ref: a099d24707eda87a9c303c340aed2c00b3982723
dir: /vp9/encoder/vp9_denoiser.c/
/* * Copyright (c) 2012 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <assert.h> #include <limits.h> #include <math.h> #include "./vpx_dsp_rtcd.h" #include "vpx_dsp/vpx_dsp_common.h" #include "vpx_scale/yv12config.h" #include "vpx/vpx_integer.h" #include "vp9/common/vp9_reconinter.h" #include "vp9/encoder/vp9_context_tree.h" #include "vp9/encoder/vp9_denoiser.h" #include "vp9/encoder/vp9_encoder.h" #ifdef OUTPUT_YUV_DENOISED static void make_grayscale(YV12_BUFFER_CONFIG *yuv); #endif static int absdiff_thresh(BLOCK_SIZE bs, int increase_denoising) { (void)bs; return 3 + (increase_denoising ? 1 : 0); } static int delta_thresh(BLOCK_SIZE bs, int increase_denoising) { (void)bs; (void)increase_denoising; return 4; } static int noise_motion_thresh(BLOCK_SIZE bs, int increase_denoising) { (void)bs; (void)increase_denoising; return 625; } static unsigned int sse_thresh(BLOCK_SIZE bs, int increase_denoising) { return (1 << num_pels_log2_lookup[bs]) * (increase_denoising ? 80 : 40); } static int sse_diff_thresh(BLOCK_SIZE bs, int increase_denoising, int motion_magnitude) { if (motion_magnitude > noise_motion_thresh(bs, increase_denoising)) { if (increase_denoising) return (1 << num_pels_log2_lookup[bs]) << 2; else return 0; } else { return (1 << num_pels_log2_lookup[bs]) << 4; } } static int total_adj_weak_thresh(BLOCK_SIZE bs, int increase_denoising) { return (1 << num_pels_log2_lookup[bs]) * (increase_denoising ? 3 : 2); } // TODO(jackychen): If increase_denoising is enabled in the future, // we might need to update the code for calculating 'total_adj' in // case the C code is not bit-exact with corresponding sse2 code. int vp9_denoiser_filter_c(const uint8_t *sig, int sig_stride, const uint8_t *mc_avg, int mc_avg_stride, uint8_t *avg, int avg_stride, int increase_denoising, BLOCK_SIZE bs, int motion_magnitude) { int r, c; const uint8_t *sig_start = sig; const uint8_t *mc_avg_start = mc_avg; uint8_t *avg_start = avg; int diff, adj, absdiff, delta; int adj_val[] = { 3, 4, 6 }; int total_adj = 0; int shift_inc = 1; // If motion_magnitude is small, making the denoiser more aggressive by // increasing the adjustment for each level. Add another increment for // blocks that are labeled for increase denoising. if (motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD) { if (increase_denoising) { shift_inc = 2; } adj_val[0] += shift_inc; adj_val[1] += shift_inc; adj_val[2] += shift_inc; } // First attempt to apply a strong temporal denoising filter. for (r = 0; r < (4 << b_height_log2_lookup[bs]); ++r) { for (c = 0; c < (4 << b_width_log2_lookup[bs]); ++c) { diff = mc_avg[c] - sig[c]; absdiff = abs(diff); if (absdiff <= absdiff_thresh(bs, increase_denoising)) { avg[c] = mc_avg[c]; total_adj += diff; } else { switch (absdiff) { case 4: case 5: case 6: case 7: adj = adj_val[0]; break; case 8: case 9: case 10: case 11: case 12: case 13: case 14: case 15: adj = adj_val[1]; break; default: adj = adj_val[2]; } if (diff > 0) { avg[c] = VPXMIN(UINT8_MAX, sig[c] + adj); total_adj += adj; } else { avg[c] = VPXMAX(0, sig[c] - adj); total_adj -= adj; } } } sig += sig_stride; avg += avg_stride; mc_avg += mc_avg_stride; } // If the strong filter did not modify the signal too much, we're all set. if (abs(total_adj) <= total_adj_strong_thresh(bs, increase_denoising)) { return FILTER_BLOCK; } // Otherwise, we try to dampen the filter if the delta is not too high. delta = ((abs(total_adj) - total_adj_strong_thresh(bs, increase_denoising)) >> num_pels_log2_lookup[bs]) + 1; if (delta >= delta_thresh(bs, increase_denoising)) { return COPY_BLOCK; } mc_avg = mc_avg_start; avg = avg_start; sig = sig_start; for (r = 0; r < (4 << b_height_log2_lookup[bs]); ++r) { for (c = 0; c < (4 << b_width_log2_lookup[bs]); ++c) { diff = mc_avg[c] - sig[c]; adj = abs(diff); if (adj > delta) { adj = delta; } if (diff > 0) { // Diff positive means we made positive adjustment above // (in first try/attempt), so now make negative adjustment to bring // denoised signal down. avg[c] = VPXMAX(0, avg[c] - adj); total_adj -= adj; } else { // Diff negative means we made negative adjustment above // (in first try/attempt), so now make positive adjustment to bring // denoised signal up. avg[c] = VPXMIN(UINT8_MAX, avg[c] + adj); total_adj += adj; } } sig += sig_stride; avg += avg_stride; mc_avg += mc_avg_stride; } // We can use the filter if it has been sufficiently dampened if (abs(total_adj) <= total_adj_weak_thresh(bs, increase_denoising)) { return FILTER_BLOCK; } return COPY_BLOCK; } static uint8_t *block_start(uint8_t *framebuf, int stride, int mi_row, int mi_col) { return framebuf + (stride * mi_row << 3) + (mi_col << 3); } static VP9_DENOISER_DECISION perform_motion_compensation( VP9_COMMON *const cm, VP9_DENOISER *denoiser, MACROBLOCK *mb, BLOCK_SIZE bs, int increase_denoising, int mi_row, int mi_col, PICK_MODE_CONTEXT *ctx, int motion_magnitude, int is_skin, int *zeromv_filter, int consec_zeromv, int num_spatial_layers, int width, int lst_fb_idx, int gld_fb_idx, int use_svc, int spatial_layer, int use_gf_temporal_ref) { const int sse_diff = (ctx->newmv_sse == UINT_MAX) ? 0 : ((int)ctx->zeromv_sse - (int)ctx->newmv_sse); int frame; int denoise_layer_idx = 0; MACROBLOCKD *filter_mbd = &mb->e_mbd; MODE_INFO *mi = filter_mbd->mi[0]; MODE_INFO saved_mi; int i; struct buf_2d saved_dst[MAX_MB_PLANE]; struct buf_2d saved_pre[MAX_MB_PLANE]; const RefBuffer *saved_block_refs[2]; MV_REFERENCE_FRAME saved_frame; frame = ctx->best_reference_frame; saved_mi = *mi; if (is_skin && (motion_magnitude > 0 || consec_zeromv < 4)) return COPY_BLOCK; // Avoid denoising small blocks. When noise > kDenLow or frame width > 480, // denoise 16x16 blocks. if (bs == BLOCK_8X8 || bs == BLOCK_8X16 || bs == BLOCK_16X8 || (bs == BLOCK_16X16 && width > 480 && denoiser->denoising_level <= kDenLow)) return COPY_BLOCK; // If the best reference frame uses inter-prediction and there is enough of a // difference in sum-squared-error, use it. if (frame != INTRA_FRAME && frame != ALTREF_FRAME && frame != GOLDEN_FRAME && sse_diff > sse_diff_thresh(bs, increase_denoising, motion_magnitude)) { mi->ref_frame[0] = ctx->best_reference_frame; mi->mode = ctx->best_sse_inter_mode; mi->mv[0] = ctx->best_sse_mv; } else { // Otherwise, use the zero reference frame. frame = ctx->best_zeromv_reference_frame; ctx->newmv_sse = ctx->zeromv_sse; // Bias to last reference. if ((num_spatial_layers > 1 && !use_gf_temporal_ref) || frame == ALTREF_FRAME || (frame == GOLDEN_FRAME && use_gf_temporal_ref) || (frame != LAST_FRAME && ((ctx->zeromv_lastref_sse<(5 * ctx->zeromv_sse)>> 2) || denoiser->denoising_level >= kDenHigh))) { frame = LAST_FRAME; ctx->newmv_sse = ctx->zeromv_lastref_sse; } mi->ref_frame[0] = frame; mi->mode = ZEROMV; mi->mv[0].as_int = 0; ctx->best_sse_inter_mode = ZEROMV; ctx->best_sse_mv.as_int = 0; *zeromv_filter = 1; if (denoiser->denoising_level > kDenMedium) { motion_magnitude = 0; } } saved_frame = frame; // When using SVC, we need to map REF_FRAME to the frame buffer index. if (use_svc) { if (frame == LAST_FRAME) frame = lst_fb_idx + 1; else if (frame == GOLDEN_FRAME) frame = gld_fb_idx + 1; // Shift for the second spatial layer. if (num_spatial_layers - spatial_layer == 2) frame = frame + denoiser->num_ref_frames; denoise_layer_idx = num_spatial_layers - spatial_layer - 1; } // Force copy (no denoise, copy source in denoised buffer) if // running_avg_y[frame] is NULL. if (denoiser->running_avg_y[frame].buffer_alloc == NULL) { // Restore everything to its original state *mi = saved_mi; return COPY_BLOCK; } if (ctx->newmv_sse > sse_thresh(bs, increase_denoising)) { // Restore everything to its original state *mi = saved_mi; return COPY_BLOCK; } if (motion_magnitude > (noise_motion_thresh(bs, increase_denoising) << 3)) { // Restore everything to its original state *mi = saved_mi; return COPY_BLOCK; } // We will restore these after motion compensation. for (i = 0; i < MAX_MB_PLANE; ++i) { saved_pre[i] = filter_mbd->plane[i].pre[0]; saved_dst[i] = filter_mbd->plane[i].dst; } saved_block_refs[0] = filter_mbd->block_refs[0]; // Set the pointers in the MACROBLOCKD to point to the buffers in the denoiser // struct. filter_mbd->plane[0].pre[0].buf = block_start(denoiser->running_avg_y[frame].y_buffer, denoiser->running_avg_y[frame].y_stride, mi_row, mi_col); filter_mbd->plane[0].pre[0].stride = denoiser->running_avg_y[frame].y_stride; filter_mbd->plane[1].pre[0].buf = block_start(denoiser->running_avg_y[frame].u_buffer, denoiser->running_avg_y[frame].uv_stride, mi_row, mi_col); filter_mbd->plane[1].pre[0].stride = denoiser->running_avg_y[frame].uv_stride; filter_mbd->plane[2].pre[0].buf = block_start(denoiser->running_avg_y[frame].v_buffer, denoiser->running_avg_y[frame].uv_stride, mi_row, mi_col); filter_mbd->plane[2].pre[0].stride = denoiser->running_avg_y[frame].uv_stride; filter_mbd->plane[0].dst.buf = block_start( denoiser->mc_running_avg_y[denoise_layer_idx].y_buffer, denoiser->mc_running_avg_y[denoise_layer_idx].y_stride, mi_row, mi_col); filter_mbd->plane[0].dst.stride = denoiser->mc_running_avg_y[denoise_layer_idx].y_stride; filter_mbd->plane[1].dst.buf = block_start( denoiser->mc_running_avg_y[denoise_layer_idx].u_buffer, denoiser->mc_running_avg_y[denoise_layer_idx].uv_stride, mi_row, mi_col); filter_mbd->plane[1].dst.stride = denoiser->mc_running_avg_y[denoise_layer_idx].uv_stride; filter_mbd->plane[2].dst.buf = block_start( denoiser->mc_running_avg_y[denoise_layer_idx].v_buffer, denoiser->mc_running_avg_y[denoise_layer_idx].uv_stride, mi_row, mi_col); filter_mbd->plane[2].dst.stride = denoiser->mc_running_avg_y[denoise_layer_idx].uv_stride; set_ref_ptrs(cm, filter_mbd, saved_frame, NONE); vp9_build_inter_predictors_sby(filter_mbd, mi_row, mi_col, bs); // Restore everything to its original state *mi = saved_mi; filter_mbd->block_refs[0] = saved_block_refs[0]; for (i = 0; i < MAX_MB_PLANE; ++i) { filter_mbd->plane[i].pre[0] = saved_pre[i]; filter_mbd->plane[i].dst = saved_dst[i]; } return FILTER_BLOCK; } void vp9_denoiser_denoise(VP9_COMP *cpi, MACROBLOCK *mb, int mi_row, int mi_col, BLOCK_SIZE bs, PICK_MODE_CONTEXT *ctx, VP9_DENOISER_DECISION *denoiser_decision, int use_gf_temporal_ref) { int mv_col, mv_row; int motion_magnitude = 0; int zeromv_filter = 0; VP9_DENOISER *denoiser = &cpi->denoiser; VP9_DENOISER_DECISION decision = COPY_BLOCK; const int shift = cpi->svc.number_spatial_layers - cpi->svc.spatial_layer_id == 2 ? denoiser->num_ref_frames : 0; YV12_BUFFER_CONFIG avg = denoiser->running_avg_y[INTRA_FRAME + shift]; const int denoise_layer_index = cpi->svc.number_spatial_layers - cpi->svc.spatial_layer_id - 1; YV12_BUFFER_CONFIG mc_avg = denoiser->mc_running_avg_y[denoise_layer_index]; uint8_t *avg_start = block_start(avg.y_buffer, avg.y_stride, mi_row, mi_col); uint8_t *mc_avg_start = block_start(mc_avg.y_buffer, mc_avg.y_stride, mi_row, mi_col); struct buf_2d src = mb->plane[0].src; int is_skin = 0; int increase_denoising = 0; int consec_zeromv = 0; int last_is_reference = cpi->ref_frame_flags & VP9_LAST_FLAG; mv_col = ctx->best_sse_mv.as_mv.col; mv_row = ctx->best_sse_mv.as_mv.row; motion_magnitude = mv_row * mv_row + mv_col * mv_col; if (cpi->use_skin_detection && bs <= BLOCK_32X32 && denoiser->denoising_level < kDenHigh) { int motion_level = (motion_magnitude < 16) ? 0 : 1; // If motion for current block is small/zero, compute consec_zeromv for // skin detection (early exit in skin detection is done for large // consec_zeromv when current block has small/zero motion). consec_zeromv = 0; if (motion_level == 0) { VP9_COMMON *const cm = &cpi->common; int j, i; // Loop through the 8x8 sub-blocks. const int bw = num_8x8_blocks_wide_lookup[bs]; const int bh = num_8x8_blocks_high_lookup[bs]; const int xmis = VPXMIN(cm->mi_cols - mi_col, bw); const int ymis = VPXMIN(cm->mi_rows - mi_row, bh); const int block_index = mi_row * cm->mi_cols + mi_col; consec_zeromv = 100; for (i = 0; i < ymis; i++) { for (j = 0; j < xmis; j++) { int bl_index = block_index + i * cm->mi_cols + j; consec_zeromv = VPXMIN(cpi->consec_zero_mv[bl_index], consec_zeromv); // No need to keep checking 8x8 blocks if any of the sub-blocks // has small consec_zeromv (since threshold for no_skin based on // zero/small motion in skin detection is high, i.e, > 4). if (consec_zeromv < 4) { i = ymis; break; } } } } // TODO(marpan): Compute skin detection over sub-blocks. is_skin = vp9_compute_skin_block( mb->plane[0].src.buf, mb->plane[1].src.buf, mb->plane[2].src.buf, mb->plane[0].src.stride, mb->plane[1].src.stride, bs, consec_zeromv, motion_level); } if (!is_skin && denoiser->denoising_level == kDenHigh) increase_denoising = 1; // Copy block if LAST_FRAME is not a reference. // Last doesn't always exist when SVC layers are dynamically changed, e.g. top // spatial layer doesn't have last reference when it's brought up for the // first time on the fly. if (last_is_reference && denoiser->denoising_level >= kDenLow && !ctx->sb_skip_denoising) decision = perform_motion_compensation( &cpi->common, denoiser, mb, bs, increase_denoising, mi_row, mi_col, ctx, motion_magnitude, is_skin, &zeromv_filter, consec_zeromv, cpi->svc.number_spatial_layers, cpi->Source->y_width, cpi->lst_fb_idx, cpi->gld_fb_idx, cpi->use_svc, cpi->svc.spatial_layer_id, use_gf_temporal_ref); if (decision == FILTER_BLOCK) { decision = vp9_denoiser_filter(src.buf, src.stride, mc_avg_start, mc_avg.y_stride, avg_start, avg.y_stride, increase_denoising, bs, motion_magnitude); } if (decision == FILTER_BLOCK) { vpx_convolve_copy(avg_start, avg.y_stride, src.buf, src.stride, NULL, 0, 0, 0, 0, num_4x4_blocks_wide_lookup[bs] << 2, num_4x4_blocks_high_lookup[bs] << 2); } else { // COPY_BLOCK vpx_convolve_copy(src.buf, src.stride, avg_start, avg.y_stride, NULL, 0, 0, 0, 0, num_4x4_blocks_wide_lookup[bs] << 2, num_4x4_blocks_high_lookup[bs] << 2); } *denoiser_decision = decision; if (decision == FILTER_BLOCK && zeromv_filter == 1) *denoiser_decision = FILTER_ZEROMV_BLOCK; } static void copy_frame(YV12_BUFFER_CONFIG *const dest, const YV12_BUFFER_CONFIG *const src) { int r; const uint8_t *srcbuf = src->y_buffer; uint8_t *destbuf = dest->y_buffer; assert(dest->y_width == src->y_width); assert(dest->y_height == src->y_height); for (r = 0; r < dest->y_height; ++r) { memcpy(destbuf, srcbuf, dest->y_width); destbuf += dest->y_stride; srcbuf += src->y_stride; } } static void swap_frame_buffer(YV12_BUFFER_CONFIG *const dest, YV12_BUFFER_CONFIG *const src) { uint8_t *tmp_buf = dest->y_buffer; assert(dest->y_width == src->y_width); assert(dest->y_height == src->y_height); dest->y_buffer = src->y_buffer; src->y_buffer = tmp_buf; } void vp9_denoiser_update_frame_info( VP9_DENOISER *denoiser, YV12_BUFFER_CONFIG src, struct SVC *svc, FRAME_TYPE frame_type, int refresh_alt_ref_frame, int refresh_golden_frame, int refresh_last_frame, int alt_fb_idx, int gld_fb_idx, int lst_fb_idx, int resized, int svc_refresh_denoiser_buffers, int second_spatial_layer) { const int shift = second_spatial_layer ? denoiser->num_ref_frames : 0; // Copy source into denoised reference buffers on KEY_FRAME or // if the just encoded frame was resized. For SVC, copy source if the base // spatial layer was key frame. if (frame_type == KEY_FRAME || resized != 0 || denoiser->reset || svc_refresh_denoiser_buffers) { int i; // Start at 1 so as not to overwrite the INTRA_FRAME for (i = 1; i < denoiser->num_ref_frames; ++i) { if (denoiser->running_avg_y[i + shift].buffer_alloc != NULL) copy_frame(&denoiser->running_avg_y[i + shift], &src); } denoiser->reset = 0; return; } if (svc->temporal_layering_mode == VP9E_TEMPORAL_LAYERING_MODE_BYPASS && svc->use_set_ref_frame_config) { int i; for (i = 0; i < REF_FRAMES; i++) { if (svc->update_buffer_slot[svc->spatial_layer_id] & (1 << i)) copy_frame(&denoiser->running_avg_y[i + 1 + shift], &denoiser->running_avg_y[INTRA_FRAME + shift]); } } else { // If more than one refresh occurs, must copy frame buffer. if ((refresh_alt_ref_frame + refresh_golden_frame + refresh_last_frame) > 1) { if (refresh_alt_ref_frame) { copy_frame(&denoiser->running_avg_y[alt_fb_idx + 1 + shift], &denoiser->running_avg_y[INTRA_FRAME + shift]); } if (refresh_golden_frame) { copy_frame(&denoiser->running_avg_y[gld_fb_idx + 1 + shift], &denoiser->running_avg_y[INTRA_FRAME + shift]); } if (refresh_last_frame) { copy_frame(&denoiser->running_avg_y[lst_fb_idx + 1 + shift], &denoiser->running_avg_y[INTRA_FRAME + shift]); } } else { if (refresh_alt_ref_frame) { swap_frame_buffer(&denoiser->running_avg_y[alt_fb_idx + 1 + shift], &denoiser->running_avg_y[INTRA_FRAME + shift]); } if (refresh_golden_frame) { swap_frame_buffer(&denoiser->running_avg_y[gld_fb_idx + 1 + shift], &denoiser->running_avg_y[INTRA_FRAME + shift]); } if (refresh_last_frame) { swap_frame_buffer(&denoiser->running_avg_y[lst_fb_idx + 1 + shift], &denoiser->running_avg_y[INTRA_FRAME + shift]); } } } } void vp9_denoiser_reset_frame_stats(PICK_MODE_CONTEXT *ctx) { ctx->zeromv_sse = UINT_MAX; ctx->newmv_sse = UINT_MAX; ctx->zeromv_lastref_sse = UINT_MAX; ctx->best_sse_mv.as_int = 0; } void vp9_denoiser_update_frame_stats(MODE_INFO *mi, unsigned int sse, PREDICTION_MODE mode, PICK_MODE_CONTEXT *ctx) { if (mi->mv[0].as_int == 0 && sse < ctx->zeromv_sse) { ctx->zeromv_sse = sse; ctx->best_zeromv_reference_frame = mi->ref_frame[0]; if (mi->ref_frame[0] == LAST_FRAME) ctx->zeromv_lastref_sse = sse; } if (mi->mv[0].as_int != 0 && sse < ctx->newmv_sse) { ctx->newmv_sse = sse; ctx->best_sse_inter_mode = mode; ctx->best_sse_mv = mi->mv[0]; ctx->best_reference_frame = mi->ref_frame[0]; } } static int vp9_denoiser_realloc_svc_helper(VP9_COMMON *cm, VP9_DENOISER *denoiser, int fb_idx) { int fail = 0; if (denoiser->running_avg_y[fb_idx].buffer_alloc == NULL) { fail = vpx_alloc_frame_buffer(&denoiser->running_avg_y[fb_idx], cm->width, cm->height, cm->subsampling_x, cm->subsampling_y, #if CONFIG_VP9_HIGHBITDEPTH cm->use_highbitdepth, #endif VP9_ENC_BORDER_IN_PIXELS, 0); if (fail) { vp9_denoiser_free(denoiser); return 1; } } return 0; } int vp9_denoiser_realloc_svc(VP9_COMMON *cm, VP9_DENOISER *denoiser, struct SVC *svc, int svc_buf_shift, int refresh_alt, int refresh_gld, int refresh_lst, int alt_fb_idx, int gld_fb_idx, int lst_fb_idx) { int fail = 0; if (svc->temporal_layering_mode == VP9E_TEMPORAL_LAYERING_MODE_BYPASS && svc->use_set_ref_frame_config) { int i; for (i = 0; i < REF_FRAMES; i++) { if (cm->frame_type == KEY_FRAME || svc->update_buffer_slot[svc->spatial_layer_id] & (1 << i)) { fail = vp9_denoiser_realloc_svc_helper(cm, denoiser, i + 1 + svc_buf_shift); } } } else { if (refresh_alt) { // Increase the frame buffer index by 1 to map it to the buffer index in // the denoiser. fail = vp9_denoiser_realloc_svc_helper(cm, denoiser, alt_fb_idx + 1 + svc_buf_shift); if (fail) return 1; } if (refresh_gld) { fail = vp9_denoiser_realloc_svc_helper(cm, denoiser, gld_fb_idx + 1 + svc_buf_shift); if (fail) return 1; } if (refresh_lst) { fail = vp9_denoiser_realloc_svc_helper(cm, denoiser, lst_fb_idx + 1 + svc_buf_shift); if (fail) return 1; } } return 0; } int vp9_denoiser_alloc(VP9_COMMON *cm, struct SVC *svc, VP9_DENOISER *denoiser, int use_svc, int noise_sen, int width, int height, int ssx, int ssy, #if CONFIG_VP9_HIGHBITDEPTH int use_highbitdepth, #endif int border) { int i, layer, fail, init_num_ref_frames; const int legacy_byte_alignment = 0; int num_layers = 1; int scaled_width = width; int scaled_height = height; if (use_svc) { LAYER_CONTEXT *lc = &svc->layer_context[svc->spatial_layer_id * svc->number_temporal_layers + svc->temporal_layer_id]; get_layer_resolution(width, height, lc->scaling_factor_num, lc->scaling_factor_den, &scaled_width, &scaled_height); // For SVC: only denoise at most 2 spatial (highest) layers. if (noise_sen >= 2) // Denoise from one spatial layer below the top. svc->first_layer_denoise = VPXMAX(svc->number_spatial_layers - 2, 0); else // Only denoise the top spatial layer. svc->first_layer_denoise = VPXMAX(svc->number_spatial_layers - 1, 0); num_layers = svc->number_spatial_layers - svc->first_layer_denoise; } assert(denoiser != NULL); denoiser->num_ref_frames = use_svc ? SVC_REF_FRAMES : NONSVC_REF_FRAMES; init_num_ref_frames = use_svc ? MAX_REF_FRAMES : NONSVC_REF_FRAMES; denoiser->num_layers = num_layers; CHECK_MEM_ERROR(cm, denoiser->running_avg_y, vpx_calloc(denoiser->num_ref_frames * num_layers, sizeof(denoiser->running_avg_y[0]))); CHECK_MEM_ERROR( cm, denoiser->mc_running_avg_y, vpx_calloc(num_layers, sizeof(denoiser->mc_running_avg_y[0]))); for (layer = 0; layer < num_layers; ++layer) { const int denoise_width = (layer == 0) ? width : scaled_width; const int denoise_height = (layer == 0) ? height : scaled_height; for (i = 0; i < init_num_ref_frames; ++i) { fail = vpx_alloc_frame_buffer( &denoiser->running_avg_y[i + denoiser->num_ref_frames * layer], denoise_width, denoise_height, ssx, ssy, #if CONFIG_VP9_HIGHBITDEPTH use_highbitdepth, #endif border, legacy_byte_alignment); if (fail) { vp9_denoiser_free(denoiser); return 1; } #ifdef OUTPUT_YUV_DENOISED make_grayscale(&denoiser->running_avg_y[i]); #endif } fail = vpx_alloc_frame_buffer(&denoiser->mc_running_avg_y[layer], denoise_width, denoise_height, ssx, ssy, #if CONFIG_VP9_HIGHBITDEPTH use_highbitdepth, #endif border, legacy_byte_alignment); if (fail) { vp9_denoiser_free(denoiser); return 1; } } // denoiser->last_source only used for noise_estimation, so only for top // layer. fail = vpx_alloc_frame_buffer(&denoiser->last_source, width, height, ssx, ssy, #if CONFIG_VP9_HIGHBITDEPTH use_highbitdepth, #endif border, legacy_byte_alignment); if (fail) { vp9_denoiser_free(denoiser); return 1; } #ifdef OUTPUT_YUV_DENOISED make_grayscale(&denoiser->running_avg_y[i]); #endif denoiser->frame_buffer_initialized = 1; denoiser->denoising_level = kDenMedium; denoiser->prev_denoising_level = kDenMedium; denoiser->reset = 0; denoiser->current_denoiser_frame = 0; return 0; } void vp9_denoiser_free(VP9_DENOISER *denoiser) { int i; if (denoiser == NULL) { return; } denoiser->frame_buffer_initialized = 0; for (i = 0; i < denoiser->num_ref_frames * denoiser->num_layers; ++i) { vpx_free_frame_buffer(&denoiser->running_avg_y[i]); } vpx_free(denoiser->running_avg_y); denoiser->running_avg_y = NULL; for (i = 0; i < denoiser->num_layers; ++i) { vpx_free_frame_buffer(&denoiser->mc_running_avg_y[i]); } vpx_free(denoiser->mc_running_avg_y); denoiser->mc_running_avg_y = NULL; vpx_free_frame_buffer(&denoiser->last_source); } static void force_refresh_longterm_ref(VP9_COMP *const cpi) { SVC *const svc = &cpi->svc; // If long term reference is used, force refresh of that slot, so // denoiser buffer for long term reference stays in sync. if (svc->use_gf_temporal_ref_current_layer) { int index = svc->spatial_layer_id; if (svc->number_spatial_layers == 3) index = svc->spatial_layer_id - 1; assert(index >= 0); cpi->alt_fb_idx = svc->buffer_gf_temporal_ref[index].idx; cpi->refresh_alt_ref_frame = 1; } } void vp9_denoiser_set_noise_level(VP9_COMP *const cpi, int noise_level) { VP9_DENOISER *const denoiser = &cpi->denoiser; denoiser->denoising_level = noise_level; if (denoiser->denoising_level > kDenLowLow && denoiser->prev_denoising_level == kDenLowLow) { denoiser->reset = 1; force_refresh_longterm_ref(cpi); } else { denoiser->reset = 0; } denoiser->prev_denoising_level = denoiser->denoising_level; } // Scale/increase the partition threshold // for denoiser speed-up. int64_t vp9_scale_part_thresh(int64_t threshold, VP9_DENOISER_LEVEL noise_level, int content_state, int temporal_layer_id) { if ((content_state == kLowSadLowSumdiff) || (content_state == kHighSadLowSumdiff) || (content_state == kLowVarHighSumdiff) || (noise_level == kDenHigh) || (temporal_layer_id != 0)) { int64_t scaled_thr = (temporal_layer_id < 2) ? (3 * threshold) >> 1 : (7 * threshold) >> 2; return scaled_thr; } else { return (5 * threshold) >> 2; } } // Scale/increase the ac skip threshold for // denoiser speed-up. int64_t vp9_scale_acskip_thresh(int64_t threshold, VP9_DENOISER_LEVEL noise_level, int abs_sumdiff, int temporal_layer_id) { if (noise_level >= kDenLow && abs_sumdiff < 5) return threshold *= (noise_level == kDenLow) ? 2 : (temporal_layer_id == 2) ? 10 : 6; else return threshold; } void vp9_denoiser_reset_on_first_frame(VP9_COMP *const cpi) { if (vp9_denoise_svc_non_key(cpi) && cpi->denoiser.current_denoiser_frame == 0) { cpi->denoiser.reset = 1; force_refresh_longterm_ref(cpi); } } void vp9_denoiser_update_ref_frame(VP9_COMP *const cpi) { VP9_COMMON *const cm = &cpi->common; SVC *const svc = &cpi->svc; if (cpi->oxcf.noise_sensitivity > 0 && denoise_svc(cpi) && cpi->denoiser.denoising_level > kDenLowLow) { int svc_refresh_denoiser_buffers = 0; int denoise_svc_second_layer = 0; FRAME_TYPE frame_type = cm->intra_only ? KEY_FRAME : cm->frame_type; cpi->denoiser.current_denoiser_frame++; if (cpi->use_svc) { const int svc_buf_shift = svc->number_spatial_layers - svc->spatial_layer_id == 2 ? cpi->denoiser.num_ref_frames : 0; int layer = LAYER_IDS_TO_IDX(svc->spatial_layer_id, svc->temporal_layer_id, svc->number_temporal_layers); LAYER_CONTEXT *const lc = &svc->layer_context[layer]; svc_refresh_denoiser_buffers = lc->is_key_frame || svc->spatial_layer_sync[svc->spatial_layer_id]; denoise_svc_second_layer = svc->number_spatial_layers - svc->spatial_layer_id == 2 ? 1 : 0; // Check if we need to allocate extra buffers in the denoiser // for refreshed frames. if (vp9_denoiser_realloc_svc(cm, &cpi->denoiser, svc, svc_buf_shift, cpi->refresh_alt_ref_frame, cpi->refresh_golden_frame, cpi->refresh_last_frame, cpi->alt_fb_idx, cpi->gld_fb_idx, cpi->lst_fb_idx)) vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, "Failed to re-allocate denoiser for SVC"); } vp9_denoiser_update_frame_info( &cpi->denoiser, *cpi->Source, svc, frame_type, cpi->refresh_alt_ref_frame, cpi->refresh_golden_frame, cpi->refresh_last_frame, cpi->alt_fb_idx, cpi->gld_fb_idx, cpi->lst_fb_idx, cpi->resize_pending, svc_refresh_denoiser_buffers, denoise_svc_second_layer); } } #ifdef OUTPUT_YUV_DENOISED static void make_grayscale(YV12_BUFFER_CONFIG *yuv) { int r, c; uint8_t *u = yuv->u_buffer; uint8_t *v = yuv->v_buffer; for (r = 0; r < yuv->uv_height; ++r) { for (c = 0; c < yuv->uv_width; ++c) { u[c] = UINT8_MAX / 2; v[c] = UINT8_MAX / 2; } u += yuv->uv_stride; v += yuv->uv_stride; } } #endif