ref: 9fdfb8e92823abadc54d825d0603a7e9fd344520
dir: /vp8/encoder/encodeframe.c/
/* * Copyright (c) 2010 The VP8 project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "vpx_ports/config.h" #include "encodemb.h" #include "encodemv.h" #include "common.h" #include "onyx_int.h" #include "extend.h" #include "entropymode.h" #include "quant_common.h" #include "segmentation_common.h" #include "setupintrarecon.h" #include "encodeintra.h" #include "reconinter.h" #include "rdopt.h" #include "pickinter.h" #include "findnearmv.h" #include "reconintra.h" #include <stdio.h> #include <limits.h> #include "subpixel.h" #include "vpx_ports/vpx_timer.h" #if CONFIG_RUNTIME_CPU_DETECT #define RTCD(x) &cpi->common.rtcd.x #define IF_RTCD(x) (x) #else #define RTCD(x) NULL #define IF_RTCD(x) NULL #endif extern void vp8_stuff_mb(VP8_COMP *cpi, MACROBLOCKD *x, TOKENEXTRA **t) ; extern void vp8cx_initialize_me_consts(VP8_COMP *cpi, int QIndex); extern void vp8_auto_select_speed(VP8_COMP *cpi); extern void vp8cx_init_mbrthread_data(VP8_COMP *cpi, MACROBLOCK *x, MB_ROW_COMP *mbr_ei, int mb_row, int count); void vp8_build_block_offsets(MACROBLOCK *x); void vp8_setup_block_ptrs(MACROBLOCK *x); int vp8cx_encode_inter_macroblock(VP8_COMP *cpi, MACROBLOCK *x, TOKENEXTRA **t, int recon_yoffset, int recon_uvoffset); int vp8cx_encode_intra_macro_block(VP8_COMP *cpi, MACROBLOCK *x, TOKENEXTRA **t); #ifdef MODE_STATS unsigned int inter_y_modes[10] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; unsigned int inter_uv_modes[4] = {0, 0, 0, 0}; unsigned int inter_b_modes[15] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; unsigned int y_modes[5] = {0, 0, 0, 0, 0}; unsigned int uv_modes[4] = {0, 0, 0, 0}; unsigned int b_modes[14] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; #endif // The first four entries are dummy values static const int qrounding_factors[129] = { 56, 56, 56, 56, 56, 56, 56, 56, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, }; static const int qzbin_factors[129] = { 64, 64, 64, 64, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, }; void vp8cx_init_quantizer(VP8_COMP *cpi) { int r, c; int i; int quant_val; int Q; int zbin_boost[16] = {0, 0, 8, 10, 12, 14, 16, 20, 24, 28, 32, 36, 40, 44, 44, 44}; for (Q = 0; Q < QINDEX_RANGE; Q++) { // dc values quant_val = vp8_dc_quant(Q, cpi->common.y1dc_delta_q); cpi->Y1quant[Q][0][0] = (1 << 16) / quant_val; cpi->Y1zbin[Q][0][0] = ((qzbin_factors[Q] * quant_val) + 64) >> 7; cpi->Y1round[Q][0][0] = (qrounding_factors[Q] * quant_val) >> 7; cpi->common.Y1dequant[Q][0][0] = quant_val; cpi->zrun_zbin_boost_y1[Q][0] = (quant_val * zbin_boost[0]) >> 7; quant_val = vp8_dc2quant(Q, cpi->common.y2dc_delta_q); cpi->Y2quant[Q][0][0] = (1 << 16) / quant_val; cpi->Y2zbin[Q][0][0] = ((qzbin_factors[Q] * quant_val) + 64) >> 7; cpi->Y2round[Q][0][0] = (qrounding_factors[Q] * quant_val) >> 7; cpi->common.Y2dequant[Q][0][0] = quant_val; cpi->zrun_zbin_boost_y2[Q][0] = (quant_val * zbin_boost[0]) >> 7; quant_val = vp8_dc_uv_quant(Q, cpi->common.uvdc_delta_q); cpi->UVquant[Q][0][0] = (1 << 16) / quant_val; cpi->UVzbin[Q][0][0] = ((qzbin_factors[Q] * quant_val) + 64) >> 7;; cpi->UVround[Q][0][0] = (qrounding_factors[Q] * quant_val) >> 7; cpi->common.UVdequant[Q][0][0] = quant_val; cpi->zrun_zbin_boost_uv[Q][0] = (quant_val * zbin_boost[0]) >> 7; // all the ac values = ; for (i = 1; i < 16; i++) { int rc = vp8_default_zig_zag1d[i]; r = (rc >> 2); c = (rc & 3); quant_val = vp8_ac_yquant(Q); cpi->Y1quant[Q][r][c] = (1 << 16) / quant_val; cpi->Y1zbin[Q][r][c] = ((qzbin_factors[Q] * quant_val) + 64) >> 7; cpi->Y1round[Q][r][c] = (qrounding_factors[Q] * quant_val) >> 7; cpi->common.Y1dequant[Q][r][c] = quant_val; cpi->zrun_zbin_boost_y1[Q][i] = (quant_val * zbin_boost[i]) >> 7; quant_val = vp8_ac2quant(Q, cpi->common.y2ac_delta_q); cpi->Y2quant[Q][r][c] = (1 << 16) / quant_val; cpi->Y2zbin[Q][r][c] = ((qzbin_factors[Q] * quant_val) + 64) >> 7; cpi->Y2round[Q][r][c] = (qrounding_factors[Q] * quant_val) >> 7; cpi->common.Y2dequant[Q][r][c] = quant_val; cpi->zrun_zbin_boost_y2[Q][i] = (quant_val * zbin_boost[i]) >> 7; quant_val = vp8_ac_uv_quant(Q, cpi->common.uvac_delta_q); cpi->UVquant[Q][r][c] = (1 << 16) / quant_val; cpi->UVzbin[Q][r][c] = ((qzbin_factors[Q] * quant_val) + 64) >> 7; cpi->UVround[Q][r][c] = (qrounding_factors[Q] * quant_val) >> 7; cpi->common.UVdequant[Q][r][c] = quant_val; cpi->zrun_zbin_boost_uv[Q][i] = (quant_val * zbin_boost[i]) >> 7; } } } void vp8cx_mb_init_quantizer(VP8_COMP *cpi, MACROBLOCK *x) { int i; int QIndex; MACROBLOCKD *xd = &x->e_mbd; MB_MODE_INFO *mbmi = &xd->mbmi; int zbin_extra; // Select the baseline MB Q index. if (xd->segmentation_enabled) { // Abs Value if (xd->mb_segement_abs_delta == SEGMENT_ABSDATA) QIndex = xd->segment_feature_data[MB_LVL_ALT_Q][mbmi->segment_id]; // Delta Value else { QIndex = cpi->common.base_qindex + xd->segment_feature_data[MB_LVL_ALT_Q][mbmi->segment_id]; QIndex = (QIndex >= 0) ? ((QIndex <= MAXQ) ? QIndex : MAXQ) : 0; // Clamp to valid range } } else QIndex = cpi->common.base_qindex; // Y zbin_extra = (cpi->common.Y1dequant[QIndex][0][1] * (cpi->zbin_over_quant + cpi->zbin_mode_boost)) >> 7; for (i = 0; i < 16; i++) { x->block[i].quant = cpi->Y1quant[QIndex]; x->block[i].zbin = cpi->Y1zbin[QIndex]; x->block[i].round = cpi->Y1round[QIndex]; x->e_mbd.block[i].dequant = cpi->common.Y1dequant[QIndex]; x->block[i].zrun_zbin_boost = cpi->zrun_zbin_boost_y1[QIndex]; x->block[i].zbin_extra = (short)zbin_extra; } // UV zbin_extra = (cpi->common.UVdequant[QIndex][0][1] * (cpi->zbin_over_quant + cpi->zbin_mode_boost)) >> 7; for (i = 16; i < 24; i++) { x->block[i].quant = cpi->UVquant[QIndex]; x->block[i].zbin = cpi->UVzbin[QIndex]; x->block[i].round = cpi->UVround[QIndex]; x->e_mbd.block[i].dequant = cpi->common.UVdequant[QIndex]; x->block[i].zrun_zbin_boost = cpi->zrun_zbin_boost_uv[QIndex]; x->block[i].zbin_extra = (short)zbin_extra; } // Y2 zbin_extra = (cpi->common.Y2dequant[QIndex][0][1] * ((cpi->zbin_over_quant / 2) + cpi->zbin_mode_boost)) >> 7; x->block[24].quant = cpi->Y2quant[QIndex]; x->block[24].zbin = cpi->Y2zbin[QIndex]; x->block[24].round = cpi->Y2round[QIndex]; x->e_mbd.block[24].dequant = cpi->common.Y2dequant[QIndex]; x->block[24].zrun_zbin_boost = cpi->zrun_zbin_boost_y2[QIndex]; x->block[24].zbin_extra = (short)zbin_extra; } void vp8cx_frame_init_quantizer(VP8_COMP *cpi) { // vp8cx_init_quantizer() is first called in vp8_create_compressor(). A check is added here so that vp8cx_init_quantizer() is only called // when these values are not all zero. if (cpi->common.y1dc_delta_q | cpi->common.y2dc_delta_q | cpi->common.uvdc_delta_q | cpi->common.y2ac_delta_q | cpi->common.uvac_delta_q) { vp8cx_init_quantizer(cpi); } // MB level quantizer setup vp8cx_mb_init_quantizer(cpi, &cpi->mb); } static void encode_mb_row(VP8_COMP *cpi, VP8_COMMON *cm, int mb_row, MACROBLOCK *x, MACROBLOCKD *xd, TOKENEXTRA **tp, int *segment_counts, int *totalrate) { int i; int recon_yoffset, recon_uvoffset; int mb_col; int recon_y_stride = cm->last_frame.y_stride; int recon_uv_stride = cm->last_frame.uv_stride; int seg_map_index = (mb_row * cpi->common.mb_cols); // reset above block coeffs xd->above_context[Y1CONTEXT] = cm->above_context[Y1CONTEXT]; xd->above_context[UCONTEXT ] = cm->above_context[UCONTEXT ]; xd->above_context[VCONTEXT ] = cm->above_context[VCONTEXT ]; xd->above_context[Y2CONTEXT] = cm->above_context[Y2CONTEXT]; xd->up_available = (mb_row != 0); recon_yoffset = (mb_row * recon_y_stride * 16); recon_uvoffset = (mb_row * recon_uv_stride * 8); cpi->tplist[mb_row].start = *tp; //printf("Main mb_row = %d\n", mb_row); // for each macroblock col in image for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) { // Distance of Mb to the various image edges. // These specified to 8th pel as they are always compared to values that are in 1/8th pel units xd->mb_to_left_edge = -((mb_col * 16) << 3); xd->mb_to_right_edge = ((cm->mb_cols - 1 - mb_col) * 16) << 3; xd->mb_to_top_edge = -((mb_row * 16) << 3); xd->mb_to_bottom_edge = ((cm->mb_rows - 1 - mb_row) * 16) << 3; // Set up limit values for motion vectors used to prevent them extending outside the UMV borders x->mv_col_min = -((mb_col * 16) + (VP8BORDERINPIXELS - 16)); x->mv_col_max = ((cm->mb_cols - 1 - mb_col) * 16) + (VP8BORDERINPIXELS - 16); x->mv_row_min = -((mb_row * 16) + (VP8BORDERINPIXELS - 16)); x->mv_row_max = ((cm->mb_rows - 1 - mb_row) * 16) + (VP8BORDERINPIXELS - 16); xd->dst.y_buffer = cm->new_frame.y_buffer + recon_yoffset; xd->dst.u_buffer = cm->new_frame.u_buffer + recon_uvoffset; xd->dst.v_buffer = cm->new_frame.v_buffer + recon_uvoffset; xd->left_available = (mb_col != 0); // Is segmentation enabled // MB level adjutment to quantizer if (xd->segmentation_enabled) { // Code to set segment id in xd->mbmi.segment_id for current MB (with range checking) if (cpi->segmentation_map[seg_map_index+mb_col] <= 3) xd->mbmi.segment_id = cpi->segmentation_map[seg_map_index+mb_col]; else xd->mbmi.segment_id = 0; vp8cx_mb_init_quantizer(cpi, x); } else xd->mbmi.segment_id = 0; // Set to Segment 0 by default x->active_ptr = cpi->active_map + seg_map_index + mb_col; if (cm->frame_type == KEY_FRAME) { *totalrate += vp8cx_encode_intra_macro_block(cpi, x, tp); #ifdef MODE_STATS y_modes[xd->mbmi.mode] ++; #endif } else { *totalrate += vp8cx_encode_inter_macroblock(cpi, x, tp, recon_yoffset, recon_uvoffset); #ifdef MODE_STATS inter_y_modes[xd->mbmi.mode] ++; if (xd->mbmi.mode == SPLITMV) { int b; for (b = 0; b < xd->mbmi.partition_count; b++) { inter_b_modes[xd->mbmi.partition_bmi[b].mode] ++; } } #endif // Count of last ref frame 0,0 useage if ((xd->mbmi.mode == ZEROMV) && (xd->mbmi.ref_frame == LAST_FRAME)) cpi->inter_zz_count ++; // Special case code for cyclic refresh // If cyclic update enabled then copy xd->mbmi.segment_id; (which may have been updated based on mode // during vp8cx_encode_inter_macroblock()) back into the global sgmentation map if (cpi->cyclic_refresh_mode_enabled && xd->segmentation_enabled) { cpi->segmentation_map[seg_map_index+mb_col] = xd->mbmi.segment_id; // If the block has been refreshed mark it as clean (the magnitude of the -ve influences how long it will be before we consider another refresh): // Else if it was coded (last frame 0,0) and has not already been refreshed then mark it as a candidate for cleanup next time (marked 0) // else mark it as dirty (1). if (xd->mbmi.segment_id) cpi->cyclic_refresh_map[seg_map_index+mb_col] = -1; else if ((xd->mbmi.mode == ZEROMV) && (xd->mbmi.ref_frame == LAST_FRAME)) { if (cpi->cyclic_refresh_map[seg_map_index+mb_col] == 1) cpi->cyclic_refresh_map[seg_map_index+mb_col] = 0; } else cpi->cyclic_refresh_map[seg_map_index+mb_col] = 1; } } cpi->tplist[mb_row].stop = *tp; xd->gf_active_ptr++; // Increment pointer into gf useage flags structure for next mb // store macroblock mode info into context array vpx_memcpy(&xd->mode_info_context->mbmi, &xd->mbmi, sizeof(xd->mbmi)); for (i = 0; i < 16; i++) vpx_memcpy(&xd->mode_info_context->bmi[i], &xd->block[i].bmi, sizeof(xd->block[i].bmi)); // adjust to the next column of macroblocks x->src.y_buffer += 16; x->src.u_buffer += 8; x->src.v_buffer += 8; recon_yoffset += 16; recon_uvoffset += 8; // Keep track of segment useage segment_counts[xd->mbmi.segment_id] ++; // skip to next mb xd->mode_info_context++; xd->above_context[Y1CONTEXT] += 4; xd->above_context[UCONTEXT ] += 2; xd->above_context[VCONTEXT ] += 2; xd->above_context[Y2CONTEXT] ++; cpi->current_mb_col_main = mb_col; } //extend the recon for intra prediction vp8_extend_mb_row( &cm->new_frame, xd->dst.y_buffer + 16, xd->dst.u_buffer + 8, xd->dst.v_buffer + 8); // this is to account for the border xd->mode_info_context++; } void vp8_encode_frame(VP8_COMP *cpi) { int mb_row; MACROBLOCK *const x = & cpi->mb; VP8_COMMON *const cm = & cpi->common; MACROBLOCKD *const xd = & x->e_mbd; int i; TOKENEXTRA *tp = cpi->tok; int segment_counts[MAX_MB_SEGMENTS]; int totalrate; if (cm->frame_type != KEY_FRAME) { if (cm->mcomp_filter_type == SIXTAP) { xd->subpixel_predict = SUBPIX_INVOKE(&cpi->common.rtcd.subpix, sixtap4x4); xd->subpixel_predict8x4 = SUBPIX_INVOKE(&cpi->common.rtcd.subpix, sixtap8x4); xd->subpixel_predict8x8 = SUBPIX_INVOKE(&cpi->common.rtcd.subpix, sixtap8x8); xd->subpixel_predict16x16 = SUBPIX_INVOKE(&cpi->common.rtcd.subpix, sixtap16x16); } else { xd->subpixel_predict = SUBPIX_INVOKE(&cpi->common.rtcd.subpix, bilinear4x4); xd->subpixel_predict8x4 = SUBPIX_INVOKE(&cpi->common.rtcd.subpix, bilinear8x4); xd->subpixel_predict8x8 = SUBPIX_INVOKE(&cpi->common.rtcd.subpix, bilinear8x8); xd->subpixel_predict16x16 = SUBPIX_INVOKE(&cpi->common.rtcd.subpix, bilinear16x16); } } //else // Key Frame //{ // For key frames make sure the intra ref frame probability value // is set to "all intra" //cpi->prob_intra_coded = 255; //} xd->gf_active_ptr = (signed char *)cm->gf_active_flags; // Point to base of GF active flags data structure x->vector_range = 32; // Count of MBs using the alternate Q if any cpi->alt_qcount = 0; // Reset frame count of inter 0,0 motion vector useage. cpi->inter_zz_count = 0; vpx_memset(segment_counts, 0, sizeof(segment_counts)); cpi->prediction_error = 0; cpi->intra_error = 0; cpi->skip_true_count = 0; cpi->skip_false_count = 0; #if 0 // Experimental code cpi->frame_distortion = 0; cpi->last_mb_distortion = 0; #endif totalrate = 0; xd->mode_info = cm->mi - 1; xd->mode_info_context = cm->mi; xd->mode_info_stride = cm->mode_info_stride; xd->frame_type = cm->frame_type; xd->frames_since_golden = cm->frames_since_golden; xd->frames_till_alt_ref_frame = cm->frames_till_alt_ref_frame; vp8_zero(cpi->MVcount); // vp8_zero( Contexts) vp8_zero(cpi->coef_counts); // reset intra mode contexts if (cm->frame_type == KEY_FRAME) vp8_init_mbmode_probs(cm); vp8cx_frame_init_quantizer(cpi); if (cpi->compressor_speed == 2) { if (cpi->oxcf.cpu_used < 0) cpi->Speed = -(cpi->oxcf.cpu_used); else vp8_auto_select_speed(cpi); } vp8_initialize_rd_consts(cpi, vp8_dc_quant(cm->base_qindex, cm->y1dc_delta_q)); //vp8_initialize_rd_consts( cpi, vp8_dc_quant(cpi->avg_frame_qindex, cm->y1dc_delta_q) ); vp8cx_initialize_me_consts(cpi, cm->base_qindex); //vp8cx_initialize_me_consts( cpi, cpi->avg_frame_qindex); // Copy data over into macro block data sturctures. x->src = * cpi->Source; xd->pre = cm->last_frame; xd->dst = cm->new_frame; // set up frame new frame for intra coded blocks vp8_setup_intra_recon(&cm->new_frame); vp8_build_block_offsets(x); vp8_setup_block_dptrs(&x->e_mbd); vp8_setup_block_ptrs(x); x->rddiv = cpi->RDDIV; x->rdmult = cpi->RDMULT; #if 0 // Experimental rd code // 2 Pass - Possibly set Rdmult based on last frame distortion + this frame target bits or other metrics // such as cpi->rate_correction_factor that indicate relative complexity. /*if ( cpi->pass == 2 && (cpi->last_frame_distortion > 0) && (cpi->target_bits_per_mb > 0) ) { //x->rdmult = ((cpi->last_frame_distortion * 256)/cpi->common.MBs)/ cpi->target_bits_per_mb; x->rdmult = (int)(cpi->RDMULT * cpi->rate_correction_factor); } else x->rdmult = cpi->RDMULT; */ //x->rdmult = (int)(cpi->RDMULT * pow( (cpi->rate_correction_factor * 2.0), 0.75 )); #endif xd->mbmi.mode = DC_PRED; xd->mbmi.uv_mode = DC_PRED; xd->left_context = cm->left_context; vp8_zero(cpi->count_mb_ref_frame_usage) vp8_zero(cpi->ymode_count) vp8_zero(cpi->uv_mode_count) x->mvc = cm->fc.mvc; // vp8_zero( entropy_stats) { ENTROPY_CONTEXT **p = cm->above_context; const size_t L = cm->mb_cols; vp8_zero_array(p [Y1CONTEXT], L * 4) vp8_zero_array(p [ UCONTEXT], L * 2) vp8_zero_array(p [ VCONTEXT], L * 2) vp8_zero_array(p [Y2CONTEXT], L) } { struct vpx_usec_timer emr_timer; vpx_usec_timer_start(&emr_timer); if (!cpi->b_multi_threaded) { // for each macroblock row in image for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) { vp8_zero(cm->left_context) encode_mb_row(cpi, cm, mb_row, x, xd, &tp, segment_counts, &totalrate); // adjust to the next row of mbs x->src.y_buffer += 16 * x->src.y_stride - 16 * cm->mb_cols; x->src.u_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols; x->src.v_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols; } cpi->tok_count = tp - cpi->tok; } else { #if CONFIG_MULTITHREAD vp8cx_init_mbrthread_data(cpi, x, cpi->mb_row_ei, 1, cpi->encoding_thread_count); for (mb_row = 0; mb_row < cm->mb_rows; mb_row += (cpi->encoding_thread_count + 1)) { int i; cpi->current_mb_col_main = -1; for (i = 0; i < cpi->encoding_thread_count; i++) { if ((mb_row + i + 1) >= cm->mb_rows) break; cpi->mb_row_ei[i].mb_row = mb_row + i + 1; cpi->mb_row_ei[i].tp = cpi->tok + (mb_row + i + 1) * (cm->mb_cols * 16 * 24); cpi->mb_row_ei[i].current_mb_col = -1; //SetEvent(cpi->h_event_mbrencoding[i]); sem_post(&cpi->h_event_mbrencoding[i]); } vp8_zero(cm->left_context) tp = cpi->tok + mb_row * (cm->mb_cols * 16 * 24); encode_mb_row(cpi, cm, mb_row, x, xd, &tp, segment_counts, &totalrate); // adjust to the next row of mbs x->src.y_buffer += 16 * x->src.y_stride * (cpi->encoding_thread_count + 1) - 16 * cm->mb_cols; x->src.u_buffer += 8 * x->src.uv_stride * (cpi->encoding_thread_count + 1) - 8 * cm->mb_cols; x->src.v_buffer += 8 * x->src.uv_stride * (cpi->encoding_thread_count + 1) - 8 * cm->mb_cols; xd->mode_info_context += xd->mode_info_stride * cpi->encoding_thread_count; if (mb_row < cm->mb_rows - 1) //WaitForSingleObject(cpi->h_event_main, INFINITE); sem_wait(&cpi->h_event_main); } /* for( ;mb_row<cm->mb_rows; mb_row ++) { vp8_zero( cm->left_context) tp = cpi->tok + mb_row * (cm->mb_cols * 16 * 24); encode_mb_row(cpi, cm, mb_row, x, xd, &tp, segment_counts, &totalrate); // adjust to the next row of mbs x->src.y_buffer += 16 * x->src.y_stride - 16 * cm->mb_cols; x->src.u_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols; x->src.v_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols; } */ cpi->tok_count = 0; for (mb_row = 0; mb_row < cm->mb_rows; mb_row ++) { cpi->tok_count += cpi->tplist[mb_row].stop - cpi->tplist[mb_row].start; } if (xd->segmentation_enabled) { int i, j; if (xd->segmentation_enabled) { for (i = 0; i < cpi->encoding_thread_count; i++) { for (j = 0; j < 4; j++) segment_counts[j] += cpi->mb_row_ei[i].segment_counts[j]; } } } for (i = 0; i < cpi->encoding_thread_count; i++) { totalrate += cpi->mb_row_ei[i].totalrate; } #endif } vpx_usec_timer_mark(&emr_timer); cpi->time_encode_mb_row += vpx_usec_timer_elapsed(&emr_timer); } // Work out the segment probabilites if segmentation is enabled if (xd->segmentation_enabled) { int tot_count; int i; // Set to defaults vpx_memset(xd->mb_segment_tree_probs, 255 , sizeof(xd->mb_segment_tree_probs)); tot_count = segment_counts[0] + segment_counts[1] + segment_counts[2] + segment_counts[3]; if (tot_count) { xd->mb_segment_tree_probs[0] = ((segment_counts[0] + segment_counts[1]) * 255) / tot_count; tot_count = segment_counts[0] + segment_counts[1]; if (tot_count > 0) { xd->mb_segment_tree_probs[1] = (segment_counts[0] * 255) / tot_count; } tot_count = segment_counts[2] + segment_counts[3]; if (tot_count > 0) xd->mb_segment_tree_probs[2] = (segment_counts[2] * 255) / tot_count; // Zero probabilities not allowed for (i = 0; i < MB_FEATURE_TREE_PROBS; i ++) { if (xd->mb_segment_tree_probs[i] == 0) xd->mb_segment_tree_probs[i] = 1; } } } // 256 rate units to the bit cpi->projected_frame_size = totalrate >> 8; // projected_frame_size in units of BYTES // Make a note of the percentage MBs coded Intra. if (cm->frame_type == KEY_FRAME) { cpi->this_frame_percent_intra = 100; } else { int tot_modes; tot_modes = cpi->count_mb_ref_frame_usage[INTRA_FRAME] + cpi->count_mb_ref_frame_usage[LAST_FRAME] + cpi->count_mb_ref_frame_usage[GOLDEN_FRAME] + cpi->count_mb_ref_frame_usage[ALTREF_FRAME]; if (tot_modes) cpi->this_frame_percent_intra = cpi->count_mb_ref_frame_usage[INTRA_FRAME] * 100 / tot_modes; } #if 0 { int cnt = 0; int flag[2] = {0, 0}; for (cnt = 0; cnt < MVPcount; cnt++) { if (cm->fc.pre_mvc[0][cnt] != cm->fc.mvc[0][cnt]) { flag[0] = 1; vpx_memcpy(cm->fc.pre_mvc[0], cm->fc.mvc[0], MVPcount); break; } } for (cnt = 0; cnt < MVPcount; cnt++) { if (cm->fc.pre_mvc[1][cnt] != cm->fc.mvc[1][cnt]) { flag[1] = 1; vpx_memcpy(cm->fc.pre_mvc[1], cm->fc.mvc[1], MVPcount); break; } } if (flag[0] || flag[1]) vp8_build_component_cost_table(cpi->mb.mvcost, cpi->mb.mvsadcost, (const MV_CONTEXT *) cm->fc.mvc, flag); } #endif // Adjust the projected reference frame useage probability numbers to reflect // what we have just seen. This may be usefull when we make multiple itterations // of the recode loop rather than continuing to use values from the previous frame. if ((cm->frame_type != KEY_FRAME) && !cm->refresh_alt_ref_frame && !cm->refresh_golden_frame) { const int *const rfct = cpi->count_mb_ref_frame_usage; const int rf_intra = rfct[INTRA_FRAME]; const int rf_inter = rfct[LAST_FRAME] + rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]; if ((rf_intra + rf_inter) > 0) { cpi->prob_intra_coded = (rf_intra * 255) / (rf_intra + rf_inter); if (cpi->prob_intra_coded < 1) cpi->prob_intra_coded = 1; if ((cm->frames_since_golden > 0) || cpi->source_alt_ref_active) { cpi->prob_last_coded = rf_inter ? (rfct[LAST_FRAME] * 255) / rf_inter : 128; if (cpi->prob_last_coded < 1) cpi->prob_last_coded = 1; cpi->prob_gf_coded = (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]) ? (rfct[GOLDEN_FRAME] * 255) / (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]) : 128; if (cpi->prob_gf_coded < 1) cpi->prob_gf_coded = 1; } } } #if 0 // Keep record of the total distortion this time around for future use cpi->last_frame_distortion = cpi->frame_distortion; #endif } void vp8_setup_block_ptrs(MACROBLOCK *x) { int r, c; int i; for (r = 0; r < 4; r++) { for (c = 0; c < 4; c++) { x->block[r*4+c].src_diff = x->src_diff + r * 4 * 16 + c * 4; } } for (r = 0; r < 2; r++) { for (c = 0; c < 2; c++) { x->block[16 + r*2+c].src_diff = x->src_diff + 256 + r * 4 * 8 + c * 4; } } for (r = 0; r < 2; r++) { for (c = 0; c < 2; c++) { x->block[20 + r*2+c].src_diff = x->src_diff + 320 + r * 4 * 8 + c * 4; } } x->block[24].src_diff = x->src_diff + 384; for (i = 0; i < 25; i++) { x->block[i].coeff = x->coeff + i * 16; } } void vp8_build_block_offsets(MACROBLOCK *x) { int block = 0; int br, bc; vp8_build_block_doffsets(&x->e_mbd); // y blocks for (br = 0; br < 4; br++) { for (bc = 0; bc < 4; bc++) { BLOCK *this_block = &x->block[block]; this_block->base_src = &x->src.y_buffer; this_block->src_stride = x->src.y_stride; this_block->src = 4 * br * this_block->src_stride + 4 * bc; ++block; } } // u blocks for (br = 0; br < 2; br++) { for (bc = 0; bc < 2; bc++) { BLOCK *this_block = &x->block[block]; this_block->base_src = &x->src.u_buffer; this_block->src_stride = x->src.uv_stride; this_block->src = 4 * br * this_block->src_stride + 4 * bc; ++block; } } // v blocks for (br = 0; br < 2; br++) { for (bc = 0; bc < 2; bc++) { BLOCK *this_block = &x->block[block]; this_block->base_src = &x->src.v_buffer; this_block->src_stride = x->src.uv_stride; this_block->src = 4 * br * this_block->src_stride + 4 * bc; ++block; } } } static void sum_intra_stats(VP8_COMP *cpi, MACROBLOCK *x) { const MACROBLOCKD *xd = & x->e_mbd; const MB_PREDICTION_MODE m = xd->mbmi.mode; const MB_PREDICTION_MODE uvm = xd->mbmi.uv_mode; #ifdef MODE_STATS const int is_key = cpi->common.frame_type == KEY_FRAME; ++ (is_key ? uv_modes : inter_uv_modes)[uvm]; if (m == B_PRED) { unsigned int *const bct = is_key ? b_modes : inter_b_modes; int b = 0; do { ++ bct[xd->block[b].bmi.mode]; } while (++b < 16); } #endif ++cpi->ymode_count[m]; ++cpi->uv_mode_count[uvm]; } int vp8cx_encode_intra_macro_block(VP8_COMP *cpi, MACROBLOCK *x, TOKENEXTRA **t) { int Error4x4, Error16x16, error_uv; B_PREDICTION_MODE intra_bmodes[16]; int rate4x4, rate16x16, rateuv; int dist4x4, dist16x16, distuv; int rate = 0; int rate4x4_tokenonly = 0; int rate16x16_tokenonly = 0; int rateuv_tokenonly = 0; int i; x->e_mbd.mbmi.ref_frame = INTRA_FRAME; #if !(CONFIG_REALTIME_ONLY) if (cpi->sf.RD || cpi->compressor_speed != 2) { Error4x4 = vp8_rd_pick_intra4x4mby_modes(cpi, x, &rate4x4, &rate4x4_tokenonly, &dist4x4); //save the b modes for possible later use for (i = 0; i < 16; i++) intra_bmodes[i] = x->e_mbd.block[i].bmi.mode; Error16x16 = vp8_rd_pick_intra16x16mby_mode(cpi, x, &rate16x16, &rate16x16_tokenonly, &dist16x16); error_uv = vp8_rd_pick_intra_mbuv_mode(cpi, x, &rateuv, &rateuv_tokenonly, &distuv); x->e_mbd.mbmi.mb_skip_coeff = (cpi->common.mb_no_coeff_skip) ? 1 : 0; vp8_encode_intra16x16mbuv(IF_RTCD(&cpi->rtcd), x); rate += rateuv; if (Error4x4 < Error16x16) { rate += rate4x4; x->e_mbd.mbmi.mode = B_PRED; // get back the intra block modes for (i = 0; i < 16; i++) x->e_mbd.block[i].bmi.mode = intra_bmodes[i]; vp8_encode_intra4x4mby(IF_RTCD(&cpi->rtcd), x); cpi->prediction_error += Error4x4 ; #if 0 // Experimental RD code cpi->frame_distortion += dist4x4; #endif } else { vp8_encode_intra16x16mby(IF_RTCD(&cpi->rtcd), x); rate += rate16x16; #if 0 // Experimental RD code cpi->prediction_error += Error16x16; cpi->frame_distortion += dist16x16; #endif } sum_intra_stats(cpi, x); vp8_tokenize_mb(cpi, &x->e_mbd, t); } else #endif { int rate2, distortion2; MB_PREDICTION_MODE mode, best_mode = DC_PRED; int this_rd; Error16x16 = INT_MAX; for (mode = DC_PRED; mode <= TM_PRED; mode ++) { x->e_mbd.mbmi.mode = mode; vp8_build_intra_predictors_mby_ptr(&x->e_mbd); distortion2 = VARIANCE_INVOKE(&cpi->rtcd.variance, get16x16prederror)(x->src.y_buffer, x->src.y_stride, x->e_mbd.predictor, 16, 0x7fffffff); rate2 = x->mbmode_cost[x->e_mbd.frame_type][mode]; this_rd = RD_ESTIMATE(x->rdmult, x->rddiv, rate2, distortion2); if (Error16x16 > this_rd) { Error16x16 = this_rd; best_mode = mode; } } vp8_pick_intra4x4mby_modes(IF_RTCD(&cpi->rtcd), x, &rate2, &distortion2); if (distortion2 == INT_MAX) Error4x4 = INT_MAX; else Error4x4 = RD_ESTIMATE(x->rdmult, x->rddiv, rate2, distortion2); x->e_mbd.mbmi.mb_skip_coeff = (cpi->common.mb_no_coeff_skip) ? 1 : 0; if (Error4x4 < Error16x16) { x->e_mbd.mbmi.mode = B_PRED; vp8_encode_intra4x4mby(IF_RTCD(&cpi->rtcd), x); cpi->prediction_error += Error4x4; } else { x->e_mbd.mbmi.mode = best_mode; vp8_encode_intra16x16mby(IF_RTCD(&cpi->rtcd), x); cpi->prediction_error += Error16x16; } vp8_pick_intra_mbuv_mode(x); vp8_encode_intra16x16mbuv(IF_RTCD(&cpi->rtcd), x); sum_intra_stats(cpi, x); vp8_tokenize_mb(cpi, &x->e_mbd, t); } return rate; } #ifdef SPEEDSTATS extern int cnt_pm; #endif extern void vp8_fix_contexts(VP8_COMP *cpi, MACROBLOCKD *x); int vp8cx_encode_inter_macroblock ( VP8_COMP *cpi, MACROBLOCK *x, TOKENEXTRA **t, int recon_yoffset, int recon_uvoffset ) { MACROBLOCKD *const xd = &x->e_mbd; int inter_error; int intra_error = 0; int rate; int distortion; x->skip = 0; if (xd->segmentation_enabled) x->encode_breakout = cpi->segment_encode_breakout[xd->mbmi.segment_id]; else x->encode_breakout = cpi->oxcf.encode_breakout; #if !(CONFIG_REALTIME_ONLY) if (cpi->sf.RD) { inter_error = vp8_rd_pick_inter_mode(cpi, x, recon_yoffset, recon_uvoffset, &rate, &distortion, &intra_error); } else #endif inter_error = vp8_pick_inter_mode(cpi, x, recon_yoffset, recon_uvoffset, &rate, &distortion, &intra_error); cpi->prediction_error += inter_error; cpi->intra_error += intra_error; #if 0 // Experimental RD code cpi->frame_distortion += distortion; cpi->last_mb_distortion = distortion; #endif // MB level adjutment to quantizer setup if (xd->segmentation_enabled || cpi->zbin_mode_boost_enabled) { // If cyclic update enabled if (cpi->cyclic_refresh_mode_enabled) { // Clear segment_id back to 0 if not coded (last frame 0,0) if ((xd->mbmi.segment_id == 1) && ((xd->mbmi.ref_frame != LAST_FRAME) || (xd->mbmi.mode != ZEROMV))) { xd->mbmi.segment_id = 0; } } // Experimental code. Special case for gf and arf zeromv modes. Increase zbin size to supress noise if (cpi->zbin_mode_boost_enabled) { if ((xd->mbmi.mode == ZEROMV) && (xd->mbmi.ref_frame != LAST_FRAME)) cpi->zbin_mode_boost = GF_ZEROMV_ZBIN_BOOST; else cpi->zbin_mode_boost = 0; } vp8cx_mb_init_quantizer(cpi, x); } cpi->count_mb_ref_frame_usage[xd->mbmi.ref_frame] ++; if (xd->mbmi.ref_frame == INTRA_FRAME) { x->e_mbd.mbmi.mb_skip_coeff = (cpi->common.mb_no_coeff_skip) ? 1 : 0; vp8_encode_intra16x16mbuv(IF_RTCD(&cpi->rtcd), x); if (xd->mbmi.mode == B_PRED) { vp8_encode_intra4x4mby(IF_RTCD(&cpi->rtcd), x); } else { vp8_encode_intra16x16mby(IF_RTCD(&cpi->rtcd), x); } sum_intra_stats(cpi, x); } else { MV best_ref_mv; MV nearest, nearby; int mdcounts[4]; vp8_find_near_mvs(xd, xd->mode_info_context, &nearest, &nearby, &best_ref_mv, mdcounts, xd->mbmi.ref_frame, cpi->common.ref_frame_sign_bias); vp8_build_uvmvs(xd, cpi->common.full_pixel); // store motion vectors in our motion vector list if (xd->mbmi.ref_frame == LAST_FRAME) { // Set up pointers for this macro block into the previous frame recon buffer xd->pre.y_buffer = cpi->common.last_frame.y_buffer + recon_yoffset; xd->pre.u_buffer = cpi->common.last_frame.u_buffer + recon_uvoffset; xd->pre.v_buffer = cpi->common.last_frame.v_buffer + recon_uvoffset; } else if (xd->mbmi.ref_frame == GOLDEN_FRAME) { // Set up pointers for this macro block into the golden frame recon buffer xd->pre.y_buffer = cpi->common.golden_frame.y_buffer + recon_yoffset; xd->pre.u_buffer = cpi->common.golden_frame.u_buffer + recon_uvoffset; xd->pre.v_buffer = cpi->common.golden_frame.v_buffer + recon_uvoffset; } else { // Set up pointers for this macro block into the alternate reference frame recon buffer xd->pre.y_buffer = cpi->common.alt_ref_frame.y_buffer + recon_yoffset; xd->pre.u_buffer = cpi->common.alt_ref_frame.u_buffer + recon_uvoffset; xd->pre.v_buffer = cpi->common.alt_ref_frame.v_buffer + recon_uvoffset; } if (xd->mbmi.mode == SPLITMV) { int i; for (i = 0; i < 16; i++) { if (xd->block[i].bmi.mode == NEW4X4) { cpi->MVcount[0][mv_max+((xd->block[i].bmi.mv.as_mv.row - best_ref_mv.row) >> 1)]++; cpi->MVcount[1][mv_max+((xd->block[i].bmi.mv.as_mv.col - best_ref_mv.col) >> 1)]++; } } } else if (xd->mbmi.mode == NEWMV) { cpi->MVcount[0][mv_max+((xd->block[0].bmi.mv.as_mv.row - best_ref_mv.row) >> 1)]++; cpi->MVcount[1][mv_max+((xd->block[0].bmi.mv.as_mv.col - best_ref_mv.col) >> 1)]++; } if (!x->skip && !x->e_mbd.mbmi.force_no_skip) { vp8_encode_inter16x16(IF_RTCD(&cpi->rtcd), x); // Clear mb_skip_coeff if mb_no_coeff_skip is not set if (!cpi->common.mb_no_coeff_skip) xd->mbmi.mb_skip_coeff = 0; } else vp8_stuff_inter16x16(x); } if (!x->skip) vp8_tokenize_mb(cpi, xd, t); else { if (cpi->common.mb_no_coeff_skip) { if (xd->mbmi.mode != B_PRED && xd->mbmi.mode != SPLITMV) xd->mbmi.dc_diff = 0; else xd->mbmi.dc_diff = 1; xd->mbmi.mb_skip_coeff = 1; cpi->skip_true_count ++; vp8_fix_contexts(cpi, xd); } else { vp8_stuff_mb(cpi, xd, t); xd->mbmi.mb_skip_coeff = 0; cpi->skip_false_count ++; } } return rate; }