highbd_fdct4x4_c(input, output, stride); return; } #endif // DCT_HIGH_BIT_DEPTH { // x0 = [o0 o4 o8 oC o2 o6 oA oE] // x1 = [o1 o5 o9 oD o3 o7 oB oF] const __m128i y0 = _mm_unpacklo_epi16(x0, x1); const __m128i y1 = _mm_unpackhi_epi16(x0, x1); // y0 = [o0 o1 o4 o5 o8 o9 oC oD] // y1 = [o2 o3 o6 o7 oA oB oE oF] in0 = _mm_unpacklo_epi32(y0, y1); // in0 = [o0 o1 o2 o3 o4 o5 o6 o7] in1 = _mm_unpackhi_epi32(y0, y1); // in1 = [o8 o9 oA oB oC oD oE oF] } } } // Post-condition (v + 1) >> 2 is now incorporated into previous // add and right-shift commands. Only 2 store instructions needed // because we are using the fact that 1/3 are stored just after 0/2. storeu_output(&in0, output + 0 * 4); storeu_output(&in1, output + 2 * 4); } void FDCT8x8_2D(const int16_t *input, tran_low_t *output, int stride) { int pass; // Constants // When we use them, in one case, they are all the same. In all others // it's a pair of them that we need to repeat four times. This is done // by constructing the 32 bit constant corresponding to that pair. const __m128i k__cospi_p16_p16 = _mm_set1_epi16(cospi_16_64); const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64); const __m128i k__cospi_p24_p08 = pair_set_epi16(cospi_24_64, cospi_8_64); const __m128i k__cospi_m08_p24 = pair_set_epi16(-cospi_8_64, cospi_24_64); const __m128i k__cospi_p28_p04 = pair_set_epi16(cospi_28_64, cospi_4_64); const __m128i k__cospi_m04_p28 = pair_set_epi16(-cospi_4_64, cospi_28_64); const __m128i k__cospi_p12_p20 = pair_set_epi16(cospi_12_64, cospi_20_64); const __m128i k__cospi_m20_p12 = pair_set_epi16(-cospi_20_64, cospi_12_64); const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING); #if DCT_HIGH_BIT_DEPTH int overflow; #endif // Load input __m128i in0 = _mm_load_si128((const __m128i *)(input + 0 * stride)); __m128i in1 = _mm_load_si128((const __m128i *)(input + 1 * stride)); __m128i in2 = _mm_load_si128((const __m128i *)(input + 2 * stride)); __m128i in3 = _mm_load_si128((const __m128i *)(input + 3 * stride)); __m128i in4 = _mm_load_si128((const __m128i *)(input + 4 * stride)); __m128i in5 = _mm_load_si128((const __m128i *)(input + 5 * stride)); __m128i in6 = _mm_load_si128((const __m128i *)(input + 6 * stride)); __m128i in7 = _mm_load_si128((const __m128i *)(input + 7 * stride)); // Pre-condition input (shift by two) in0 = _mm_slli_epi16(in0, 2); in1 = _mm_slli_epi16(in1, 2); in2 = _mm_slli_epi16(in2, 2); in3 = _mm_slli_epi16(in3, 2); in4 = _mm_slli_epi16(in4, 2); in5 = _mm_slli_epi16(in5, 2); in6 = _mm_slli_epi16(in6, 2); in7 = _mm_slli_epi16(in7, 2); // We do two passes, first the columns, then the rows. The results of the // first pass are transposed so that the same column code can be reused. The // results of the second pass are also transposed so that the rows (processed // as columns) are put back in row positions. for (pass = 0; pass < 2; pass++) { // To store results of each pass before the transpose. __m128i res0, res1, res2, res3, res4, res5, res6, res7; // Add/subtract const __m128i q0 = ADD_EPI16(in0, in7); const __m128i q1 = ADD_EPI16(in1, in6); const __m128i q2 = ADD_EPI16(in2, in5); const __m128i q3 = ADD_EPI16(in3, in4); const __m128i q4 = SUB_EPI16(in3, in4); const __m128i q5 = SUB_EPI16(in2, in5); const __m128i q6 = SUB_EPI16(in1, in6); const __m128i q7 = SUB_EPI16(in0, in7); #if DCT_HIGH_BIT_DEPTH if (pass == 1) { overflow = check_epi16_overflow_x8(&q0, &q1, &q2, &q3, &q4, &q5, &q6, &q7); if (overflow) { vpx_highbd_fdct8x8_c(input, output, stride); return; } } #endif // DCT_HIGH_BIT_DEPTH // Work on first four results { // Add/subtract const __m128i r0 = ADD_EPI16(q0, q3); const __m128i r1 = ADD_EPI16(q1, q2); const __m128i r2 = SUB_EPI16(q1, q2); const __m128i r3 = SUB_EPI16(q0, q3); #if DCT_HIGH_BIT_DEPTH overflow = check_epi16_overflow_x4(&r0, &r1, &r2, &r3); if (overflow) { vpx_highbd_fdct8x8_c(input, output, stride); return; } #endif // DCT_HIGH_BIT_DEPTH // Interleave to do the multiply by constants which gets us into 32bits { const __m128i t0 = _mm_unpacklo_epi16(r0, r1); const __m128i t1 = _mm_unpackhi_epi16(r0, r1); const __m128i t2 = _mm_unpacklo_epi16(r2, r3); const __m128i t3 = _mm_unpackhi_epi16(r2, r3); const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p16_p16); const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p16_p16); const __m128i u2 = _mm_madd_epi16(t0, k__cospi_p16_m16); const __m128i u3 = _mm_madd_epi16(t1, k__cospi_p16_m16); const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p24_p08); const __m128i u5 = _mm_madd_epi16(t3, k__cospi_p24_p08); const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m08_p24); const __m128i u7 = _mm_madd_epi16(t3, k__cospi_m08_p24); // dct_const_round_shift const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING); const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING); const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING); const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING); const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING); const __m128i v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING); const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING); const __m128i v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING); const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS); const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS); const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS); const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS); const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS); const __m128i w5 = _mm_srai_epi32(v5, DCT_CONST_BITS); const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS); const __m128i w7 = _mm_srai_epi32(v7, DCT_CONST_BITS); // Combine res0 = _mm_packs_epi32(w0, w1); res4 = _mm_packs_epi32(w2, w3); res2 = _mm_packs_epi32(w4, w5); res6 = _mm_packs_epi32(w6, w7); #if DCT_HIGH_BIT_DEPTH overflow = check_epi16_overflow_x4(&res0, &res4, &res2, &res6); if (overflow) { vpx_highbd_fdct8x8_c(input, output, stride); return; } #endif // DCT_HIGH_BIT_DEPTH } } // Work on next four results { // Interleave to do the multiply by constants which gets us into 32bits const __m128i d0 = _mm_unpacklo_epi16(q6, q5); const __m128i d1 = _mm_unpackhi_epi16(q6, q5); const __m128i e0 = _mm_madd_epi16(d0, k__cospi_p16_m16); const __m128i e1 = _mm_madd_epi16(d1, k__cospi_p16_m16); const __m128i e2 = _mm_madd_epi16(d0, k__cospi_p16_p16); const __m128i e3 = _mm_madd_epi16(d1, k__cospi_p16_p16); // dct_const_round_shift const __m128i f0 = _mm_add_epi32(e0, k__DCT_CONST_ROUNDING); const __m128i f1 = _mm_add_epi32(e1, k__DCT_CONST_ROUNDING); const __m128i f2 = _mm_add_epi32(e2, k__DCT_CONST_ROUNDING); const __m128i f3 = _mm_add_epi32(e3, k__DCT_CONST_ROUNDING); const __m128i s0 = _mm_srai_epi32(f0, DCT_CONST_BITS); const __m128i s1 = _mm_srai_epi32(f1, DCT_CONST_BITS); const __m128i s2 = _mm_srai_epi32(f2, DCT_CONST_BITS); const __m128i s3 = _mm_srai_epi32(f3, DCT_CONST_BITS); // Combine const __m128i r0 = _mm_packs_epi32(s0, s1); const __m128i r1 = _mm_packs_epi32(s2, s3); #if DCT_HIGH_BIT_DEPTH overflow = check_epi16_overflow_x2(&r0, &r1); if (overflow) { vpx_highbd_fdct8x8_c(input, output, stride); return; } #endif // DCT_HIGH_BIT_DEPTH { // Add/subtract const __m128i x0 = ADD_EPI16(q4, r0); const __m128i x1 = SUB_EPI16(q4, r0); const __m128i x2 = SUB_EPI16(q7, r1); const __m128i x3 = ADD_EPI16(q7, r1); #if DCT_HIGH_BIT_DEPTH overflow = check_epi16_overflow_x4(&x0, &x1, &x2, &x3); if (overflow) { vpx_highbd_fdct8x8_c(input, output, stride); return; } #endif // DCT_HIGH_BIT_DEPTH // Interleave to do the multiply by constants which gets us into 32bits { const __m128i t0 = _mm_unpacklo_epi16(x0, x3); const __m128i t1 = _mm_unpackhi_epi16(x0, x3); const __m128i t2 = _mm_unpacklo_epi16(x1, x2); const __m128i t3 = _mm_unpackhi_epi16(x1, x2); const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p28_p04); const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p28_p04); const __m128i u2 = _mm_madd_epi16(t0, k__cospi_m04_p28); const __m128i u3 = _mm_madd_epi16(t1, k__cospi_m04_p28); const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p12_p20); const __m128i u5 = _mm_madd_epi16(t3, k__cospi_p12_p20); const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m20_p12); const __m128i u7 = _mm_madd_epi16(t3, k__cospi_m20_p12); // dct_const_round_shift const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING); const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING); const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING); const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING); const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING); const __m128i v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING); const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING); const __m128i v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING); const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS); const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS); const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS); const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS); const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS); const __m128i w5 = _mm_srai_epi32(v5, DCT_CONST_BITS); const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS); const __m128i w7 = _mm_srai_epi32(v7, DCT_CONST_BITS); // Combine res1 = _mm_packs_epi32(w0, w1); res7 = _mm_packs_epi32(w2, w3); res5 = _mm_packs_epi32(w4, w5); res3 = _mm_packs_epi32(w6, w7); #if DCT_HIGH_BIT_DEPTH overflow = check_epi16_overflow_x4(&res1, &res7, &res5, &res3); if (overflow) { vpx_highbd_fdct8x8_c(input, output, stride); return; } #endif // DCT_HIGH_BIT_DEPTH } } } // Transpose the 8x8. { // 00 01 02 03 04 05 06 07 // 10 11 12 13 14 15 16 17 // 20 21 22 23 24 25 26 27 // 30 31 32 33 34 35 36 37 // 40 41 42 43 44 45 46 47 // 50 51 52 53 54 55 56 57 // 60 61 62 63 64 65 66 67 // 70 71 72 73 74 75 76 77 const __m128i tr0_0 = _mm_unpacklo_epi16(res0, res1); const __m128i tr0_1 = _mm_unpacklo_epi16(res2, res3); const __m128i tr0_2 = _mm_unpackhi_epi16(res0, res1); const __m128i tr0_3 = _mm_unpackhi_epi16(res2, res3); const __m128i tr0_4 = _mm_unpacklo_epi16(res4, res5); const __m128i tr0_5 = _mm_unpacklo_epi16(res6, res7); const __m128i tr0_6 = _mm_unpackhi_epi16(res4, res5); const __m128i tr0_7 = _mm_unpackhi_epi16(res6, res7); // 00 10 01 11 02 12 03 13 // 20 30 21 31 22 32 23 33 // 04 14 05 15 06 16 07 17 // 24 34 25 35 26 36 27 37 // 40 50 41 51 42 52 43 53 // 60 70 61 71 62 72 63 73 // 54 54 55 55 56 56 57 57 // 64 74 65 75 66 76 67 77 const __m128i tr1_0 = _mm_unpacklo_epi32(tr0_0, tr0_1); const __m128i tr1_1 = _mm_unpacklo_epi32(tr0_2, tr0_3); const __m128i tr1_2 = _mm_unpackhi_epi32(tr0_0, tr0_1); const __m128i tr1_3 = _mm_unpackhi_epi32(tr0_2, tr0_3); const __m128i tr1_4 = _mm_unpacklo_epi32(tr0_4, tr0_5); const __m128i tr1_5 = _mm_unpacklo_epi32(tr0_6, tr0_7); const __m128i tr1_6 = _mm_unpackhi_epi32(tr0_4, tr0_5); const __m128i tr1_7 = _mm_unpackhi_epi32(tr0_6, tr0_7); // 00 10 20 30 01 11 21 31 // 40 50 60 70 41 51 61 71 // 02 12 22 32 03 13 23 33 // 42 52 62 72 43 53 63 73 // 04 14 24 34 05 15 21 36 // 44 54 64 74 45 55 61 76 // 06 16 26 36 07 17 27 37 // 46 56 66 76 47 57 67 77 in0 = _mm_unpacklo_epi64(tr1_0, tr1_4); in1 = _mm_unpackhi_epi64(tr1_0, tr1_4); in2 = _mm_unpacklo_epi64(tr1_2, tr1_6); in3 = _mm_unpackhi_epi64(tr1_2, tr1_6); in4 = _mm_unpacklo_epi64(tr1_1, tr1_5); in5 = _mm_unpackhi_epi64(tr1_1, tr1_5); in6 = _mm_unpacklo_epi64(tr1_3, tr1_7); in7 = _mm_unpackhi_epi64(tr1_3, tr1_7); // 00 10 20 30 40 50 60 70 // 01 11 21 31 41 51 61 71 // 02 12 22 32 42 52 62 72 // 03 13 23 33 43 53 63 73 // 04 14 24 34 44 54 64 74 // 05 15 25 35 45 55 65 75 // 06 16 26 36 46 56 66 76 // 07 17 27 37 47 57 67 77 } } // Post-condition output and store it { // Post-condition (division by two) // division of two 16 bits signed numbers using shifts // n / 2 = (n - (n >> 15)) >> 1 const __m128i sign_in0 = _mm_srai_epi16(in0, 15); const __m128i sign_in1 = _mm_srai_epi16(in1, 15); const __m128i sign_in2 = _mm_srai_epi16(in2, 15); const __m128i sign_in3 = _mm_srai_epi16(in3, 15); const __m128i sign_in4 = _mm_srai_epi16(in4, 15); const __m128i sign_in5 = _mm_srai_epi16(in5, 15); const __m128i sign_in6 = _mm_srai_epi16(in6, 15); const __m128i sign_in7 = _mm_srai_epi16(in7, 15); in0 = _mm_sub_epi16(in0, sign_in0); in1 = _mm_sub_epi16(in1, sign_in1); in2 = _mm_sub_epi16(in2, sign_in2); in3 = _mm_sub_epi16(in3, sign_in3); in4 = _mm_sub_epi16(in4, sign_in4); in5 = _mm_sub_epi16(in5, sign_in5); in6 = _mm_sub_epi16(in6, sign_in6); in7 = _mm_sub_epi16(in7, sign_in7); in0 = _mm_srai_epi16(in0, 1); in1 = _mm_srai_epi16(in1, 1); in2 = _mm_srai_epi16(in2, 1); in3 = _mm_srai_epi16(in3, 1); in4 = _mm_srai_epi16(in4, 1); in5 = _mm_srai_epi16(in5, 1); in6 = _mm_srai_epi16(in6, 1); in7 = _mm_srai_epi16(in7, 1); // store results store_output(&in0, (output + 0 * 8)); store_output(&in1, (output + 1 * 8)); store_output(&in2, (output + 2 * 8)); store_output(&in3, (output + 3 * 8)); store_output(&in4, (output + 4 * 8)); store_output(&in5, (output + 5 * 8)); store_output(&in6, (output + 6 * 8)); store_output(&in7, (output + 7 * 8)); } } void FDCT16x16_2D(const int16_t *input, tran_low_t *output, int stride) { // The 2D transform is done with two passes which are actually pretty // similar. In the first one, we transform the columns and transpose // the results. In the second one, we transform the rows. To achieve that, // as the first pass results are transposed, we transpose the columns (that // is the transposed rows) and transpose the results (so that it goes back // in normal/row positions). int pass; // We need an intermediate buffer between passes. DECLARE_ALIGNED(16, int16_t, intermediate[256]); const int16_t *in = input; int16_t *out0 = intermediate; tran_low_t *out1 = output; // Constants // When we use them, in one case, they are all the same. In all others // it's a pair of them that we need to repeat four times. This is done // by constructing the 32 bit constant corresponding to that pair. const __m128i k__cospi_p16_p16 = _mm_set1_epi16(cospi_16_64); const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64); const __m128i k__cospi_p24_p08 = pair_set_epi16(cospi_24_64, cospi_8_64); const __m128i k__cospi_p08_m24 = pair_set_epi16(cospi_8_64, -cospi_24_64); const __m128i k__cospi_m08_p24 = pair_set_epi16(-cospi_8_64, cospi_24_64); const __m128i k__cospi_p28_p04 = pair_set_epi16(cospi_28_64, cospi_4_64); const __m128i k__cospi_m04_p28 = pair_set_epi16(-cospi_4_64, cospi_28_64); const __m128i k__cospi_p12_p20 = pair_set_epi16(cospi_12_64, cospi_20_64); const __m128i k__cospi_m20_p12 = pair_set_epi16(-cospi_20_64, cospi_12_64); const __m128i k__cospi_p30_p02 = pair_set_epi16(cospi_30_64, cospi_2_64); const __m128i k__cospi_p14_p18 = pair_set_epi16(cospi_14_64, cospi_18_64); const __m128i k__cospi_m02_p30 = pair_set_epi16(-cospi_2_64, cospi_30_64); const __m128i k__cospi_m18_p14 = pair_set_epi16(-cospi_18_64, cospi_14_64); const __m128i k__cospi_p22_p10 = pair_set_epi16(cospi_22_64, cospi_10_64); const __m128i k__cospi_p06_p26 = pair_set_epi16(cospi_6_64, cospi_26_64); const __m128i k__cospi_m10_p22 = pair_set_epi16(-cospi_10_64, cospi_22_64); const __m128i k__cospi_m26_p06 = pair_set_epi16(-cospi_26_64, cospi_6_64); const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING); const __m128i kOne = _mm_set1_epi16(1); // Do the two transform/transpose passes for (pass = 0; pass < 2; ++pass) { // We process eight columns (transposed rows in second pass) at a time. int column_start; #if DCT_HIGH_BIT_DEPTH int overflow; #endif for (column_start = 0; column_start < 16; column_start += 8) { __m128i in00, in01, in02, in03, in04, in05, in06, in07; __m128i in08, in09, in10, in11, in12, in13, in14, in15; __m128i input0, input1, input2, input3, input4, input5, input6, input7; __m128i step1_0, step1_1, step1_2, step1_3; __m128i step1_4, step1_5, step1_6, step1_7; __m128i step2_1, step2_2, step2_3, step2_4, step2_5, step2_6; __m128i step3_0, step3_1, step3_2, step3_3; __m128i step3_4, step3_5, step3_6, step3_7; __m128i res00, res01, res02, res03, res04, res05, res06, res07; __m128i res08, res09, res10, res11, res12, res13, res14, res15; // Load and pre-condition input. if (0 == pass) { in00 = _mm_load_si128((const __m128i *)(in + 0 * stride)); in01 = _mm_load_si128((const __m128i *)(in + 1 * stride)); in02 = _mm_load_si128((const __m128i *)(in + 2 * stride)); in03 = _mm_load_si128((const __m128i *)(in + 3 * stride)); in04 = _mm_load_si128((const __m128i *)(in + 4 * stride)); in05 = _mm_load_si128((const __m128i *)(in + 5 * stride)); in06 = _mm_load_si128((const __m128i *)(in + 6 * stride)); in07 = _mm_load_si128((const __m128i *)(in + 7 * stride)); in08 = _mm_load_si128((const __m128i *)(in + 8 * stride)); in09 = _mm_load_si128((const __m128i *)(in + 9 * stride)); in10 = _mm_load_si128((const __m128i *)(in + 10 * stride)); in11 = _mm_load_si128((const __m128i *)(in + 11 * stride)); in12 = _mm_load_si128((const __m128i *)(in + 12 * stride)); in13 = _mm_load_si128((const __m128i *)(in + 13 * stride)); in14 = _mm_load_si128((const __m128i *)(in + 14 * stride)); in15 = _mm_load_si128((const __m128i *)(in + 15 * stride)); // x = x << 2 in00 = _mm_slli_epi16(in00, 2); in01 = _mm_slli_epi16(in01, 2); in02 = _mm_slli_epi16(in02, 2); in03 = _mm_slli_epi16(in03, 2); in04 = _mm_slli_epi16(in04, 2); in05 = _mm_slli_epi16(in05, 2); in06 = _mm_slli_epi16(in06, 2); in07 = _mm_slli_epi16(in07, 2); in08 = _mm_slli_epi16(in08, 2); in09 = _mm_slli_epi16(in09, 2); in10 = _mm_slli_epi16(in10, 2); in11 = _mm_slli_epi16(in11, 2); in12 = _mm_slli_epi16(in12, 2); in13 = _mm_slli_epi16(in13, 2); in14 = _mm_slli_epi16(in14, 2); in15 = _mm_slli_epi16(in15, 2); } else { in00 = _mm_load_si128((const __m128i *)(in + 0 * 16)); in01 = _mm_load_si128((const __m128i *)(in + 1 * 16)); in02 = _mm_load_si128((const __m128i *)(in + 2 * 16)); in03 = _mm_load_si128((const __m128i *)(in + 3 * 16)); in04 = _mm_load_si128((const __m128i *)(in + 4 * 16)); in05 = _mm_load_si128((const __m128i *)(in + 5 * 16)); in06 = _mm_load_si128((const __m128i *)(in + 6 * 16)); in07 = _mm_load_si128((const __m128i *)(in + 7 * 16)); in08 = _mm_load_si128((const __m128i *)(in + 8 * 16)); in09 = _mm_load_si128((const __m128i *)(in + 9 * 16)); in10 = _mm_load_si128((const __m128i *)(in + 10 * 16)); in11 = _mm_load_si128((const __m128i *)(in + 11 * 16)); in12 = _mm_load_si128((const __m128i *)(in + 12 * 16)); in13 = _mm_load_si128((const __m128i *)(in + 13 * 16)); in14 = _mm_load_si128((const __m128i *)(in + 14 * 16)); in15 = _mm_load_si128((const __m128i *)(in + 15 * 16)); // x = (x + 1) >> 2 in00 = _mm_add_epi16(in00, kOne); in01 = _mm_add_epi16(in01, kOne); in02 = _mm_add_epi16(in02, kOne); in03 = _mm_add_epi16(in03, kOne); in04 = _mm_add_epi16(in04, kOne); in05 = _mm_add_epi16(in05, kOne); in06 = _mm_add_epi16(in06, kOne); in07 = _mm_add_epi16(in07, kOne); in08 = _mm_add_epi16(in08, kOne); in09 = _mm_add_epi16(in09, kOne); in10 = _mm_add_epi16(in10, kOne); in11 = _mm_add_epi16(in11, kOne); in12 = _mm_add_epi16(in12, kOne); in13 = _mm_add_epi16(in13, kOne); in14 = _mm_add_epi16(in14, kOne); in15 = _mm_add_epi16(in15, kOne); in00 = _mm_srai_epi16(in00, 2); in01 = _mm_srai_epi16(in01, 2); in02 = _mm_srai_epi16(in02, 2); in03 = _mm_srai_epi16(in03, 2); in04 = _mm_srai_epi16(in04, 2); in05 = _mm_srai_epi16(in05, 2); in06 = _mm_srai_epi16(in06, 2); in07 = _mm_srai_epi16(in07, 2); in08 = _mm_srai_epi16(in08, 2); in09 = _mm_srai_epi16(in09, 2); in10 = _mm_srai_epi16(in10, 2); in11 = _mm_srai_epi16(in11, 2); in12 = _mm_srai_epi16(in12, 2); in13 = _mm_srai_epi16(in13, 2); in14 = _mm_srai_epi16(in14, 2); in15 = _mm_srai_epi16(in15, 2); } in += 8; // Calculate input for the first 8 results. { input0 = ADD_EPI16(in00, in15); input1 = ADD_EPI16(in01, in14); input2 = ADD_EPI16(in02, in13); input3 = ADD_EPI16(in03, in12); input4 = ADD_EPI16(in04, in11); input5 = ADD_EPI16(in05, in10); input6 = ADD_EPI16(in06, in09); input7 = ADD_EPI16(in07, in08); #if DCT_HIGH_BIT_DEPTH overflow = check_epi16_overflow_x8(&input0, &input1, &input2, &input3, &input4, &input5, &input6, &input7); if (overflow) { vpx_highbd_fdct16x16_c(input, output, stride); return; } #endif // DCT_HIGH_BIT_DEPTH } // Calculate input for the next 8 results. { step1_0 = SUB_EPI16(in07, in08); step1_1 = SUB_EPI16(in06, in09); step1_2 = SUB_EPI16(in05, in10); step1_3 = SUB_EPI16(in04, in11); step1_4 = SUB_EPI16(in03, in12); step1_5 = SUB_EPI16(in02, in13); step1_6 = SUB_EPI16(in01, in14); step1_7 = SUB_EPI16(in00, in15); #if DCT_HIGH_BIT_DEPTH overflow = check_epi16_overflow_x8(&step1_0, &step1_1, &step1_2, &step1_3, &step1_4, &step1_5, &step1_6, &step1_7); if (overflow) { vpx_highbd_fdct16x16_c(input, output, stride); return; } #endif // DCT_HIGH_BIT_DEPTH } // Work on the first eight values; fdct8(input, even_results); { // Add/subtract const __m128i q0 = ADD_EPI16(input0, input7); const __m128i q1 = ADD_EPI16(input1, input6); const __m128i q2 = ADD_EPI16(input2, input5); const __m128i q3 = ADD_EPI16(input3, input4); const __m128i q4 = SUB_EPI16(input3, input4); const __m128i q5 = SUB_EPI16(input2, input5); const __m128i q6 = SUB_EPI16(input1, input6); const __m128i q7 = SUB_EPI16(input0, input7); #if DCT_HIGH_BIT_DEPTH overflow = check_epi16_overflow_x8(&q0, &q1, &q2, &q3, &q4, &q5, &q6, &q7); if (overflow) { vpx_highbd_fdct16x16_c(input, output, stride); return; } #endif // DCT_HIGH_BIT_DEPTH // Work on first four results { // Add/subtract const __m128i r0 = ADD_EPI16(q0, q3); const __m128i r1 = ADD_EPI16(q1, q2); const __m128i r2 = SUB_EPI16(q1, q2); const __m128i r3 = SUB_EPI16(q0, q3); #if DCT_HIGH_BIT_DEPTH overflow = check_epi16_overflow_x4(&r0, &r1, &r2, &r3); if (overflow) { vpx_highbd_fdct16x16_c(input, output, stride); return; } #endif // DCT_HIGH_BIT_DEPTH // Interleave to do the multiply by constants which gets us // into 32 bits. { const __m128i t0 = _mm_unpacklo_epi16(r0, r1); const __m128i t1 = _mm_unpackhi_epi16(r0, r1); const __m128i t2 = _mm_unpacklo_epi16(r2, r3); const __m128i t3 = _mm_unpackhi_epi16(r2, r3); res00 = mult_round_shift(&t0, &t1, &k__cospi_p16_p16, &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); res08 = mult_round_shift(&t0, &t1, &k__cospi_p16_m16, &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); res04 = mult_round_shift(&t2, &t3, &k__cospi_p24_p08, &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); res12 = mult_round_shift(&t2, &t3, &k__cospi_m08_p24, &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); #if DCT_HIGH_BIT_DEPTH overflow = check_epi16_overflow_x4(&res00, &res08, &res04, &res12); if (overflow) { vpx_highbd_fdct16x16_c(input, output, stride); return; } #endif // DCT_HIGH_BIT_DEPTH } } // Work on next four results { // Interleave to do the multiply by constants which gets us // into 32 bits. const __m128i d0 = _mm_unpacklo_epi16(q6, q5); const __m128i d1 = _mm_unpackhi_epi16(q6, q5); const __m128i r0 = mult_round_shift(&d0, &d1, &k__cospi_p16_m16, &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); const __m128i r1 = mult_round_shift(&d0, &d1, &k__cospi_p16_p16, &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); #if DCT_HIGH_BIT_DEPTH overflow = check_epi16_overflow_x2(&r0, &r1); if (overflow) { vpx_highbd_fdct16x16_c(input, output, stride); return; } #endif // DCT_HIGH_BIT_DEPTH { // Add/subtract const __m128i x0 = ADD_EPI16(q4, r0); const __m128i x1 = SUB_EPI16(q4, r0); const __m128i x2 = SUB_EPI16(q7, r1); const __m128i x3 = ADD_EPI16(q7, r1); #if DCT_HIGH_BIT_DEPTH overflow = check_epi16_overflow_x4(&x0, &x1, &x2, &x3); if (overflow) { vpx_highbd_fdct16x16_c(input, output, stride); return; } #endif // DCT_HIGH_BIT_DEPTH // Interleave to do the multiply by constants which gets us // into 32 bits. { const __m128i t0 = _mm_unpacklo_epi16(x0, x3); const __m128i t1 = _mm_unpackhi_epi16(x0, x3); const __m128i t2 = _mm_unpacklo_epi16(x1, x2); const __m128i t3 = _mm_unpackhi_epi16(x1, x2); res02 = mult_round_shift(&t0, &t1, &k__cospi_p28_p04, &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); res14 = mult_round_shift(&t0, &t1, &k__cospi_m04_p28, &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); res10 = mult_round_shift(&t2, &t3, &k__cospi_p12_p20, &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); res06 = mult_round_shift(&t2, &t3, &k__cospi_m20_p12, &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); #if DCT_HIGH_BIT_DEPTH overflow = check_epi16_overflow_x4(&res02, &res14, &res10, &res06); if (overflow) { vpx_highbd_fdct16x16_c(input, output, stride); return; } #endif // DCT_HIGH_BIT_DEPTH } } } } // Work on the next eight values; step1 -> odd_results { // step 2 { const __m128i t0 = _mm_unpacklo_epi16(step1_5, step1_2); const __m128i t1 = _mm_unpackhi_epi16(step1_5, step1_2); const __m128i t2 = _mm_unpacklo_epi16(step1_4, step1_3); const __m128i t3 = _mm_unpackhi_epi16(step1_4, step1_3); step2_2 = mult_round_shift(&t0, &t1, &k__cospi_p16_m16, &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); step2_3 = mult_round_shift(&t2, &t3, &k__cospi_p16_m16, &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); step2_5 = mult_round_shift(&t0, &t1, &k__cospi_p16_p16, &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); step2_4 = mult_round_shift(&t2, &t3, &k__cospi_p16_p16, &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); #if DCT_HIGH_BIT_DEPTH overflow = check_epi16_overflow_x4(&step2_2, &step2_3, &step2_5, &step2_4); if (overflow) { vpx_highbd_fdct16x16_c(input, output, stride); return; } #endif // DCT_HIGH_BIT_DEPTH } // step 3 { step3_0 = ADD_EPI16(step1_0, step2_3); step3_1 = ADD_EPI16(step1_1, step2_2); step3_2 = SUB_EPI16(step1_1, step2_2); step3_3 = SUB_EPI16(step1_0, step2_3); step3_4 = SUB_EPI16(step1_7, step2_4); step3_5 = SUB_EPI16(step1_6, step2_5); step3_6 = ADD_EPI16(step1_6, step2_5); step3_7 = ADD_EPI16(step1_7, step2_4); #if DCT_HIGH_BIT_DEPTH overflow = check_epi16_overflow_x8(&step3_0, &step3_1, &step3_2, &step3_3, &step3_4, &step3_5, &step3_6, &step3_7); if (overflow) { vpx_highbd_fdct16x16_c(input, output, stride); return; } #endif // DCT_HIGH_BIT_DEPTH } // step 4 { const __m128i t0 = _mm_unpacklo_epi16(step3_1, step3_6); const __m128i t1 = _mm_unpackhi_epi16(step3_1, step3_6); const __m128i t2 = _mm_unpacklo_epi16(step3_2, step3_5); const __m128i t3 = _mm_unpackhi_epi16(step3_2, step3_5); step2_1 = mult_round_shift(&t0, &t1, &k__cospi_m08_p24, &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); step2_2 = mult_round_shift(&t2, &t3, &k__cospi_p24_p08, &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); step2_6 = mult_round_shift(&t0, &t1, &k__cospi_p24_p08, &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); step2_5 = mult_round_shift(&t2, &t3, &k__cospi_p08_m24, &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); #if DCT_HIGH_BIT_DEPTH overflow = check_epi16_overflow_x4(&step2_1, &step2_2, &step2_6, &step2_5); if (overflow) { vpx_highbd_fdct16x16_c(input, output, stride); return; } #endif // DCT_HIGH_BIT_DEPTH } // step 5 { step1_0 = ADD_EPI16(step3_0, step2_1); step1_1 = SUB_EPI16(step3_0, step2_1); step1_2 = ADD_EPI16(step3_3, step2_2); step1_3 = SUB_EPI16(step3_3, step2_2); step1_4 = SUB_EPI16(step3_4, step2_5); step1_5 = ADD_EPI16(step3_4, step2_5); step1_6 = SUB_EPI16(step3_7, step2_6); step1_7 = ADD_EPI16(step3_7, step2_6); #if DCT_HIGH_BIT_DEPTH overflow = check_epi16_overflow_x8(&step1_0, &step1_1, &step1_2, &step1_3, &step1_4, &step1_5, &step1_6, &step1_7); if (overflow) { vpx_highbd_fdct16x16_c(input, output, stride); return; } #endif // DCT_HIGH_BIT_DEPTH } // step 6 { const __m128i t0 = _mm_unpacklo_epi16(step1_0, step1_7); const __m128i t1 = _mm_unpackhi_epi16(step1_0, step1_7); const __m128i t2 = _mm_unpacklo_epi16(step1_1, step1_6); const __m128i t3 = _mm_unpackhi_epi16(step1_1, step1_6); res01 = mult_round_shift(&t0, &t1, &k__cospi_p30_p02, &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); res09 = mult_round_shift(&t2, &t3, &k__cospi_p14_p18, &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); res15 = mult_round_shift(&t0, &t1, &k__cospi_m02_p30, &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); res07 = mult_round_shift(&t2, &t3, &k__cospi_m18_p14, &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); #if DCT_HIGH_BIT_DEPTH overflow = check_epi16_overflow_x4(&res01, &res09, &res15, &res07); if (overflow) { vpx_highbd_fdct16x16_c(input, output, stride); return; } #endif // DCT_HIGH_BIT_DEPTH } { const __m128i t0 = _mm_unpacklo_epi16(step1_2, step1_5); const __m128i t1 = _mm_unpackhi_epi16(step1_2, step1_5); const __m128i t2 = _mm_unpacklo_epi16(step1_3, step1_4); const __m128i t3 = _mm_unpackhi_epi16(step1_3, step1_4); res05 = mult_round_shift(&t0, &t1, &k__cospi_p22_p10, &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); res13 = mult_round_shift(&t2, &t3, &k__cospi_p06_p26, &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); res11 = mult_round_shift(&t0, &t1, &k__cospi_m10_p22, &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); res03 = mult_round_shift(&t2, &t3, &k__cospi_m26_p06, &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); #if DCT_HIGH_BIT_DEPTH overflow = check_epi16_overflow_x4(&res05, &res13, &res11, &res03); if (overflow) { vpx_highbd_fdct16x16_c(input, output, stride); return; } #endif // DCT_HIGH_BIT_DEPTH } } // Transpose the results, do it as two 8x8 transposes. transpose_and_output8x8(&res00, &res01, &res02, &res03, &res04, &res05, &res06, &res07, pass, out0, out1); transpose_and_output8x8(&res08, &res09, &res10, &res11, &res12, &res13, &res14, &res15, pass, out0 + 8, out1 + 8); if (pass == 0) { out0 += 8 * 16; } else { out1 += 8 * 16; } } // Setup in/out for next pass. in = intermediate; } } #undef ADD_EPI16 #undef SUB_EPI16