ref: a4e453f668a8d98645c034b9aa9f979bfa5af4a9
dir: /third_party/libyuv/source/planar_functions.cc/
/* * Copyright 2011 The LibYuv Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "libyuv/planar_functions.h" #include <string.h> // for memset() #include "libyuv/cpu_id.h" #ifdef HAVE_JPEG #include "libyuv/mjpeg_decoder.h" #endif #include "libyuv/row.h" #include "libyuv/scale_row.h" // for ScaleRowDown2 #ifdef __cplusplus namespace libyuv { extern "C" { #endif // Copy a plane of data LIBYUV_API void CopyPlane(const uint8* src_y, int src_stride_y, uint8* dst_y, int dst_stride_y, int width, int height) { int y; void (*CopyRow)(const uint8* src, uint8* dst, int width) = CopyRow_C; // Negative height means invert the image. if (height < 0) { height = -height; dst_y = dst_y + (height - 1) * dst_stride_y; dst_stride_y = -dst_stride_y; } // Coalesce rows. if (src_stride_y == width && dst_stride_y == width) { width *= height; height = 1; src_stride_y = dst_stride_y = 0; } // Nothing to do. if (src_y == dst_y && src_stride_y == dst_stride_y) { return; } #if defined(HAS_COPYROW_SSE2) if (TestCpuFlag(kCpuHasSSE2)) { CopyRow = IS_ALIGNED(width, 32) ? CopyRow_SSE2 : CopyRow_Any_SSE2; } #endif #if defined(HAS_COPYROW_AVX) if (TestCpuFlag(kCpuHasAVX)) { CopyRow = IS_ALIGNED(width, 64) ? CopyRow_AVX : CopyRow_Any_AVX; } #endif #if defined(HAS_COPYROW_ERMS) if (TestCpuFlag(kCpuHasERMS)) { CopyRow = CopyRow_ERMS; } #endif #if defined(HAS_COPYROW_NEON) if (TestCpuFlag(kCpuHasNEON)) { CopyRow = IS_ALIGNED(width, 32) ? CopyRow_NEON : CopyRow_Any_NEON; } #endif #if defined(HAS_COPYROW_MIPS) if (TestCpuFlag(kCpuHasMIPS)) { CopyRow = CopyRow_MIPS; } #endif // Copy plane for (y = 0; y < height; ++y) { CopyRow(src_y, dst_y, width); src_y += src_stride_y; dst_y += dst_stride_y; } } // TODO(fbarchard): Consider support for negative height. LIBYUV_API void CopyPlane_16(const uint16* src_y, int src_stride_y, uint16* dst_y, int dst_stride_y, int width, int height) { int y; void (*CopyRow)(const uint16* src, uint16* dst, int width) = CopyRow_16_C; // Coalesce rows. if (src_stride_y == width && dst_stride_y == width) { width *= height; height = 1; src_stride_y = dst_stride_y = 0; } #if defined(HAS_COPYROW_16_SSE2) if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 32)) { CopyRow = CopyRow_16_SSE2; } #endif #if defined(HAS_COPYROW_16_ERMS) if (TestCpuFlag(kCpuHasERMS)) { CopyRow = CopyRow_16_ERMS; } #endif #if defined(HAS_COPYROW_16_NEON) if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 32)) { CopyRow = CopyRow_16_NEON; } #endif #if defined(HAS_COPYROW_16_MIPS) if (TestCpuFlag(kCpuHasMIPS)) { CopyRow = CopyRow_16_MIPS; } #endif // Copy plane for (y = 0; y < height; ++y) { CopyRow(src_y, dst_y, width); src_y += src_stride_y; dst_y += dst_stride_y; } } // Copy I422. LIBYUV_API int I422Copy(const uint8* src_y, int src_stride_y, const uint8* src_u, int src_stride_u, const uint8* src_v, int src_stride_v, uint8* dst_y, int dst_stride_y, uint8* dst_u, int dst_stride_u, uint8* dst_v, int dst_stride_v, int width, int height) { int halfwidth = (width + 1) >> 1; if (!src_u || !src_v || !dst_u || !dst_v || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; src_y = src_y + (height - 1) * src_stride_y; src_u = src_u + (height - 1) * src_stride_u; src_v = src_v + (height - 1) * src_stride_v; src_stride_y = -src_stride_y; src_stride_u = -src_stride_u; src_stride_v = -src_stride_v; } if (dst_y) { CopyPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height); } CopyPlane(src_u, src_stride_u, dst_u, dst_stride_u, halfwidth, height); CopyPlane(src_v, src_stride_v, dst_v, dst_stride_v, halfwidth, height); return 0; } // Copy I444. LIBYUV_API int I444Copy(const uint8* src_y, int src_stride_y, const uint8* src_u, int src_stride_u, const uint8* src_v, int src_stride_v, uint8* dst_y, int dst_stride_y, uint8* dst_u, int dst_stride_u, uint8* dst_v, int dst_stride_v, int width, int height) { if (!src_u || !src_v || !dst_u || !dst_v || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; src_y = src_y + (height - 1) * src_stride_y; src_u = src_u + (height - 1) * src_stride_u; src_v = src_v + (height - 1) * src_stride_v; src_stride_y = -src_stride_y; src_stride_u = -src_stride_u; src_stride_v = -src_stride_v; } if (dst_y) { CopyPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height); } CopyPlane(src_u, src_stride_u, dst_u, dst_stride_u, width, height); CopyPlane(src_v, src_stride_v, dst_v, dst_stride_v, width, height); return 0; } // Copy I400. LIBYUV_API int I400ToI400(const uint8* src_y, int src_stride_y, uint8* dst_y, int dst_stride_y, int width, int height) { if (!src_y || !dst_y || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; src_y = src_y + (height - 1) * src_stride_y; src_stride_y = -src_stride_y; } CopyPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height); return 0; } // Convert I420 to I400. LIBYUV_API int I420ToI400(const uint8* src_y, int src_stride_y, const uint8* src_u, int src_stride_u, const uint8* src_v, int src_stride_v, uint8* dst_y, int dst_stride_y, int width, int height) { if (!src_y || !dst_y || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; src_y = src_y + (height - 1) * src_stride_y; src_stride_y = -src_stride_y; } CopyPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height); return 0; } // Support function for NV12 etc UV channels. // Width and height are plane sizes (typically half pixel width). LIBYUV_API void SplitUVPlane(const uint8* src_uv, int src_stride_uv, uint8* dst_u, int dst_stride_u, uint8* dst_v, int dst_stride_v, int width, int height) { int y; void (*SplitUVRow)(const uint8* src_uv, uint8* dst_u, uint8* dst_v, int width) = SplitUVRow_C; // Negative height means invert the image. if (height < 0) { height = -height; dst_u = dst_u + (height - 1) * dst_stride_u; dst_v = dst_v + (height - 1) * dst_stride_v; dst_stride_u = -dst_stride_u; dst_stride_v = -dst_stride_v; } // Coalesce rows. if (src_stride_uv == width * 2 && dst_stride_u == width && dst_stride_v == width) { width *= height; height = 1; src_stride_uv = dst_stride_u = dst_stride_v = 0; } #if defined(HAS_SPLITUVROW_SSE2) if (TestCpuFlag(kCpuHasSSE2)) { SplitUVRow = SplitUVRow_Any_SSE2; if (IS_ALIGNED(width, 16)) { SplitUVRow = SplitUVRow_SSE2; } } #endif #if defined(HAS_SPLITUVROW_AVX2) if (TestCpuFlag(kCpuHasAVX2)) { SplitUVRow = SplitUVRow_Any_AVX2; if (IS_ALIGNED(width, 32)) { SplitUVRow = SplitUVRow_AVX2; } } #endif #if defined(HAS_SPLITUVROW_NEON) if (TestCpuFlag(kCpuHasNEON)) { SplitUVRow = SplitUVRow_Any_NEON; if (IS_ALIGNED(width, 16)) { SplitUVRow = SplitUVRow_NEON; } } #endif #if defined(HAS_SPLITUVROW_DSPR2) if (TestCpuFlag(kCpuHasDSPR2) && IS_ALIGNED(dst_u, 4) && IS_ALIGNED(dst_stride_u, 4) && IS_ALIGNED(dst_v, 4) && IS_ALIGNED(dst_stride_v, 4)) { SplitUVRow = SplitUVRow_Any_DSPR2; if (IS_ALIGNED(width, 16)) { SplitUVRow = SplitUVRow_DSPR2; } } #endif for (y = 0; y < height; ++y) { // Copy a row of UV. SplitUVRow(src_uv, dst_u, dst_v, width); dst_u += dst_stride_u; dst_v += dst_stride_v; src_uv += src_stride_uv; } } LIBYUV_API void MergeUVPlane(const uint8* src_u, int src_stride_u, const uint8* src_v, int src_stride_v, uint8* dst_uv, int dst_stride_uv, int width, int height) { int y; void (*MergeUVRow)(const uint8* src_u, const uint8* src_v, uint8* dst_uv, int width) = MergeUVRow_C; // Coalesce rows. // Negative height means invert the image. if (height < 0) { height = -height; dst_uv = dst_uv + (height - 1) * dst_stride_uv; dst_stride_uv = -dst_stride_uv; } // Coalesce rows. if (src_stride_u == width && src_stride_v == width && dst_stride_uv == width * 2) { width *= height; height = 1; src_stride_u = src_stride_v = dst_stride_uv = 0; } #if defined(HAS_MERGEUVROW_SSE2) if (TestCpuFlag(kCpuHasSSE2)) { MergeUVRow = MergeUVRow_Any_SSE2; if (IS_ALIGNED(width, 16)) { MergeUVRow = MergeUVRow_SSE2; } } #endif #if defined(HAS_MERGEUVROW_AVX2) if (TestCpuFlag(kCpuHasAVX2)) { MergeUVRow = MergeUVRow_Any_AVX2; if (IS_ALIGNED(width, 32)) { MergeUVRow = MergeUVRow_AVX2; } } #endif #if defined(HAS_MERGEUVROW_NEON) if (TestCpuFlag(kCpuHasNEON)) { MergeUVRow = MergeUVRow_Any_NEON; if (IS_ALIGNED(width, 16)) { MergeUVRow = MergeUVRow_NEON; } } #endif for (y = 0; y < height; ++y) { // Merge a row of U and V into a row of UV. MergeUVRow(src_u, src_v, dst_uv, width); src_u += src_stride_u; src_v += src_stride_v; dst_uv += dst_stride_uv; } } // Mirror a plane of data. void MirrorPlane(const uint8* src_y, int src_stride_y, uint8* dst_y, int dst_stride_y, int width, int height) { int y; void (*MirrorRow)(const uint8* src, uint8* dst, int width) = MirrorRow_C; // Negative height means invert the image. if (height < 0) { height = -height; src_y = src_y + (height - 1) * src_stride_y; src_stride_y = -src_stride_y; } #if defined(HAS_MIRRORROW_NEON) if (TestCpuFlag(kCpuHasNEON)) { MirrorRow = MirrorRow_Any_NEON; if (IS_ALIGNED(width, 16)) { MirrorRow = MirrorRow_NEON; } } #endif #if defined(HAS_MIRRORROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3)) { MirrorRow = MirrorRow_Any_SSSE3; if (IS_ALIGNED(width, 16)) { MirrorRow = MirrorRow_SSSE3; } } #endif #if defined(HAS_MIRRORROW_AVX2) if (TestCpuFlag(kCpuHasAVX2)) { MirrorRow = MirrorRow_Any_AVX2; if (IS_ALIGNED(width, 32)) { MirrorRow = MirrorRow_AVX2; } } #endif // TODO(fbarchard): Mirror on mips handle unaligned memory. #if defined(HAS_MIRRORROW_DSPR2) if (TestCpuFlag(kCpuHasDSPR2) && IS_ALIGNED(src_y, 4) && IS_ALIGNED(src_stride_y, 4) && IS_ALIGNED(dst_y, 4) && IS_ALIGNED(dst_stride_y, 4)) { MirrorRow = MirrorRow_DSPR2; } #endif // Mirror plane for (y = 0; y < height; ++y) { MirrorRow(src_y, dst_y, width); src_y += src_stride_y; dst_y += dst_stride_y; } } // Convert YUY2 to I422. LIBYUV_API int YUY2ToI422(const uint8* src_yuy2, int src_stride_yuy2, uint8* dst_y, int dst_stride_y, uint8* dst_u, int dst_stride_u, uint8* dst_v, int dst_stride_v, int width, int height) { int y; void (*YUY2ToUV422Row)(const uint8* src_yuy2, uint8* dst_u, uint8* dst_v, int width) = YUY2ToUV422Row_C; void (*YUY2ToYRow)(const uint8* src_yuy2, uint8* dst_y, int width) = YUY2ToYRow_C; // Negative height means invert the image. if (height < 0) { height = -height; src_yuy2 = src_yuy2 + (height - 1) * src_stride_yuy2; src_stride_yuy2 = -src_stride_yuy2; } // Coalesce rows. if (src_stride_yuy2 == width * 2 && dst_stride_y == width && dst_stride_u * 2 == width && dst_stride_v * 2 == width) { width *= height; height = 1; src_stride_yuy2 = dst_stride_y = dst_stride_u = dst_stride_v = 0; } #if defined(HAS_YUY2TOYROW_SSE2) if (TestCpuFlag(kCpuHasSSE2)) { YUY2ToUV422Row = YUY2ToUV422Row_Any_SSE2; YUY2ToYRow = YUY2ToYRow_Any_SSE2; if (IS_ALIGNED(width, 16)) { YUY2ToUV422Row = YUY2ToUV422Row_SSE2; YUY2ToYRow = YUY2ToYRow_SSE2; } } #endif #if defined(HAS_YUY2TOYROW_AVX2) if (TestCpuFlag(kCpuHasAVX2)) { YUY2ToUV422Row = YUY2ToUV422Row_Any_AVX2; YUY2ToYRow = YUY2ToYRow_Any_AVX2; if (IS_ALIGNED(width, 32)) { YUY2ToUV422Row = YUY2ToUV422Row_AVX2; YUY2ToYRow = YUY2ToYRow_AVX2; } } #endif #if defined(HAS_YUY2TOYROW_NEON) if (TestCpuFlag(kCpuHasNEON)) { YUY2ToYRow = YUY2ToYRow_Any_NEON; if (width >= 16) { YUY2ToUV422Row = YUY2ToUV422Row_Any_NEON; } if (IS_ALIGNED(width, 16)) { YUY2ToYRow = YUY2ToYRow_NEON; YUY2ToUV422Row = YUY2ToUV422Row_NEON; } } #endif for (y = 0; y < height; ++y) { YUY2ToUV422Row(src_yuy2, dst_u, dst_v, width); YUY2ToYRow(src_yuy2, dst_y, width); src_yuy2 += src_stride_yuy2; dst_y += dst_stride_y; dst_u += dst_stride_u; dst_v += dst_stride_v; } return 0; } // Convert UYVY to I422. LIBYUV_API int UYVYToI422(const uint8* src_uyvy, int src_stride_uyvy, uint8* dst_y, int dst_stride_y, uint8* dst_u, int dst_stride_u, uint8* dst_v, int dst_stride_v, int width, int height) { int y; void (*UYVYToUV422Row)(const uint8* src_uyvy, uint8* dst_u, uint8* dst_v, int width) = UYVYToUV422Row_C; void (*UYVYToYRow)(const uint8* src_uyvy, uint8* dst_y, int width) = UYVYToYRow_C; // Negative height means invert the image. if (height < 0) { height = -height; src_uyvy = src_uyvy + (height - 1) * src_stride_uyvy; src_stride_uyvy = -src_stride_uyvy; } // Coalesce rows. if (src_stride_uyvy == width * 2 && dst_stride_y == width && dst_stride_u * 2 == width && dst_stride_v * 2 == width) { width *= height; height = 1; src_stride_uyvy = dst_stride_y = dst_stride_u = dst_stride_v = 0; } #if defined(HAS_UYVYTOYROW_SSE2) if (TestCpuFlag(kCpuHasSSE2)) { UYVYToUV422Row = UYVYToUV422Row_Any_SSE2; UYVYToYRow = UYVYToYRow_Any_SSE2; if (IS_ALIGNED(width, 16)) { UYVYToUV422Row = UYVYToUV422Row_SSE2; UYVYToYRow = UYVYToYRow_SSE2; } } #endif #if defined(HAS_UYVYTOYROW_AVX2) if (TestCpuFlag(kCpuHasAVX2)) { UYVYToUV422Row = UYVYToUV422Row_Any_AVX2; UYVYToYRow = UYVYToYRow_Any_AVX2; if (IS_ALIGNED(width, 32)) { UYVYToUV422Row = UYVYToUV422Row_AVX2; UYVYToYRow = UYVYToYRow_AVX2; } } #endif #if defined(HAS_UYVYTOYROW_NEON) if (TestCpuFlag(kCpuHasNEON)) { UYVYToYRow = UYVYToYRow_Any_NEON; if (width >= 16) { UYVYToUV422Row = UYVYToUV422Row_Any_NEON; } if (IS_ALIGNED(width, 16)) { UYVYToYRow = UYVYToYRow_NEON; UYVYToUV422Row = UYVYToUV422Row_NEON; } } #endif for (y = 0; y < height; ++y) { UYVYToUV422Row(src_uyvy, dst_u, dst_v, width); UYVYToYRow(src_uyvy, dst_y, width); src_uyvy += src_stride_uyvy; dst_y += dst_stride_y; dst_u += dst_stride_u; dst_v += dst_stride_v; } return 0; } // Mirror I400 with optional flipping LIBYUV_API int I400Mirror(const uint8* src_y, int src_stride_y, uint8* dst_y, int dst_stride_y, int width, int height) { if (!src_y || !dst_y || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; src_y = src_y + (height - 1) * src_stride_y; src_stride_y = -src_stride_y; } MirrorPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height); return 0; } // Mirror I420 with optional flipping LIBYUV_API int I420Mirror(const uint8* src_y, int src_stride_y, const uint8* src_u, int src_stride_u, const uint8* src_v, int src_stride_v, uint8* dst_y, int dst_stride_y, uint8* dst_u, int dst_stride_u, uint8* dst_v, int dst_stride_v, int width, int height) { int halfwidth = (width + 1) >> 1; int halfheight = (height + 1) >> 1; if (!src_y || !src_u || !src_v || !dst_y || !dst_u || !dst_v || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; halfheight = (height + 1) >> 1; src_y = src_y + (height - 1) * src_stride_y; src_u = src_u + (halfheight - 1) * src_stride_u; src_v = src_v + (halfheight - 1) * src_stride_v; src_stride_y = -src_stride_y; src_stride_u = -src_stride_u; src_stride_v = -src_stride_v; } if (dst_y) { MirrorPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height); } MirrorPlane(src_u, src_stride_u, dst_u, dst_stride_u, halfwidth, halfheight); MirrorPlane(src_v, src_stride_v, dst_v, dst_stride_v, halfwidth, halfheight); return 0; } // ARGB mirror. LIBYUV_API int ARGBMirror(const uint8* src_argb, int src_stride_argb, uint8* dst_argb, int dst_stride_argb, int width, int height) { int y; void (*ARGBMirrorRow)(const uint8* src, uint8* dst, int width) = ARGBMirrorRow_C; if (!src_argb || !dst_argb || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; src_argb = src_argb + (height - 1) * src_stride_argb; src_stride_argb = -src_stride_argb; } #if defined(HAS_ARGBMIRRORROW_NEON) if (TestCpuFlag(kCpuHasNEON)) { ARGBMirrorRow = ARGBMirrorRow_Any_NEON; if (IS_ALIGNED(width, 4)) { ARGBMirrorRow = ARGBMirrorRow_NEON; } } #endif #if defined(HAS_ARGBMIRRORROW_SSE2) if (TestCpuFlag(kCpuHasSSE2)) { ARGBMirrorRow = ARGBMirrorRow_Any_SSE2; if (IS_ALIGNED(width, 4)) { ARGBMirrorRow = ARGBMirrorRow_SSE2; } } #endif #if defined(HAS_ARGBMIRRORROW_AVX2) if (TestCpuFlag(kCpuHasAVX2)) { ARGBMirrorRow = ARGBMirrorRow_Any_AVX2; if (IS_ALIGNED(width, 8)) { ARGBMirrorRow = ARGBMirrorRow_AVX2; } } #endif // Mirror plane for (y = 0; y < height; ++y) { ARGBMirrorRow(src_argb, dst_argb, width); src_argb += src_stride_argb; dst_argb += dst_stride_argb; } return 0; } // Get a blender that optimized for the CPU and pixel count. // As there are 6 blenders to choose from, the caller should try to use // the same blend function for all pixels if possible. LIBYUV_API ARGBBlendRow GetARGBBlend() { void (*ARGBBlendRow)(const uint8* src_argb, const uint8* src_argb1, uint8* dst_argb, int width) = ARGBBlendRow_C; #if defined(HAS_ARGBBLENDROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3)) { ARGBBlendRow = ARGBBlendRow_SSSE3; return ARGBBlendRow; } #endif #if defined(HAS_ARGBBLENDROW_NEON) if (TestCpuFlag(kCpuHasNEON)) { ARGBBlendRow = ARGBBlendRow_NEON; } #endif return ARGBBlendRow; } // Alpha Blend 2 ARGB images and store to destination. LIBYUV_API int ARGBBlend(const uint8* src_argb0, int src_stride_argb0, const uint8* src_argb1, int src_stride_argb1, uint8* dst_argb, int dst_stride_argb, int width, int height) { int y; void (*ARGBBlendRow)(const uint8* src_argb, const uint8* src_argb1, uint8* dst_argb, int width) = GetARGBBlend(); if (!src_argb0 || !src_argb1 || !dst_argb || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; dst_argb = dst_argb + (height - 1) * dst_stride_argb; dst_stride_argb = -dst_stride_argb; } // Coalesce rows. if (src_stride_argb0 == width * 4 && src_stride_argb1 == width * 4 && dst_stride_argb == width * 4) { width *= height; height = 1; src_stride_argb0 = src_stride_argb1 = dst_stride_argb = 0; } for (y = 0; y < height; ++y) { ARGBBlendRow(src_argb0, src_argb1, dst_argb, width); src_argb0 += src_stride_argb0; src_argb1 += src_stride_argb1; dst_argb += dst_stride_argb; } return 0; } // Alpha Blend plane and store to destination. LIBYUV_API int BlendPlane(const uint8* src_y0, int src_stride_y0, const uint8* src_y1, int src_stride_y1, const uint8* alpha, int alpha_stride, uint8* dst_y, int dst_stride_y, int width, int height) { int y; void (*BlendPlaneRow)(const uint8* src0, const uint8* src1, const uint8* alpha, uint8* dst, int width) = BlendPlaneRow_C; if (!src_y0 || !src_y1 || !alpha || !dst_y || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; dst_y = dst_y + (height - 1) * dst_stride_y; dst_stride_y = -dst_stride_y; } // Coalesce rows for Y plane. if (src_stride_y0 == width && src_stride_y1 == width && alpha_stride == width && dst_stride_y == width) { width *= height; height = 1; src_stride_y0 = src_stride_y1 = alpha_stride = dst_stride_y = 0; } #if defined(HAS_BLENDPLANEROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3)) { BlendPlaneRow = BlendPlaneRow_Any_SSSE3; if (IS_ALIGNED(width, 8)) { BlendPlaneRow = BlendPlaneRow_SSSE3; } } #endif #if defined(HAS_BLENDPLANEROW_AVX2) if (TestCpuFlag(kCpuHasAVX2)) { BlendPlaneRow = BlendPlaneRow_Any_AVX2; if (IS_ALIGNED(width, 32)) { BlendPlaneRow = BlendPlaneRow_AVX2; } } #endif for (y = 0; y < height; ++y) { BlendPlaneRow(src_y0, src_y1, alpha, dst_y, width); src_y0 += src_stride_y0; src_y1 += src_stride_y1; alpha += alpha_stride; dst_y += dst_stride_y; } return 0; } #define MAXTWIDTH 2048 // Alpha Blend YUV images and store to destination. LIBYUV_API int I420Blend(const uint8* src_y0, int src_stride_y0, const uint8* src_u0, int src_stride_u0, const uint8* src_v0, int src_stride_v0, const uint8* src_y1, int src_stride_y1, const uint8* src_u1, int src_stride_u1, const uint8* src_v1, int src_stride_v1, const uint8* alpha, int alpha_stride, uint8* dst_y, int dst_stride_y, uint8* dst_u, int dst_stride_u, uint8* dst_v, int dst_stride_v, int width, int height) { int y; // Half width/height for UV. int halfwidth = (width + 1) >> 1; void (*BlendPlaneRow)(const uint8* src0, const uint8* src1, const uint8* alpha, uint8* dst, int width) = BlendPlaneRow_C; void (*ScaleRowDown2)(const uint8* src_ptr, ptrdiff_t src_stride, uint8* dst_ptr, int dst_width) = ScaleRowDown2Box_C; if (!src_y0 || !src_u0 || !src_v0 || !src_y1 || !src_u1 || !src_v1 || !alpha || !dst_y || !dst_u || !dst_v || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; dst_y = dst_y + (height - 1) * dst_stride_y; dst_stride_y = -dst_stride_y; } // Blend Y plane. BlendPlane(src_y0, src_stride_y0, src_y1, src_stride_y1, alpha, alpha_stride, dst_y, dst_stride_y, width, height); #if defined(HAS_BLENDPLANEROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3)) { BlendPlaneRow = BlendPlaneRow_Any_SSSE3; if (IS_ALIGNED(halfwidth, 8)) { BlendPlaneRow = BlendPlaneRow_SSSE3; } } #endif #if defined(HAS_BLENDPLANEROW_AVX2) if (TestCpuFlag(kCpuHasAVX2)) { BlendPlaneRow = BlendPlaneRow_Any_AVX2; if (IS_ALIGNED(halfwidth, 32)) { BlendPlaneRow = BlendPlaneRow_AVX2; } } #endif if (!IS_ALIGNED(width, 2)) { ScaleRowDown2 = ScaleRowDown2Box_Odd_C; } #if defined(HAS_SCALEROWDOWN2_NEON) if (TestCpuFlag(kCpuHasNEON)) { ScaleRowDown2 = ScaleRowDown2Box_Odd_NEON; if (IS_ALIGNED(width, 2)) { ScaleRowDown2 = ScaleRowDown2Box_Any_NEON; if (IS_ALIGNED(halfwidth, 16)) { ScaleRowDown2 = ScaleRowDown2Box_NEON; } } } #endif #if defined(HAS_SCALEROWDOWN2_SSSE3) if (TestCpuFlag(kCpuHasSSSE3)) { ScaleRowDown2 = ScaleRowDown2Box_Odd_SSSE3; if (IS_ALIGNED(width, 2)) { ScaleRowDown2 = ScaleRowDown2Box_Any_SSSE3; if (IS_ALIGNED(halfwidth, 16)) { ScaleRowDown2 = ScaleRowDown2Box_SSSE3; } } } #endif #if defined(HAS_SCALEROWDOWN2_AVX2) if (TestCpuFlag(kCpuHasAVX2)) { ScaleRowDown2 = ScaleRowDown2Box_Odd_AVX2; if (IS_ALIGNED(width, 2)) { ScaleRowDown2 = ScaleRowDown2Box_Any_AVX2; if (IS_ALIGNED(halfwidth, 32)) { ScaleRowDown2 = ScaleRowDown2Box_AVX2; } } } #endif // Row buffer for intermediate alpha pixels. align_buffer_64(halfalpha, halfwidth); for (y = 0; y < height; y += 2) { // last row of odd height image use 1 row of alpha instead of 2. if (y == (height - 1)) { alpha_stride = 0; } // Subsample 2 rows of UV to half width and half height. ScaleRowDown2(alpha, alpha_stride, halfalpha, halfwidth); alpha += alpha_stride * 2; BlendPlaneRow(src_u0, src_u1, halfalpha, dst_u, halfwidth); BlendPlaneRow(src_v0, src_v1, halfalpha, dst_v, halfwidth); src_u0 += src_stride_u0; src_u1 += src_stride_u1; dst_u += dst_stride_u; src_v0 += src_stride_v0; src_v1 += src_stride_v1; dst_v += dst_stride_v; } free_aligned_buffer_64(halfalpha); return 0; } // Multiply 2 ARGB images and store to destination. LIBYUV_API int ARGBMultiply(const uint8* src_argb0, int src_stride_argb0, const uint8* src_argb1, int src_stride_argb1, uint8* dst_argb, int dst_stride_argb, int width, int height) { int y; void (*ARGBMultiplyRow)(const uint8* src0, const uint8* src1, uint8* dst, int width) = ARGBMultiplyRow_C; if (!src_argb0 || !src_argb1 || !dst_argb || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; dst_argb = dst_argb + (height - 1) * dst_stride_argb; dst_stride_argb = -dst_stride_argb; } // Coalesce rows. if (src_stride_argb0 == width * 4 && src_stride_argb1 == width * 4 && dst_stride_argb == width * 4) { width *= height; height = 1; src_stride_argb0 = src_stride_argb1 = dst_stride_argb = 0; } #if defined(HAS_ARGBMULTIPLYROW_SSE2) if (TestCpuFlag(kCpuHasSSE2)) { ARGBMultiplyRow = ARGBMultiplyRow_Any_SSE2; if (IS_ALIGNED(width, 4)) { ARGBMultiplyRow = ARGBMultiplyRow_SSE2; } } #endif #if defined(HAS_ARGBMULTIPLYROW_AVX2) if (TestCpuFlag(kCpuHasAVX2)) { ARGBMultiplyRow = ARGBMultiplyRow_Any_AVX2; if (IS_ALIGNED(width, 8)) { ARGBMultiplyRow = ARGBMultiplyRow_AVX2; } } #endif #if defined(HAS_ARGBMULTIPLYROW_NEON) if (TestCpuFlag(kCpuHasNEON)) { ARGBMultiplyRow = ARGBMultiplyRow_Any_NEON; if (IS_ALIGNED(width, 8)) { ARGBMultiplyRow = ARGBMultiplyRow_NEON; } } #endif // Multiply plane for (y = 0; y < height; ++y) { ARGBMultiplyRow(src_argb0, src_argb1, dst_argb, width); src_argb0 += src_stride_argb0; src_argb1 += src_stride_argb1; dst_argb += dst_stride_argb; } return 0; } // Add 2 ARGB images and store to destination. LIBYUV_API int ARGBAdd(const uint8* src_argb0, int src_stride_argb0, const uint8* src_argb1, int src_stride_argb1, uint8* dst_argb, int dst_stride_argb, int width, int height) { int y; void (*ARGBAddRow)(const uint8* src0, const uint8* src1, uint8* dst, int width) = ARGBAddRow_C; if (!src_argb0 || !src_argb1 || !dst_argb || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; dst_argb = dst_argb + (height - 1) * dst_stride_argb; dst_stride_argb = -dst_stride_argb; } // Coalesce rows. if (src_stride_argb0 == width * 4 && src_stride_argb1 == width * 4 && dst_stride_argb == width * 4) { width *= height; height = 1; src_stride_argb0 = src_stride_argb1 = dst_stride_argb = 0; } #if defined(HAS_ARGBADDROW_SSE2) && (defined(_MSC_VER) && !defined(__clang__)) if (TestCpuFlag(kCpuHasSSE2)) { ARGBAddRow = ARGBAddRow_SSE2; } #endif #if defined(HAS_ARGBADDROW_SSE2) && !(defined(_MSC_VER) && !defined(__clang__)) if (TestCpuFlag(kCpuHasSSE2)) { ARGBAddRow = ARGBAddRow_Any_SSE2; if (IS_ALIGNED(width, 4)) { ARGBAddRow = ARGBAddRow_SSE2; } } #endif #if defined(HAS_ARGBADDROW_AVX2) if (TestCpuFlag(kCpuHasAVX2)) { ARGBAddRow = ARGBAddRow_Any_AVX2; if (IS_ALIGNED(width, 8)) { ARGBAddRow = ARGBAddRow_AVX2; } } #endif #if defined(HAS_ARGBADDROW_NEON) if (TestCpuFlag(kCpuHasNEON)) { ARGBAddRow = ARGBAddRow_Any_NEON; if (IS_ALIGNED(width, 8)) { ARGBAddRow = ARGBAddRow_NEON; } } #endif // Add plane for (y = 0; y < height; ++y) { ARGBAddRow(src_argb0, src_argb1, dst_argb, width); src_argb0 += src_stride_argb0; src_argb1 += src_stride_argb1; dst_argb += dst_stride_argb; } return 0; } // Subtract 2 ARGB images and store to destination. LIBYUV_API int ARGBSubtract(const uint8* src_argb0, int src_stride_argb0, const uint8* src_argb1, int src_stride_argb1, uint8* dst_argb, int dst_stride_argb, int width, int height) { int y; void (*ARGBSubtractRow)(const uint8* src0, const uint8* src1, uint8* dst, int width) = ARGBSubtractRow_C; if (!src_argb0 || !src_argb1 || !dst_argb || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; dst_argb = dst_argb + (height - 1) * dst_stride_argb; dst_stride_argb = -dst_stride_argb; } // Coalesce rows. if (src_stride_argb0 == width * 4 && src_stride_argb1 == width * 4 && dst_stride_argb == width * 4) { width *= height; height = 1; src_stride_argb0 = src_stride_argb1 = dst_stride_argb = 0; } #if defined(HAS_ARGBSUBTRACTROW_SSE2) if (TestCpuFlag(kCpuHasSSE2)) { ARGBSubtractRow = ARGBSubtractRow_Any_SSE2; if (IS_ALIGNED(width, 4)) { ARGBSubtractRow = ARGBSubtractRow_SSE2; } } #endif #if defined(HAS_ARGBSUBTRACTROW_AVX2) if (TestCpuFlag(kCpuHasAVX2)) { ARGBSubtractRow = ARGBSubtractRow_Any_AVX2; if (IS_ALIGNED(width, 8)) { ARGBSubtractRow = ARGBSubtractRow_AVX2; } } #endif #if defined(HAS_ARGBSUBTRACTROW_NEON) if (TestCpuFlag(kCpuHasNEON)) { ARGBSubtractRow = ARGBSubtractRow_Any_NEON; if (IS_ALIGNED(width, 8)) { ARGBSubtractRow = ARGBSubtractRow_NEON; } } #endif // Subtract plane for (y = 0; y < height; ++y) { ARGBSubtractRow(src_argb0, src_argb1, dst_argb, width); src_argb0 += src_stride_argb0; src_argb1 += src_stride_argb1; dst_argb += dst_stride_argb; } return 0; } // Convert I422 to RGBA with matrix static int I422ToRGBAMatrix(const uint8* src_y, int src_stride_y, const uint8* src_u, int src_stride_u, const uint8* src_v, int src_stride_v, uint8* dst_rgba, int dst_stride_rgba, const struct YuvConstants* yuvconstants, int width, int height) { int y; void (*I422ToRGBARow)(const uint8* y_buf, const uint8* u_buf, const uint8* v_buf, uint8* rgb_buf, const struct YuvConstants* yuvconstants, int width) = I422ToRGBARow_C; if (!src_y || !src_u || !src_v || !dst_rgba || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; dst_rgba = dst_rgba + (height - 1) * dst_stride_rgba; dst_stride_rgba = -dst_stride_rgba; } #if defined(HAS_I422TORGBAROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3)) { I422ToRGBARow = I422ToRGBARow_Any_SSSE3; if (IS_ALIGNED(width, 8)) { I422ToRGBARow = I422ToRGBARow_SSSE3; } } #endif #if defined(HAS_I422TORGBAROW_AVX2) if (TestCpuFlag(kCpuHasAVX2)) { I422ToRGBARow = I422ToRGBARow_Any_AVX2; if (IS_ALIGNED(width, 16)) { I422ToRGBARow = I422ToRGBARow_AVX2; } } #endif #if defined(HAS_I422TORGBAROW_NEON) if (TestCpuFlag(kCpuHasNEON)) { I422ToRGBARow = I422ToRGBARow_Any_NEON; if (IS_ALIGNED(width, 8)) { I422ToRGBARow = I422ToRGBARow_NEON; } } #endif #if defined(HAS_I422TORGBAROW_DSPR2) if (TestCpuFlag(kCpuHasDSPR2) && IS_ALIGNED(width, 4) && IS_ALIGNED(src_y, 4) && IS_ALIGNED(src_stride_y, 4) && IS_ALIGNED(src_u, 2) && IS_ALIGNED(src_stride_u, 2) && IS_ALIGNED(src_v, 2) && IS_ALIGNED(src_stride_v, 2) && IS_ALIGNED(dst_rgba, 4) && IS_ALIGNED(dst_stride_rgba, 4)) { I422ToRGBARow = I422ToRGBARow_DSPR2; } #endif for (y = 0; y < height; ++y) { I422ToRGBARow(src_y, src_u, src_v, dst_rgba, yuvconstants, width); dst_rgba += dst_stride_rgba; src_y += src_stride_y; src_u += src_stride_u; src_v += src_stride_v; } return 0; } // Convert I422 to RGBA. LIBYUV_API int I422ToRGBA(const uint8* src_y, int src_stride_y, const uint8* src_u, int src_stride_u, const uint8* src_v, int src_stride_v, uint8* dst_rgba, int dst_stride_rgba, int width, int height) { return I422ToRGBAMatrix(src_y, src_stride_y, src_u, src_stride_u, src_v, src_stride_v, dst_rgba, dst_stride_rgba, &kYuvI601Constants, width, height); } // Convert I422 to BGRA. LIBYUV_API int I422ToBGRA(const uint8* src_y, int src_stride_y, const uint8* src_u, int src_stride_u, const uint8* src_v, int src_stride_v, uint8* dst_bgra, int dst_stride_bgra, int width, int height) { return I422ToRGBAMatrix(src_y, src_stride_y, src_v, src_stride_v, // Swap U and V src_u, src_stride_u, dst_bgra, dst_stride_bgra, &kYvuI601Constants, // Use Yvu matrix width, height); } // Convert NV12 to RGB565. LIBYUV_API int NV12ToRGB565(const uint8* src_y, int src_stride_y, const uint8* src_uv, int src_stride_uv, uint8* dst_rgb565, int dst_stride_rgb565, int width, int height) { int y; void (*NV12ToRGB565Row)(const uint8* y_buf, const uint8* uv_buf, uint8* rgb_buf, const struct YuvConstants* yuvconstants, int width) = NV12ToRGB565Row_C; if (!src_y || !src_uv || !dst_rgb565 || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; dst_rgb565 = dst_rgb565 + (height - 1) * dst_stride_rgb565; dst_stride_rgb565 = -dst_stride_rgb565; } #if defined(HAS_NV12TORGB565ROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3)) { NV12ToRGB565Row = NV12ToRGB565Row_Any_SSSE3; if (IS_ALIGNED(width, 8)) { NV12ToRGB565Row = NV12ToRGB565Row_SSSE3; } } #endif #if defined(HAS_NV12TORGB565ROW_AVX2) if (TestCpuFlag(kCpuHasAVX2)) { NV12ToRGB565Row = NV12ToRGB565Row_Any_AVX2; if (IS_ALIGNED(width, 16)) { NV12ToRGB565Row = NV12ToRGB565Row_AVX2; } } #endif #if defined(HAS_NV12TORGB565ROW_NEON) if (TestCpuFlag(kCpuHasNEON)) { NV12ToRGB565Row = NV12ToRGB565Row_Any_NEON; if (IS_ALIGNED(width, 8)) { NV12ToRGB565Row = NV12ToRGB565Row_NEON; } } #endif for (y = 0; y < height; ++y) { NV12ToRGB565Row(src_y, src_uv, dst_rgb565, &kYuvI601Constants, width); dst_rgb565 += dst_stride_rgb565; src_y += src_stride_y; if (y & 1) { src_uv += src_stride_uv; } } return 0; } // Convert RAW to RGB24. LIBYUV_API int RAWToRGB24(const uint8* src_raw, int src_stride_raw, uint8* dst_rgb24, int dst_stride_rgb24, int width, int height) { int y; void (*RAWToRGB24Row)(const uint8* src_rgb, uint8* dst_rgb24, int width) = RAWToRGB24Row_C; if (!src_raw || !dst_rgb24 || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; src_raw = src_raw + (height - 1) * src_stride_raw; src_stride_raw = -src_stride_raw; } // Coalesce rows. if (src_stride_raw == width * 3 && dst_stride_rgb24 == width * 3) { width *= height; height = 1; src_stride_raw = dst_stride_rgb24 = 0; } #if defined(HAS_RAWTORGB24ROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3)) { RAWToRGB24Row = RAWToRGB24Row_Any_SSSE3; if (IS_ALIGNED(width, 8)) { RAWToRGB24Row = RAWToRGB24Row_SSSE3; } } #endif #if defined(HAS_RAWTORGB24ROW_NEON) if (TestCpuFlag(kCpuHasNEON)) { RAWToRGB24Row = RAWToRGB24Row_Any_NEON; if (IS_ALIGNED(width, 8)) { RAWToRGB24Row = RAWToRGB24Row_NEON; } } #endif for (y = 0; y < height; ++y) { RAWToRGB24Row(src_raw, dst_rgb24, width); src_raw += src_stride_raw; dst_rgb24 += dst_stride_rgb24; } return 0; } LIBYUV_API void SetPlane(uint8* dst_y, int dst_stride_y, int width, int height, uint32 value) { int y; void (*SetRow)(uint8* dst, uint8 value, int width) = SetRow_C; if (height < 0) { height = -height; dst_y = dst_y + (height - 1) * dst_stride_y; dst_stride_y = -dst_stride_y; } // Coalesce rows. if (dst_stride_y == width) { width *= height; height = 1; dst_stride_y = 0; } #if defined(HAS_SETROW_NEON) if (TestCpuFlag(kCpuHasNEON)) { SetRow = SetRow_Any_NEON; if (IS_ALIGNED(width, 16)) { SetRow = SetRow_NEON; } } #endif #if defined(HAS_SETROW_X86) if (TestCpuFlag(kCpuHasX86)) { SetRow = SetRow_Any_X86; if (IS_ALIGNED(width, 4)) { SetRow = SetRow_X86; } } #endif #if defined(HAS_SETROW_ERMS) if (TestCpuFlag(kCpuHasERMS)) { SetRow = SetRow_ERMS; } #endif // Set plane for (y = 0; y < height; ++y) { SetRow(dst_y, value, width); dst_y += dst_stride_y; } } // Draw a rectangle into I420 LIBYUV_API int I420Rect(uint8* dst_y, int dst_stride_y, uint8* dst_u, int dst_stride_u, uint8* dst_v, int dst_stride_v, int x, int y, int width, int height, int value_y, int value_u, int value_v) { int halfwidth = (width + 1) >> 1; int halfheight = (height + 1) >> 1; uint8* start_y = dst_y + y * dst_stride_y + x; uint8* start_u = dst_u + (y / 2) * dst_stride_u + (x / 2); uint8* start_v = dst_v + (y / 2) * dst_stride_v + (x / 2); if (!dst_y || !dst_u || !dst_v || width <= 0 || height == 0 || x < 0 || y < 0 || value_y < 0 || value_y > 255 || value_u < 0 || value_u > 255 || value_v < 0 || value_v > 255) { return -1; } SetPlane(start_y, dst_stride_y, width, height, value_y); SetPlane(start_u, dst_stride_u, halfwidth, halfheight, value_u); SetPlane(start_v, dst_stride_v, halfwidth, halfheight, value_v); return 0; } // Draw a rectangle into ARGB LIBYUV_API int ARGBRect(uint8* dst_argb, int dst_stride_argb, int dst_x, int dst_y, int width, int height, uint32 value) { int y; void (*ARGBSetRow)(uint8* dst_argb, uint32 value, int width) = ARGBSetRow_C; if (!dst_argb || width <= 0 || height == 0 || dst_x < 0 || dst_y < 0) { return -1; } if (height < 0) { height = -height; dst_argb = dst_argb + (height - 1) * dst_stride_argb; dst_stride_argb = -dst_stride_argb; } dst_argb += dst_y * dst_stride_argb + dst_x * 4; // Coalesce rows. if (dst_stride_argb == width * 4) { width *= height; height = 1; dst_stride_argb = 0; } #if defined(HAS_ARGBSETROW_NEON) if (TestCpuFlag(kCpuHasNEON)) { ARGBSetRow = ARGBSetRow_Any_NEON; if (IS_ALIGNED(width, 4)) { ARGBSetRow = ARGBSetRow_NEON; } } #endif #if defined(HAS_ARGBSETROW_X86) if (TestCpuFlag(kCpuHasX86)) { ARGBSetRow = ARGBSetRow_X86; } #endif // Set plane for (y = 0; y < height; ++y) { ARGBSetRow(dst_argb, value, width); dst_argb += dst_stride_argb; } return 0; } // Convert unattentuated ARGB to preattenuated ARGB. // An unattenutated ARGB alpha blend uses the formula // p = a * f + (1 - a) * b // where // p is output pixel // f is foreground pixel // b is background pixel // a is alpha value from foreground pixel // An preattenutated ARGB alpha blend uses the formula // p = f + (1 - a) * b // where // f is foreground pixel premultiplied by alpha LIBYUV_API int ARGBAttenuate(const uint8* src_argb, int src_stride_argb, uint8* dst_argb, int dst_stride_argb, int width, int height) { int y; void (*ARGBAttenuateRow)(const uint8* src_argb, uint8* dst_argb, int width) = ARGBAttenuateRow_C; if (!src_argb || !dst_argb || width <= 0 || height == 0) { return -1; } if (height < 0) { height = -height; src_argb = src_argb + (height - 1) * src_stride_argb; src_stride_argb = -src_stride_argb; } // Coalesce rows. if (src_stride_argb == width * 4 && dst_stride_argb == width * 4) { width *= height; height = 1; src_stride_argb = dst_stride_argb = 0; } #if defined(HAS_ARGBATTENUATEROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3)) { ARGBAttenuateRow = ARGBAttenuateRow_Any_SSSE3; if (IS_ALIGNED(width, 4)) { ARGBAttenuateRow = ARGBAttenuateRow_SSSE3; } } #endif #if defined(HAS_ARGBATTENUATEROW_AVX2) if (TestCpuFlag(kCpuHasAVX2)) { ARGBAttenuateRow = ARGBAttenuateRow_Any_AVX2; if (IS_ALIGNED(width, 8)) { ARGBAttenuateRow = ARGBAttenuateRow_AVX2; } } #endif #if defined(HAS_ARGBATTENUATEROW_NEON) if (TestCpuFlag(kCpuHasNEON)) { ARGBAttenuateRow = ARGBAttenuateRow_Any_NEON; if (IS_ALIGNED(width, 8)) { ARGBAttenuateRow = ARGBAttenuateRow_NEON; } } #endif for (y = 0; y < height; ++y) { ARGBAttenuateRow(src_argb, dst_argb, width); src_argb += src_stride_argb; dst_argb += dst_stride_argb; } return 0; } // Convert preattentuated ARGB to unattenuated ARGB. LIBYUV_API int ARGBUnattenuate(const uint8* src_argb, int src_stride_argb, uint8* dst_argb, int dst_stride_argb, int width, int height) { int y; void (*ARGBUnattenuateRow)(const uint8* src_argb, uint8* dst_argb, int width) = ARGBUnattenuateRow_C; if (!src_argb || !dst_argb || width <= 0 || height == 0) { return -1; } if (height < 0) { height = -height; src_argb = src_argb + (height - 1) * src_stride_argb; src_stride_argb = -src_stride_argb; } // Coalesce rows. if (src_stride_argb == width * 4 && dst_stride_argb == width * 4) { width *= height; height = 1; src_stride_argb = dst_stride_argb = 0; } #if defined(HAS_ARGBUNATTENUATEROW_SSE2) if (TestCpuFlag(kCpuHasSSE2)) { ARGBUnattenuateRow = ARGBUnattenuateRow_Any_SSE2; if (IS_ALIGNED(width, 4)) { ARGBUnattenuateRow = ARGBUnattenuateRow_SSE2; } } #endif #if defined(HAS_ARGBUNATTENUATEROW_AVX2) if (TestCpuFlag(kCpuHasAVX2)) { ARGBUnattenuateRow = ARGBUnattenuateRow_Any_AVX2; if (IS_ALIGNED(width, 8)) { ARGBUnattenuateRow = ARGBUnattenuateRow_AVX2; } } #endif // TODO(fbarchard): Neon version. for (y = 0; y < height; ++y) { ARGBUnattenuateRow(src_argb, dst_argb, width); src_argb += src_stride_argb; dst_argb += dst_stride_argb; } return 0; } // Convert ARGB to Grayed ARGB. LIBYUV_API int ARGBGrayTo(const uint8* src_argb, int src_stride_argb, uint8* dst_argb, int dst_stride_argb, int width, int height) { int y; void (*ARGBGrayRow)(const uint8* src_argb, uint8* dst_argb, int width) = ARGBGrayRow_C; if (!src_argb || !dst_argb || width <= 0 || height == 0) { return -1; } if (height < 0) { height = -height; src_argb = src_argb + (height - 1) * src_stride_argb; src_stride_argb = -src_stride_argb; } // Coalesce rows. if (src_stride_argb == width * 4 && dst_stride_argb == width * 4) { width *= height; height = 1; src_stride_argb = dst_stride_argb = 0; } #if defined(HAS_ARGBGRAYROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 8)) { ARGBGrayRow = ARGBGrayRow_SSSE3; } #endif #if defined(HAS_ARGBGRAYROW_NEON) if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 8)) { ARGBGrayRow = ARGBGrayRow_NEON; } #endif for (y = 0; y < height; ++y) { ARGBGrayRow(src_argb, dst_argb, width); src_argb += src_stride_argb; dst_argb += dst_stride_argb; } return 0; } // Make a rectangle of ARGB gray scale. LIBYUV_API int ARGBGray(uint8* dst_argb, int dst_stride_argb, int dst_x, int dst_y, int width, int height) { int y; void (*ARGBGrayRow)(const uint8* src_argb, uint8* dst_argb, int width) = ARGBGrayRow_C; uint8* dst = dst_argb + dst_y * dst_stride_argb + dst_x * 4; if (!dst_argb || width <= 0 || height <= 0 || dst_x < 0 || dst_y < 0) { return -1; } // Coalesce rows. if (dst_stride_argb == width * 4) { width *= height; height = 1; dst_stride_argb = 0; } #if defined(HAS_ARGBGRAYROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 8)) { ARGBGrayRow = ARGBGrayRow_SSSE3; } #endif #if defined(HAS_ARGBGRAYROW_NEON) if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 8)) { ARGBGrayRow = ARGBGrayRow_NEON; } #endif for (y = 0; y < height; ++y) { ARGBGrayRow(dst, dst, width); dst += dst_stride_argb; } return 0; } // Make a rectangle of ARGB Sepia tone. LIBYUV_API int ARGBSepia(uint8* dst_argb, int dst_stride_argb, int dst_x, int dst_y, int width, int height) { int y; void (*ARGBSepiaRow)(uint8* dst_argb, int width) = ARGBSepiaRow_C; uint8* dst = dst_argb + dst_y * dst_stride_argb + dst_x * 4; if (!dst_argb || width <= 0 || height <= 0 || dst_x < 0 || dst_y < 0) { return -1; } // Coalesce rows. if (dst_stride_argb == width * 4) { width *= height; height = 1; dst_stride_argb = 0; } #if defined(HAS_ARGBSEPIAROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 8)) { ARGBSepiaRow = ARGBSepiaRow_SSSE3; } #endif #if defined(HAS_ARGBSEPIAROW_NEON) if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 8)) { ARGBSepiaRow = ARGBSepiaRow_NEON; } #endif for (y = 0; y < height; ++y) { ARGBSepiaRow(dst, width); dst += dst_stride_argb; } return 0; } // Apply a 4x4 matrix to each ARGB pixel. // Note: Normally for shading, but can be used to swizzle or invert. LIBYUV_API int ARGBColorMatrix(const uint8* src_argb, int src_stride_argb, uint8* dst_argb, int dst_stride_argb, const int8* matrix_argb, int width, int height) { int y; void (*ARGBColorMatrixRow)(const uint8* src_argb, uint8* dst_argb, const int8* matrix_argb, int width) = ARGBColorMatrixRow_C; if (!src_argb || !dst_argb || !matrix_argb || width <= 0 || height == 0) { return -1; } if (height < 0) { height = -height; src_argb = src_argb + (height - 1) * src_stride_argb; src_stride_argb = -src_stride_argb; } // Coalesce rows. if (src_stride_argb == width * 4 && dst_stride_argb == width * 4) { width *= height; height = 1; src_stride_argb = dst_stride_argb = 0; } #if defined(HAS_ARGBCOLORMATRIXROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 8)) { ARGBColorMatrixRow = ARGBColorMatrixRow_SSSE3; } #endif #if defined(HAS_ARGBCOLORMATRIXROW_NEON) if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 8)) { ARGBColorMatrixRow = ARGBColorMatrixRow_NEON; } #endif for (y = 0; y < height; ++y) { ARGBColorMatrixRow(src_argb, dst_argb, matrix_argb, width); src_argb += src_stride_argb; dst_argb += dst_stride_argb; } return 0; } // Apply a 4x3 matrix to each ARGB pixel. // Deprecated. LIBYUV_API int RGBColorMatrix(uint8* dst_argb, int dst_stride_argb, const int8* matrix_rgb, int dst_x, int dst_y, int width, int height) { SIMD_ALIGNED(int8 matrix_argb[16]); uint8* dst = dst_argb + dst_y * dst_stride_argb + dst_x * 4; if (!dst_argb || !matrix_rgb || width <= 0 || height <= 0 || dst_x < 0 || dst_y < 0) { return -1; } // Convert 4x3 7 bit matrix to 4x4 6 bit matrix. matrix_argb[0] = matrix_rgb[0] / 2; matrix_argb[1] = matrix_rgb[1] / 2; matrix_argb[2] = matrix_rgb[2] / 2; matrix_argb[3] = matrix_rgb[3] / 2; matrix_argb[4] = matrix_rgb[4] / 2; matrix_argb[5] = matrix_rgb[5] / 2; matrix_argb[6] = matrix_rgb[6] / 2; matrix_argb[7] = matrix_rgb[7] / 2; matrix_argb[8] = matrix_rgb[8] / 2; matrix_argb[9] = matrix_rgb[9] / 2; matrix_argb[10] = matrix_rgb[10] / 2; matrix_argb[11] = matrix_rgb[11] / 2; matrix_argb[14] = matrix_argb[13] = matrix_argb[12] = 0; matrix_argb[15] = 64; // 1.0 return ARGBColorMatrix((const uint8*)(dst), dst_stride_argb, dst, dst_stride_argb, &matrix_argb[0], width, height); } // Apply a color table each ARGB pixel. // Table contains 256 ARGB values. LIBYUV_API int ARGBColorTable(uint8* dst_argb, int dst_stride_argb, const uint8* table_argb, int dst_x, int dst_y, int width, int height) { int y; void (*ARGBColorTableRow)(uint8* dst_argb, const uint8* table_argb, int width) = ARGBColorTableRow_C; uint8* dst = dst_argb + dst_y * dst_stride_argb + dst_x * 4; if (!dst_argb || !table_argb || width <= 0 || height <= 0 || dst_x < 0 || dst_y < 0) { return -1; } // Coalesce rows. if (dst_stride_argb == width * 4) { width *= height; height = 1; dst_stride_argb = 0; } #if defined(HAS_ARGBCOLORTABLEROW_X86) if (TestCpuFlag(kCpuHasX86)) { ARGBColorTableRow = ARGBColorTableRow_X86; } #endif for (y = 0; y < height; ++y) { ARGBColorTableRow(dst, table_argb, width); dst += dst_stride_argb; } return 0; } // Apply a color table each ARGB pixel but preserve destination alpha. // Table contains 256 ARGB values. LIBYUV_API int RGBColorTable(uint8* dst_argb, int dst_stride_argb, const uint8* table_argb, int dst_x, int dst_y, int width, int height) { int y; void (*RGBColorTableRow)(uint8* dst_argb, const uint8* table_argb, int width) = RGBColorTableRow_C; uint8* dst = dst_argb + dst_y * dst_stride_argb + dst_x * 4; if (!dst_argb || !table_argb || width <= 0 || height <= 0 || dst_x < 0 || dst_y < 0) { return -1; } // Coalesce rows. if (dst_stride_argb == width * 4) { width *= height; height = 1; dst_stride_argb = 0; } #if defined(HAS_RGBCOLORTABLEROW_X86) if (TestCpuFlag(kCpuHasX86)) { RGBColorTableRow = RGBColorTableRow_X86; } #endif for (y = 0; y < height; ++y) { RGBColorTableRow(dst, table_argb, width); dst += dst_stride_argb; } return 0; } // ARGBQuantize is used to posterize art. // e.g. rgb / qvalue * qvalue + qvalue / 2 // But the low levels implement efficiently with 3 parameters, and could be // used for other high level operations. // dst_argb[0] = (b * scale >> 16) * interval_size + interval_offset; // where scale is 1 / interval_size as a fixed point value. // The divide is replaces with a multiply by reciprocal fixed point multiply. // Caveat - although SSE2 saturates, the C function does not and should be used // with care if doing anything but quantization. LIBYUV_API int ARGBQuantize(uint8* dst_argb, int dst_stride_argb, int scale, int interval_size, int interval_offset, int dst_x, int dst_y, int width, int height) { int y; void (*ARGBQuantizeRow)(uint8* dst_argb, int scale, int interval_size, int interval_offset, int width) = ARGBQuantizeRow_C; uint8* dst = dst_argb + dst_y * dst_stride_argb + dst_x * 4; if (!dst_argb || width <= 0 || height <= 0 || dst_x < 0 || dst_y < 0 || interval_size < 1 || interval_size > 255) { return -1; } // Coalesce rows. if (dst_stride_argb == width * 4) { width *= height; height = 1; dst_stride_argb = 0; } #if defined(HAS_ARGBQUANTIZEROW_SSE2) if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 4)) { ARGBQuantizeRow = ARGBQuantizeRow_SSE2; } #endif #if defined(HAS_ARGBQUANTIZEROW_NEON) if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 8)) { ARGBQuantizeRow = ARGBQuantizeRow_NEON; } #endif for (y = 0; y < height; ++y) { ARGBQuantizeRow(dst, scale, interval_size, interval_offset, width); dst += dst_stride_argb; } return 0; } // Computes table of cumulative sum for image where the value is the sum // of all values above and to the left of the entry. Used by ARGBBlur. LIBYUV_API int ARGBComputeCumulativeSum(const uint8* src_argb, int src_stride_argb, int32* dst_cumsum, int dst_stride32_cumsum, int width, int height) { int y; void (*ComputeCumulativeSumRow)(const uint8* row, int32* cumsum, const int32* previous_cumsum, int width) = ComputeCumulativeSumRow_C; int32* previous_cumsum = dst_cumsum; if (!dst_cumsum || !src_argb || width <= 0 || height <= 0) { return -1; } #if defined(HAS_CUMULATIVESUMTOAVERAGEROW_SSE2) if (TestCpuFlag(kCpuHasSSE2)) { ComputeCumulativeSumRow = ComputeCumulativeSumRow_SSE2; } #endif memset(dst_cumsum, 0, width * sizeof(dst_cumsum[0]) * 4); // 4 int per pixel. for (y = 0; y < height; ++y) { ComputeCumulativeSumRow(src_argb, dst_cumsum, previous_cumsum, width); previous_cumsum = dst_cumsum; dst_cumsum += dst_stride32_cumsum; src_argb += src_stride_argb; } return 0; } // Blur ARGB image. // Caller should allocate CumulativeSum table of width * height * 16 bytes // aligned to 16 byte boundary. height can be radius * 2 + 2 to save memory // as the buffer is treated as circular. LIBYUV_API int ARGBBlur(const uint8* src_argb, int src_stride_argb, uint8* dst_argb, int dst_stride_argb, int32* dst_cumsum, int dst_stride32_cumsum, int width, int height, int radius) { int y; void (*ComputeCumulativeSumRow)(const uint8 *row, int32 *cumsum, const int32* previous_cumsum, int width) = ComputeCumulativeSumRow_C; void (*CumulativeSumToAverageRow)(const int32* topleft, const int32* botleft, int width, int area, uint8* dst, int count) = CumulativeSumToAverageRow_C; int32* cumsum_bot_row; int32* max_cumsum_bot_row; int32* cumsum_top_row; if (!src_argb || !dst_argb || width <= 0 || height == 0) { return -1; } if (height < 0) { height = -height; src_argb = src_argb + (height - 1) * src_stride_argb; src_stride_argb = -src_stride_argb; } if (radius > height) { radius = height; } if (radius > (width / 2 - 1)) { radius = width / 2 - 1; } if (radius <= 0) { return -1; } #if defined(HAS_CUMULATIVESUMTOAVERAGEROW_SSE2) if (TestCpuFlag(kCpuHasSSE2)) { ComputeCumulativeSumRow = ComputeCumulativeSumRow_SSE2; CumulativeSumToAverageRow = CumulativeSumToAverageRow_SSE2; } #endif // Compute enough CumulativeSum for first row to be blurred. After this // one row of CumulativeSum is updated at a time. ARGBComputeCumulativeSum(src_argb, src_stride_argb, dst_cumsum, dst_stride32_cumsum, width, radius); src_argb = src_argb + radius * src_stride_argb; cumsum_bot_row = &dst_cumsum[(radius - 1) * dst_stride32_cumsum]; max_cumsum_bot_row = &dst_cumsum[(radius * 2 + 2) * dst_stride32_cumsum]; cumsum_top_row = &dst_cumsum[0]; for (y = 0; y < height; ++y) { int top_y = ((y - radius - 1) >= 0) ? (y - radius - 1) : 0; int bot_y = ((y + radius) < height) ? (y + radius) : (height - 1); int area = radius * (bot_y - top_y); int boxwidth = radius * 4; int x; int n; // Increment cumsum_top_row pointer with circular buffer wrap around. if (top_y) { cumsum_top_row += dst_stride32_cumsum; if (cumsum_top_row >= max_cumsum_bot_row) { cumsum_top_row = dst_cumsum; } } // Increment cumsum_bot_row pointer with circular buffer wrap around and // then fill in a row of CumulativeSum. if ((y + radius) < height) { const int32* prev_cumsum_bot_row = cumsum_bot_row; cumsum_bot_row += dst_stride32_cumsum; if (cumsum_bot_row >= max_cumsum_bot_row) { cumsum_bot_row = dst_cumsum; } ComputeCumulativeSumRow(src_argb, cumsum_bot_row, prev_cumsum_bot_row, width); src_argb += src_stride_argb; } // Left clipped. for (x = 0; x < radius + 1; ++x) { CumulativeSumToAverageRow(cumsum_top_row, cumsum_bot_row, boxwidth, area, &dst_argb[x * 4], 1); area += (bot_y - top_y); boxwidth += 4; } // Middle unclipped. n = (width - 1) - radius - x + 1; CumulativeSumToAverageRow(cumsum_top_row, cumsum_bot_row, boxwidth, area, &dst_argb[x * 4], n); // Right clipped. for (x += n; x <= width - 1; ++x) { area -= (bot_y - top_y); boxwidth -= 4; CumulativeSumToAverageRow(cumsum_top_row + (x - radius - 1) * 4, cumsum_bot_row + (x - radius - 1) * 4, boxwidth, area, &dst_argb[x * 4], 1); } dst_argb += dst_stride_argb; } return 0; } // Multiply ARGB image by a specified ARGB value. LIBYUV_API int ARGBShade(const uint8* src_argb, int src_stride_argb, uint8* dst_argb, int dst_stride_argb, int width, int height, uint32 value) { int y; void (*ARGBShadeRow)(const uint8* src_argb, uint8* dst_argb, int width, uint32 value) = ARGBShadeRow_C; if (!src_argb || !dst_argb || width <= 0 || height == 0 || value == 0u) { return -1; } if (height < 0) { height = -height; src_argb = src_argb + (height - 1) * src_stride_argb; src_stride_argb = -src_stride_argb; } // Coalesce rows. if (src_stride_argb == width * 4 && dst_stride_argb == width * 4) { width *= height; height = 1; src_stride_argb = dst_stride_argb = 0; } #if defined(HAS_ARGBSHADEROW_SSE2) if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 4)) { ARGBShadeRow = ARGBShadeRow_SSE2; } #endif #if defined(HAS_ARGBSHADEROW_NEON) if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 8)) { ARGBShadeRow = ARGBShadeRow_NEON; } #endif for (y = 0; y < height; ++y) { ARGBShadeRow(src_argb, dst_argb, width, value); src_argb += src_stride_argb; dst_argb += dst_stride_argb; } return 0; } // Interpolate 2 planes by specified amount (0 to 255). LIBYUV_API int InterpolatePlane(const uint8* src0, int src_stride0, const uint8* src1, int src_stride1, uint8* dst, int dst_stride, int width, int height, int interpolation) { int y; void (*InterpolateRow)(uint8* dst_ptr, const uint8* src_ptr, ptrdiff_t src_stride, int dst_width, int source_y_fraction) = InterpolateRow_C; if (!src0 || !src1 || !dst || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; dst = dst + (height - 1) * dst_stride; dst_stride = -dst_stride; } // Coalesce rows. if (src_stride0 == width && src_stride1 == width && dst_stride == width) { width *= height; height = 1; src_stride0 = src_stride1 = dst_stride = 0; } #if defined(HAS_INTERPOLATEROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3)) { InterpolateRow = InterpolateRow_Any_SSSE3; if (IS_ALIGNED(width, 16)) { InterpolateRow = InterpolateRow_SSSE3; } } #endif #if defined(HAS_INTERPOLATEROW_AVX2) if (TestCpuFlag(kCpuHasAVX2)) { InterpolateRow = InterpolateRow_Any_AVX2; if (IS_ALIGNED(width, 32)) { InterpolateRow = InterpolateRow_AVX2; } } #endif #if defined(HAS_INTERPOLATEROW_NEON) if (TestCpuFlag(kCpuHasNEON)) { InterpolateRow = InterpolateRow_Any_NEON; if (IS_ALIGNED(width, 16)) { InterpolateRow = InterpolateRow_NEON; } } #endif #if defined(HAS_INTERPOLATEROW_DSPR2) if (TestCpuFlag(kCpuHasDSPR2) && IS_ALIGNED(src0, 4) && IS_ALIGNED(src_stride0, 4) && IS_ALIGNED(src1, 4) && IS_ALIGNED(src_stride1, 4) && IS_ALIGNED(dst, 4) && IS_ALIGNED(dst_stride, 4) && IS_ALIGNED(width, 4)) { InterpolateRow = InterpolateRow_DSPR2; } #endif for (y = 0; y < height; ++y) { InterpolateRow(dst, src0, src1 - src0, width, interpolation); src0 += src_stride0; src1 += src_stride1; dst += dst_stride; } return 0; } // Interpolate 2 ARGB images by specified amount (0 to 255). LIBYUV_API int ARGBInterpolate(const uint8* src_argb0, int src_stride_argb0, const uint8* src_argb1, int src_stride_argb1, uint8* dst_argb, int dst_stride_argb, int width, int height, int interpolation) { return InterpolatePlane(src_argb0, src_stride_argb0, src_argb1, src_stride_argb1, dst_argb, dst_stride_argb, width * 4, height, interpolation); } // Interpolate 2 YUV images by specified amount (0 to 255). LIBYUV_API int I420Interpolate(const uint8* src0_y, int src0_stride_y, const uint8* src0_u, int src0_stride_u, const uint8* src0_v, int src0_stride_v, const uint8* src1_y, int src1_stride_y, const uint8* src1_u, int src1_stride_u, const uint8* src1_v, int src1_stride_v, uint8* dst_y, int dst_stride_y, uint8* dst_u, int dst_stride_u, uint8* dst_v, int dst_stride_v, int width, int height, int interpolation) { int halfwidth = (width + 1) >> 1; int halfheight = (height + 1) >> 1; if (!src0_y || !src0_u || !src0_v || !src1_y || !src1_u || !src1_v || !dst_y || !dst_u || !dst_v || width <= 0 || height == 0) { return -1; } InterpolatePlane(src0_y, src0_stride_y, src1_y, src1_stride_y, dst_y, dst_stride_y, width, height, interpolation); InterpolatePlane(src0_u, src0_stride_u, src1_u, src1_stride_u, dst_u, dst_stride_u, halfwidth, halfheight, interpolation); InterpolatePlane(src0_v, src0_stride_v, src1_v, src1_stride_v, dst_v, dst_stride_v, halfwidth, halfheight, interpolation); return 0; } // Shuffle ARGB channel order. e.g. BGRA to ARGB. LIBYUV_API int ARGBShuffle(const uint8* src_bgra, int src_stride_bgra, uint8* dst_argb, int dst_stride_argb, const uint8* shuffler, int width, int height) { int y; void (*ARGBShuffleRow)(const uint8* src_bgra, uint8* dst_argb, const uint8* shuffler, int width) = ARGBShuffleRow_C; if (!src_bgra || !dst_argb || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; src_bgra = src_bgra + (height - 1) * src_stride_bgra; src_stride_bgra = -src_stride_bgra; } // Coalesce rows. if (src_stride_bgra == width * 4 && dst_stride_argb == width * 4) { width *= height; height = 1; src_stride_bgra = dst_stride_argb = 0; } #if defined(HAS_ARGBSHUFFLEROW_SSE2) if (TestCpuFlag(kCpuHasSSE2)) { ARGBShuffleRow = ARGBShuffleRow_Any_SSE2; if (IS_ALIGNED(width, 4)) { ARGBShuffleRow = ARGBShuffleRow_SSE2; } } #endif #if defined(HAS_ARGBSHUFFLEROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3)) { ARGBShuffleRow = ARGBShuffleRow_Any_SSSE3; if (IS_ALIGNED(width, 8)) { ARGBShuffleRow = ARGBShuffleRow_SSSE3; } } #endif #if defined(HAS_ARGBSHUFFLEROW_AVX2) if (TestCpuFlag(kCpuHasAVX2)) { ARGBShuffleRow = ARGBShuffleRow_Any_AVX2; if (IS_ALIGNED(width, 16)) { ARGBShuffleRow = ARGBShuffleRow_AVX2; } } #endif #if defined(HAS_ARGBSHUFFLEROW_NEON) if (TestCpuFlag(kCpuHasNEON)) { ARGBShuffleRow = ARGBShuffleRow_Any_NEON; if (IS_ALIGNED(width, 4)) { ARGBShuffleRow = ARGBShuffleRow_NEON; } } #endif for (y = 0; y < height; ++y) { ARGBShuffleRow(src_bgra, dst_argb, shuffler, width); src_bgra += src_stride_bgra; dst_argb += dst_stride_argb; } return 0; } // Sobel ARGB effect. static int ARGBSobelize(const uint8* src_argb, int src_stride_argb, uint8* dst_argb, int dst_stride_argb, int width, int height, void (*SobelRow)(const uint8* src_sobelx, const uint8* src_sobely, uint8* dst, int width)) { int y; void (*ARGBToYJRow)(const uint8* src_argb, uint8* dst_g, int width) = ARGBToYJRow_C; void (*SobelYRow)(const uint8* src_y0, const uint8* src_y1, uint8* dst_sobely, int width) = SobelYRow_C; void (*SobelXRow)(const uint8* src_y0, const uint8* src_y1, const uint8* src_y2, uint8* dst_sobely, int width) = SobelXRow_C; const int kEdge = 16; // Extra pixels at start of row for extrude/align. if (!src_argb || !dst_argb || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; src_argb = src_argb + (height - 1) * src_stride_argb; src_stride_argb = -src_stride_argb; } #if defined(HAS_ARGBTOYJROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3)) { ARGBToYJRow = ARGBToYJRow_Any_SSSE3; if (IS_ALIGNED(width, 16)) { ARGBToYJRow = ARGBToYJRow_SSSE3; } } #endif #if defined(HAS_ARGBTOYJROW_AVX2) if (TestCpuFlag(kCpuHasAVX2)) { ARGBToYJRow = ARGBToYJRow_Any_AVX2; if (IS_ALIGNED(width, 32)) { ARGBToYJRow = ARGBToYJRow_AVX2; } } #endif #if defined(HAS_ARGBTOYJROW_NEON) if (TestCpuFlag(kCpuHasNEON)) { ARGBToYJRow = ARGBToYJRow_Any_NEON; if (IS_ALIGNED(width, 8)) { ARGBToYJRow = ARGBToYJRow_NEON; } } #endif #if defined(HAS_SOBELYROW_SSE2) if (TestCpuFlag(kCpuHasSSE2)) { SobelYRow = SobelYRow_SSE2; } #endif #if defined(HAS_SOBELYROW_NEON) if (TestCpuFlag(kCpuHasNEON)) { SobelYRow = SobelYRow_NEON; } #endif #if defined(HAS_SOBELXROW_SSE2) if (TestCpuFlag(kCpuHasSSE2)) { SobelXRow = SobelXRow_SSE2; } #endif #if defined(HAS_SOBELXROW_NEON) if (TestCpuFlag(kCpuHasNEON)) { SobelXRow = SobelXRow_NEON; } #endif { // 3 rows with edges before/after. const int kRowSize = (width + kEdge + 31) & ~31; align_buffer_64(rows, kRowSize * 2 + (kEdge + kRowSize * 3 + kEdge)); uint8* row_sobelx = rows; uint8* row_sobely = rows + kRowSize; uint8* row_y = rows + kRowSize * 2; // Convert first row. uint8* row_y0 = row_y + kEdge; uint8* row_y1 = row_y0 + kRowSize; uint8* row_y2 = row_y1 + kRowSize; ARGBToYJRow(src_argb, row_y0, width); row_y0[-1] = row_y0[0]; memset(row_y0 + width, row_y0[width - 1], 16); // Extrude 16 for valgrind. ARGBToYJRow(src_argb, row_y1, width); row_y1[-1] = row_y1[0]; memset(row_y1 + width, row_y1[width - 1], 16); memset(row_y2 + width, 0, 16); for (y = 0; y < height; ++y) { // Convert next row of ARGB to G. if (y < (height - 1)) { src_argb += src_stride_argb; } ARGBToYJRow(src_argb, row_y2, width); row_y2[-1] = row_y2[0]; row_y2[width] = row_y2[width - 1]; SobelXRow(row_y0 - 1, row_y1 - 1, row_y2 - 1, row_sobelx, width); SobelYRow(row_y0 - 1, row_y2 - 1, row_sobely, width); SobelRow(row_sobelx, row_sobely, dst_argb, width); // Cycle thru circular queue of 3 row_y buffers. { uint8* row_yt = row_y0; row_y0 = row_y1; row_y1 = row_y2; row_y2 = row_yt; } dst_argb += dst_stride_argb; } free_aligned_buffer_64(rows); } return 0; } // Sobel ARGB effect. LIBYUV_API int ARGBSobel(const uint8* src_argb, int src_stride_argb, uint8* dst_argb, int dst_stride_argb, int width, int height) { void (*SobelRow)(const uint8* src_sobelx, const uint8* src_sobely, uint8* dst_argb, int width) = SobelRow_C; #if defined(HAS_SOBELROW_SSE2) if (TestCpuFlag(kCpuHasSSE2)) { SobelRow = SobelRow_Any_SSE2; if (IS_ALIGNED(width, 16)) { SobelRow = SobelRow_SSE2; } } #endif #if defined(HAS_SOBELROW_NEON) if (TestCpuFlag(kCpuHasNEON)) { SobelRow = SobelRow_Any_NEON; if (IS_ALIGNED(width, 8)) { SobelRow = SobelRow_NEON; } } #endif return ARGBSobelize(src_argb, src_stride_argb, dst_argb, dst_stride_argb, width, height, SobelRow); } // Sobel ARGB effect with planar output. LIBYUV_API int ARGBSobelToPlane(const uint8* src_argb, int src_stride_argb, uint8* dst_y, int dst_stride_y, int width, int height) { void (*SobelToPlaneRow)(const uint8* src_sobelx, const uint8* src_sobely, uint8* dst_, int width) = SobelToPlaneRow_C; #if defined(HAS_SOBELTOPLANEROW_SSE2) if (TestCpuFlag(kCpuHasSSE2)) { SobelToPlaneRow = SobelToPlaneRow_Any_SSE2; if (IS_ALIGNED(width, 16)) { SobelToPlaneRow = SobelToPlaneRow_SSE2; } } #endif #if defined(HAS_SOBELTOPLANEROW_NEON) if (TestCpuFlag(kCpuHasNEON)) { SobelToPlaneRow = SobelToPlaneRow_Any_NEON; if (IS_ALIGNED(width, 16)) { SobelToPlaneRow = SobelToPlaneRow_NEON; } } #endif return ARGBSobelize(src_argb, src_stride_argb, dst_y, dst_stride_y, width, height, SobelToPlaneRow); } // SobelXY ARGB effect. // Similar to Sobel, but also stores Sobel X in R and Sobel Y in B. G = Sobel. LIBYUV_API int ARGBSobelXY(const uint8* src_argb, int src_stride_argb, uint8* dst_argb, int dst_stride_argb, int width, int height) { void (*SobelXYRow)(const uint8* src_sobelx, const uint8* src_sobely, uint8* dst_argb, int width) = SobelXYRow_C; #if defined(HAS_SOBELXYROW_SSE2) if (TestCpuFlag(kCpuHasSSE2)) { SobelXYRow = SobelXYRow_Any_SSE2; if (IS_ALIGNED(width, 16)) { SobelXYRow = SobelXYRow_SSE2; } } #endif #if defined(HAS_SOBELXYROW_NEON) if (TestCpuFlag(kCpuHasNEON)) { SobelXYRow = SobelXYRow_Any_NEON; if (IS_ALIGNED(width, 8)) { SobelXYRow = SobelXYRow_NEON; } } #endif return ARGBSobelize(src_argb, src_stride_argb, dst_argb, dst_stride_argb, width, height, SobelXYRow); } // Apply a 4x4 polynomial to each ARGB pixel. LIBYUV_API int ARGBPolynomial(const uint8* src_argb, int src_stride_argb, uint8* dst_argb, int dst_stride_argb, const float* poly, int width, int height) { int y; void (*ARGBPolynomialRow)(const uint8* src_argb, uint8* dst_argb, const float* poly, int width) = ARGBPolynomialRow_C; if (!src_argb || !dst_argb || !poly || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; src_argb = src_argb + (height - 1) * src_stride_argb; src_stride_argb = -src_stride_argb; } // Coalesce rows. if (src_stride_argb == width * 4 && dst_stride_argb == width * 4) { width *= height; height = 1; src_stride_argb = dst_stride_argb = 0; } #if defined(HAS_ARGBPOLYNOMIALROW_SSE2) if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 2)) { ARGBPolynomialRow = ARGBPolynomialRow_SSE2; } #endif #if defined(HAS_ARGBPOLYNOMIALROW_AVX2) if (TestCpuFlag(kCpuHasAVX2) && TestCpuFlag(kCpuHasFMA3) && IS_ALIGNED(width, 2)) { ARGBPolynomialRow = ARGBPolynomialRow_AVX2; } #endif for (y = 0; y < height; ++y) { ARGBPolynomialRow(src_argb, dst_argb, poly, width); src_argb += src_stride_argb; dst_argb += dst_stride_argb; } return 0; } // Apply a lumacolortable to each ARGB pixel. LIBYUV_API int ARGBLumaColorTable(const uint8* src_argb, int src_stride_argb, uint8* dst_argb, int dst_stride_argb, const uint8* luma, int width, int height) { int y; void (*ARGBLumaColorTableRow)(const uint8* src_argb, uint8* dst_argb, int width, const uint8* luma, const uint32 lumacoeff) = ARGBLumaColorTableRow_C; if (!src_argb || !dst_argb || !luma || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; src_argb = src_argb + (height - 1) * src_stride_argb; src_stride_argb = -src_stride_argb; } // Coalesce rows. if (src_stride_argb == width * 4 && dst_stride_argb == width * 4) { width *= height; height = 1; src_stride_argb = dst_stride_argb = 0; } #if defined(HAS_ARGBLUMACOLORTABLEROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 4)) { ARGBLumaColorTableRow = ARGBLumaColorTableRow_SSSE3; } #endif for (y = 0; y < height; ++y) { ARGBLumaColorTableRow(src_argb, dst_argb, width, luma, 0x00264b0f); src_argb += src_stride_argb; dst_argb += dst_stride_argb; } return 0; } // Copy Alpha from one ARGB image to another. LIBYUV_API int ARGBCopyAlpha(const uint8* src_argb, int src_stride_argb, uint8* dst_argb, int dst_stride_argb, int width, int height) { int y; void (*ARGBCopyAlphaRow)(const uint8* src_argb, uint8* dst_argb, int width) = ARGBCopyAlphaRow_C; if (!src_argb || !dst_argb || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; src_argb = src_argb + (height - 1) * src_stride_argb; src_stride_argb = -src_stride_argb; } // Coalesce rows. if (src_stride_argb == width * 4 && dst_stride_argb == width * 4) { width *= height; height = 1; src_stride_argb = dst_stride_argb = 0; } #if defined(HAS_ARGBCOPYALPHAROW_SSE2) if (TestCpuFlag(kCpuHasSSE2)) { ARGBCopyAlphaRow = ARGBCopyAlphaRow_Any_SSE2; if (IS_ALIGNED(width, 8)) { ARGBCopyAlphaRow = ARGBCopyAlphaRow_SSE2; } } #endif #if defined(HAS_ARGBCOPYALPHAROW_AVX2) if (TestCpuFlag(kCpuHasAVX2)) { ARGBCopyAlphaRow = ARGBCopyAlphaRow_Any_AVX2; if (IS_ALIGNED(width, 16)) { ARGBCopyAlphaRow = ARGBCopyAlphaRow_AVX2; } } #endif for (y = 0; y < height; ++y) { ARGBCopyAlphaRow(src_argb, dst_argb, width); src_argb += src_stride_argb; dst_argb += dst_stride_argb; } return 0; } // Extract just the alpha channel from ARGB. LIBYUV_API int ARGBExtractAlpha(const uint8* src_argb, int src_stride, uint8* dst_a, int dst_stride, int width, int height) { if (!src_argb || !dst_a || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; src_argb += (height - 1) * src_stride; src_stride = -src_stride; } // Coalesce rows. if (src_stride == width * 4 && dst_stride == width) { width *= height; height = 1; src_stride = dst_stride = 0; } void (*ARGBExtractAlphaRow)(const uint8 *src_argb, uint8 *dst_a, int width) = ARGBExtractAlphaRow_C; #if defined(HAS_ARGBEXTRACTALPHAROW_SSE2) if (TestCpuFlag(kCpuHasSSE2)) { ARGBExtractAlphaRow = IS_ALIGNED(width, 8) ? ARGBExtractAlphaRow_SSE2 : ARGBExtractAlphaRow_Any_SSE2; } #endif #if defined(HAS_ARGBEXTRACTALPHAROW_NEON) if (TestCpuFlag(kCpuHasNEON)) { ARGBExtractAlphaRow = IS_ALIGNED(width, 16) ? ARGBExtractAlphaRow_NEON : ARGBExtractAlphaRow_Any_NEON; } #endif for (int y = 0; y < height; ++y) { ARGBExtractAlphaRow(src_argb, dst_a, width); src_argb += src_stride; dst_a += dst_stride; } return 0; } // Copy a planar Y channel to the alpha channel of a destination ARGB image. LIBYUV_API int ARGBCopyYToAlpha(const uint8* src_y, int src_stride_y, uint8* dst_argb, int dst_stride_argb, int width, int height) { int y; void (*ARGBCopyYToAlphaRow)(const uint8* src_y, uint8* dst_argb, int width) = ARGBCopyYToAlphaRow_C; if (!src_y || !dst_argb || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; src_y = src_y + (height - 1) * src_stride_y; src_stride_y = -src_stride_y; } // Coalesce rows. if (src_stride_y == width && dst_stride_argb == width * 4) { width *= height; height = 1; src_stride_y = dst_stride_argb = 0; } #if defined(HAS_ARGBCOPYYTOALPHAROW_SSE2) if (TestCpuFlag(kCpuHasSSE2)) { ARGBCopyYToAlphaRow = ARGBCopyYToAlphaRow_Any_SSE2; if (IS_ALIGNED(width, 8)) { ARGBCopyYToAlphaRow = ARGBCopyYToAlphaRow_SSE2; } } #endif #if defined(HAS_ARGBCOPYYTOALPHAROW_AVX2) if (TestCpuFlag(kCpuHasAVX2)) { ARGBCopyYToAlphaRow = ARGBCopyYToAlphaRow_Any_AVX2; if (IS_ALIGNED(width, 16)) { ARGBCopyYToAlphaRow = ARGBCopyYToAlphaRow_AVX2; } } #endif for (y = 0; y < height; ++y) { ARGBCopyYToAlphaRow(src_y, dst_argb, width); src_y += src_stride_y; dst_argb += dst_stride_argb; } return 0; } // TODO(fbarchard): Consider if width is even Y channel can be split // directly. A SplitUVRow_Odd function could copy the remaining chroma. LIBYUV_API int YUY2ToNV12(const uint8* src_yuy2, int src_stride_yuy2, uint8* dst_y, int dst_stride_y, uint8* dst_uv, int dst_stride_uv, int width, int height) { int y; int halfwidth = (width + 1) >> 1; void (*SplitUVRow)(const uint8* src_uv, uint8* dst_u, uint8* dst_v, int width) = SplitUVRow_C; void (*InterpolateRow)(uint8* dst_ptr, const uint8* src_ptr, ptrdiff_t src_stride, int dst_width, int source_y_fraction) = InterpolateRow_C; if (!src_yuy2 || !dst_y || !dst_uv || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; src_yuy2 = src_yuy2 + (height - 1) * src_stride_yuy2; src_stride_yuy2 = -src_stride_yuy2; } #if defined(HAS_SPLITUVROW_SSE2) if (TestCpuFlag(kCpuHasSSE2)) { SplitUVRow = SplitUVRow_Any_SSE2; if (IS_ALIGNED(width, 16)) { SplitUVRow = SplitUVRow_SSE2; } } #endif #if defined(HAS_SPLITUVROW_AVX2) if (TestCpuFlag(kCpuHasAVX2)) { SplitUVRow = SplitUVRow_Any_AVX2; if (IS_ALIGNED(width, 32)) { SplitUVRow = SplitUVRow_AVX2; } } #endif #if defined(HAS_SPLITUVROW_NEON) if (TestCpuFlag(kCpuHasNEON)) { SplitUVRow = SplitUVRow_Any_NEON; if (IS_ALIGNED(width, 16)) { SplitUVRow = SplitUVRow_NEON; } } #endif #if defined(HAS_INTERPOLATEROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3)) { InterpolateRow = InterpolateRow_Any_SSSE3; if (IS_ALIGNED(width, 16)) { InterpolateRow = InterpolateRow_SSSE3; } } #endif #if defined(HAS_INTERPOLATEROW_AVX2) if (TestCpuFlag(kCpuHasAVX2)) { InterpolateRow = InterpolateRow_Any_AVX2; if (IS_ALIGNED(width, 32)) { InterpolateRow = InterpolateRow_AVX2; } } #endif #if defined(HAS_INTERPOLATEROW_NEON) if (TestCpuFlag(kCpuHasNEON)) { InterpolateRow = InterpolateRow_Any_NEON; if (IS_ALIGNED(width, 16)) { InterpolateRow = InterpolateRow_NEON; } } #endif { int awidth = halfwidth * 2; // row of y and 2 rows of uv align_buffer_64(rows, awidth * 3); for (y = 0; y < height - 1; y += 2) { // Split Y from UV. SplitUVRow(src_yuy2, rows, rows + awidth, awidth); memcpy(dst_y, rows, width); SplitUVRow(src_yuy2 + src_stride_yuy2, rows, rows + awidth * 2, awidth); memcpy(dst_y + dst_stride_y, rows, width); InterpolateRow(dst_uv, rows + awidth, awidth, awidth, 128); src_yuy2 += src_stride_yuy2 * 2; dst_y += dst_stride_y * 2; dst_uv += dst_stride_uv; } if (height & 1) { // Split Y from UV. SplitUVRow(src_yuy2, rows, dst_uv, awidth); memcpy(dst_y, rows, width); } free_aligned_buffer_64(rows); } return 0; } LIBYUV_API int UYVYToNV12(const uint8* src_uyvy, int src_stride_uyvy, uint8* dst_y, int dst_stride_y, uint8* dst_uv, int dst_stride_uv, int width, int height) { int y; int halfwidth = (width + 1) >> 1; void (*SplitUVRow)(const uint8* src_uv, uint8* dst_u, uint8* dst_v, int width) = SplitUVRow_C; void (*InterpolateRow)(uint8* dst_ptr, const uint8* src_ptr, ptrdiff_t src_stride, int dst_width, int source_y_fraction) = InterpolateRow_C; if (!src_uyvy || !dst_y || !dst_uv || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; src_uyvy = src_uyvy + (height - 1) * src_stride_uyvy; src_stride_uyvy = -src_stride_uyvy; } #if defined(HAS_SPLITUVROW_SSE2) if (TestCpuFlag(kCpuHasSSE2)) { SplitUVRow = SplitUVRow_Any_SSE2; if (IS_ALIGNED(width, 16)) { SplitUVRow = SplitUVRow_SSE2; } } #endif #if defined(HAS_SPLITUVROW_AVX2) if (TestCpuFlag(kCpuHasAVX2)) { SplitUVRow = SplitUVRow_Any_AVX2; if (IS_ALIGNED(width, 32)) { SplitUVRow = SplitUVRow_AVX2; } } #endif #if defined(HAS_SPLITUVROW_NEON) if (TestCpuFlag(kCpuHasNEON)) { SplitUVRow = SplitUVRow_Any_NEON; if (IS_ALIGNED(width, 16)) { SplitUVRow = SplitUVRow_NEON; } } #endif #if defined(HAS_INTERPOLATEROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3)) { InterpolateRow = InterpolateRow_Any_SSSE3; if (IS_ALIGNED(width, 16)) { InterpolateRow = InterpolateRow_SSSE3; } } #endif #if defined(HAS_INTERPOLATEROW_AVX2) if (TestCpuFlag(kCpuHasAVX2)) { InterpolateRow = InterpolateRow_Any_AVX2; if (IS_ALIGNED(width, 32)) { InterpolateRow = InterpolateRow_AVX2; } } #endif #if defined(HAS_INTERPOLATEROW_NEON) if (TestCpuFlag(kCpuHasNEON)) { InterpolateRow = InterpolateRow_Any_NEON; if (IS_ALIGNED(width, 16)) { InterpolateRow = InterpolateRow_NEON; } } #endif { int awidth = halfwidth * 2; // row of y and 2 rows of uv align_buffer_64(rows, awidth * 3); for (y = 0; y < height - 1; y += 2) { // Split Y from UV. SplitUVRow(src_uyvy, rows + awidth, rows, awidth); memcpy(dst_y, rows, width); SplitUVRow(src_uyvy + src_stride_uyvy, rows + awidth * 2, rows, awidth); memcpy(dst_y + dst_stride_y, rows, width); InterpolateRow(dst_uv, rows + awidth, awidth, awidth, 128); src_uyvy += src_stride_uyvy * 2; dst_y += dst_stride_y * 2; dst_uv += dst_stride_uv; } if (height & 1) { // Split Y from UV. SplitUVRow(src_uyvy, dst_uv, rows, awidth); memcpy(dst_y, rows, width); } free_aligned_buffer_64(rows); } return 0; } #ifdef __cplusplus } // extern "C" } // namespace libyuv #endif