ref: 9cea3a3c4efc25e03781c60d34f867ff4f35e73e
dir: /vpx_dsp/x86/highbd_idct4x4_add_sse2.c/
/* * Copyright (c) 2015 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "./vpx_dsp_rtcd.h" #include "vpx_dsp/x86/highbd_inv_txfm_sse2.h" #include "vpx_dsp/x86/inv_txfm_sse2.h" #include "vpx_dsp/x86/transpose_sse2.h" #include "vpx_dsp/x86/txfm_common_sse2.h" static INLINE __m128i dct_const_round_shift_4_sse2(const __m128i in0, const __m128i in1) { const __m128i t0 = _mm_unpacklo_epi32(in0, in1); // 0, 1 const __m128i t1 = _mm_unpackhi_epi32(in0, in1); // 2, 3 const __m128i t2 = _mm_unpacklo_epi64(t0, t1); // 0, 1, 2, 3 return dct_const_round_shift_sse2(t2); } static INLINE __m128i wraplow_16bit_sse2(const __m128i in0, const __m128i in1, const __m128i rounding) { __m128i temp[2]; temp[0] = _mm_add_epi32(in0, rounding); temp[1] = _mm_add_epi32(in1, rounding); temp[0] = _mm_srai_epi32(temp[0], 4); temp[1] = _mm_srai_epi32(temp[1], 4); return _mm_packs_epi32(temp[0], temp[1]); } static INLINE void highbd_idct4_small_sse2(__m128i *const io) { const __m128i cospi_p16_p16 = _mm_setr_epi32(cospi_16_64, 0, cospi_16_64, 0); const __m128i cospi_p08_p08 = _mm_setr_epi32(cospi_8_64, 0, cospi_8_64, 0); const __m128i cospi_p24_p24 = _mm_setr_epi32(cospi_24_64, 0, cospi_24_64, 0); __m128i temp1[4], temp2[4], step[4]; transpose_32bit_4x4(&io[0], &io[1], &io[2], &io[3]); // Note: There is no 32-bit signed multiply SIMD instruction in SSE2. // _mm_mul_epu32() is used which can only guarantee the lower 32-bit // (signed) result is meaningful, which is enough in this function. // stage 1 temp1[0] = _mm_add_epi32(io[0], io[2]); // input[0] + input[2] temp2[0] = _mm_sub_epi32(io[0], io[2]); // input[0] - input[2] temp1[1] = _mm_srli_si128(temp1[0], 4); // 1, 3 temp2[1] = _mm_srli_si128(temp2[0], 4); // 1, 3 temp1[0] = _mm_mul_epu32(temp1[0], cospi_p16_p16); // ([0] + [2])*cospi_16_64 temp1[1] = _mm_mul_epu32(temp1[1], cospi_p16_p16); // ([0] + [2])*cospi_16_64 temp2[0] = _mm_mul_epu32(temp2[0], cospi_p16_p16); // ([0] - [2])*cospi_16_64 temp2[1] = _mm_mul_epu32(temp2[1], cospi_p16_p16); // ([0] - [2])*cospi_16_64 step[0] = dct_const_round_shift_4_sse2(temp1[0], temp1[1]); step[1] = dct_const_round_shift_4_sse2(temp2[0], temp2[1]); temp1[3] = _mm_srli_si128(io[1], 4); temp2[3] = _mm_srli_si128(io[3], 4); temp1[0] = _mm_mul_epu32(io[1], cospi_p24_p24); // input[1] * cospi_24_64 temp1[1] = _mm_mul_epu32(temp1[3], cospi_p24_p24); // input[1] * cospi_24_64 temp2[0] = _mm_mul_epu32(io[1], cospi_p08_p08); // input[1] * cospi_8_64 temp2[1] = _mm_mul_epu32(temp1[3], cospi_p08_p08); // input[1] * cospi_8_64 temp1[2] = _mm_mul_epu32(io[3], cospi_p08_p08); // input[3] * cospi_8_64 temp1[3] = _mm_mul_epu32(temp2[3], cospi_p08_p08); // input[3] * cospi_8_64 temp2[2] = _mm_mul_epu32(io[3], cospi_p24_p24); // input[3] * cospi_24_64 temp2[3] = _mm_mul_epu32(temp2[3], cospi_p24_p24); // input[3] * cospi_24_64 temp1[0] = _mm_sub_epi64(temp1[0], temp1[2]); // [1]*cospi_24 - [3]*cospi_8 temp1[1] = _mm_sub_epi64(temp1[1], temp1[3]); // [1]*cospi_24 - [3]*cospi_8 temp2[0] = _mm_add_epi64(temp2[0], temp2[2]); // [1]*cospi_8 + [3]*cospi_24 temp2[1] = _mm_add_epi64(temp2[1], temp2[3]); // [1]*cospi_8 + [3]*cospi_24 step[2] = dct_const_round_shift_4_sse2(temp1[0], temp1[1]); step[3] = dct_const_round_shift_4_sse2(temp2[0], temp2[1]); // stage 2 io[0] = _mm_add_epi32(step[0], step[3]); // step[0] + step[3] io[1] = _mm_add_epi32(step[1], step[2]); // step[1] + step[2] io[2] = _mm_sub_epi32(step[1], step[2]); // step[1] - step[2] io[3] = _mm_sub_epi32(step[0], step[3]); // step[0] - step[3] } static INLINE void abs_extend_64bit_sse2(const __m128i in, __m128i *const out /*out[2]*/, __m128i *const sign /*sign[2]*/) { sign[0] = _mm_srai_epi32(in, 31); out[0] = _mm_xor_si128(in, sign[0]); out[0] = _mm_sub_epi32(out[0], sign[0]); sign[1] = _mm_unpackhi_epi32(sign[0], sign[0]); // 64-bit sign of 2, 3 sign[0] = _mm_unpacklo_epi32(sign[0], sign[0]); // 64-bit sign of 0, 1 out[1] = _mm_unpackhi_epi32(out[0], out[0]); // 2, 3 out[0] = _mm_unpacklo_epi32(out[0], out[0]); // 0, 1 } static INLINE __m128i multiply_apply_sign_sse2(const __m128i in, const __m128i sign, const __m128i cospi) { __m128i out = _mm_mul_epu32(in, cospi); out = _mm_xor_si128(out, sign); return _mm_sub_epi64(out, sign); } static INLINE __m128i dct_const_round_shift_64bit_sse2(const __m128i in) { const __m128i t = _mm_add_epi64( in, _mm_setr_epi32(DCT_CONST_ROUNDING << 2, 0, DCT_CONST_ROUNDING << 2, 0)); return _mm_srli_si128(t, 2); } static INLINE __m128i pack_4_sse2(const __m128i in0, const __m128i in1) { const __m128i t0 = _mm_unpacklo_epi32(in0, in1); // 0, 2 const __m128i t1 = _mm_unpackhi_epi32(in0, in1); // 1, 3 return _mm_unpacklo_epi32(t0, t1); // 0, 1, 2, 3 } static INLINE void highbd_idct4_large_sse2(__m128i *const io) { const __m128i cospi_p16_p16 = _mm_setr_epi32(cospi_16_64 << 2, 0, cospi_16_64 << 2, 0); const __m128i cospi_p08_p08 = _mm_setr_epi32(cospi_8_64 << 2, 0, cospi_8_64 << 2, 0); const __m128i cospi_p24_p24 = _mm_setr_epi32(cospi_24_64 << 2, 0, cospi_24_64 << 2, 0); __m128i temp1[4], temp2[4], step[4], sign1[4], sign2[4]; transpose_32bit_4x4(&io[0], &io[1], &io[2], &io[3]); // stage 1 temp1[0] = _mm_add_epi32(io[0], io[2]); // input[0] + input[2] temp2[0] = _mm_sub_epi32(io[0], io[2]); // input[0] - input[2] abs_extend_64bit_sse2(temp1[0], temp1, sign1); abs_extend_64bit_sse2(temp2[0], temp2, sign2); temp1[0] = multiply_apply_sign_sse2(temp1[0], sign1[0], cospi_p16_p16); temp1[1] = multiply_apply_sign_sse2(temp1[1], sign1[1], cospi_p16_p16); temp2[0] = multiply_apply_sign_sse2(temp2[0], sign2[0], cospi_p16_p16); temp2[1] = multiply_apply_sign_sse2(temp2[1], sign2[1], cospi_p16_p16); temp1[0] = dct_const_round_shift_64bit_sse2(temp1[0]); temp1[1] = dct_const_round_shift_64bit_sse2(temp1[1]); temp2[0] = dct_const_round_shift_64bit_sse2(temp2[0]); temp2[1] = dct_const_round_shift_64bit_sse2(temp2[1]); step[0] = pack_4_sse2(temp1[0], temp1[1]); step[1] = pack_4_sse2(temp2[0], temp2[1]); abs_extend_64bit_sse2(io[1], temp1, sign1); abs_extend_64bit_sse2(io[3], temp2, sign2); temp1[2] = multiply_apply_sign_sse2(temp1[0], sign1[0], cospi_p08_p08); temp1[3] = multiply_apply_sign_sse2(temp1[1], sign1[1], cospi_p08_p08); temp1[0] = multiply_apply_sign_sse2(temp1[0], sign1[0], cospi_p24_p24); temp1[1] = multiply_apply_sign_sse2(temp1[1], sign1[1], cospi_p24_p24); temp2[2] = multiply_apply_sign_sse2(temp2[0], sign2[0], cospi_p24_p24); temp2[3] = multiply_apply_sign_sse2(temp2[1], sign2[1], cospi_p24_p24); temp2[0] = multiply_apply_sign_sse2(temp2[0], sign2[0], cospi_p08_p08); temp2[1] = multiply_apply_sign_sse2(temp2[1], sign2[1], cospi_p08_p08); temp1[0] = _mm_sub_epi64(temp1[0], temp2[0]); // [1]*cospi_24 - [3]*cospi_8 temp1[1] = _mm_sub_epi64(temp1[1], temp2[1]); // [1]*cospi_24 - [3]*cospi_8 temp2[0] = _mm_add_epi64(temp1[2], temp2[2]); // [1]*cospi_8 + [3]*cospi_24 temp2[1] = _mm_add_epi64(temp1[3], temp2[3]); // [1]*cospi_8 + [3]*cospi_24 temp1[0] = dct_const_round_shift_64bit_sse2(temp1[0]); temp1[1] = dct_const_round_shift_64bit_sse2(temp1[1]); temp2[0] = dct_const_round_shift_64bit_sse2(temp2[0]); temp2[1] = dct_const_round_shift_64bit_sse2(temp2[1]); step[2] = pack_4_sse2(temp1[0], temp1[1]); step[3] = pack_4_sse2(temp2[0], temp2[1]); // stage 2 io[0] = _mm_add_epi32(step[0], step[3]); // step[0] + step[3] io[1] = _mm_add_epi32(step[1], step[2]); // step[1] + step[2] io[2] = _mm_sub_epi32(step[1], step[2]); // step[1] - step[2] io[3] = _mm_sub_epi32(step[0], step[3]); // step[0] - step[3] } void vpx_highbd_idct4x4_16_add_sse2(const tran_low_t *input, uint16_t *dest, int stride, int bd) { int16_t max = 0, min = 0; __m128i io[4], io_short[2]; io[0] = _mm_load_si128((const __m128i *)(input + 0)); io[1] = _mm_load_si128((const __m128i *)(input + 4)); io[2] = _mm_load_si128((const __m128i *)(input + 8)); io[3] = _mm_load_si128((const __m128i *)(input + 12)); io_short[0] = _mm_packs_epi32(io[0], io[1]); io_short[1] = _mm_packs_epi32(io[2], io[3]); if (bd != 8) { __m128i max_input, min_input; max_input = _mm_max_epi16(io_short[0], io_short[1]); min_input = _mm_min_epi16(io_short[0], io_short[1]); max_input = _mm_max_epi16(max_input, _mm_srli_si128(max_input, 8)); min_input = _mm_min_epi16(min_input, _mm_srli_si128(min_input, 8)); max_input = _mm_max_epi16(max_input, _mm_srli_si128(max_input, 4)); min_input = _mm_min_epi16(min_input, _mm_srli_si128(min_input, 4)); max_input = _mm_max_epi16(max_input, _mm_srli_si128(max_input, 2)); min_input = _mm_min_epi16(min_input, _mm_srli_si128(min_input, 2)); max = _mm_extract_epi16(max_input, 0); min = _mm_extract_epi16(min_input, 0); } if (bd == 8 || (max < 4096 && min >= -4096)) { idct4_sse2(io_short); idct4_sse2(io_short); io_short[0] = _mm_add_epi16(io_short[0], _mm_set1_epi16(8)); io_short[1] = _mm_add_epi16(io_short[1], _mm_set1_epi16(8)); io[0] = _mm_srai_epi16(io_short[0], 4); io[1] = _mm_srai_epi16(io_short[1], 4); } else { if (max < 32767 && min > -32768) { highbd_idct4_small_sse2(io); highbd_idct4_small_sse2(io); } else { highbd_idct4_large_sse2(io); highbd_idct4_large_sse2(io); } io[0] = wraplow_16bit_sse2(io[0], io[1], _mm_set1_epi32(8)); io[1] = wraplow_16bit_sse2(io[2], io[3], _mm_set1_epi32(8)); } // Reconstruction and Store { __m128i d0 = _mm_loadl_epi64((const __m128i *)dest); __m128i d2 = _mm_loadl_epi64((const __m128i *)(dest + stride * 2)); d0 = _mm_unpacklo_epi64(d0, _mm_loadl_epi64((const __m128i *)(dest + stride))); d2 = _mm_unpacklo_epi64( d2, _mm_loadl_epi64((const __m128i *)(dest + stride * 3))); d0 = clamp_high_sse2(_mm_adds_epi16(d0, io[0]), bd); d2 = clamp_high_sse2(_mm_adds_epi16(d2, io[1]), bd); // store input0 _mm_storel_epi64((__m128i *)dest, d0); // store input1 d0 = _mm_srli_si128(d0, 8); _mm_storel_epi64((__m128i *)(dest + stride), d0); // store input2 _mm_storel_epi64((__m128i *)(dest + stride * 2), d2); // store input3 d2 = _mm_srli_si128(d2, 8); _mm_storel_epi64((__m128i *)(dest + stride * 3), d2); } } void vpx_highbd_idct4x4_1_add_sse2(const tran_low_t *input, uint16_t *dest, int stride, int bd) { const __m128i zero = _mm_setzero_si128(); // Faster than _mm_set1_epi16((1 << bd) - 1). const __m128i one = _mm_set1_epi16(1); const __m128i max = _mm_sub_epi16(_mm_slli_epi16(one, bd), one); int a1, i; tran_low_t out; __m128i dc, d; out = HIGHBD_WRAPLOW(dct_const_round_shift(input[0] * cospi_16_64), bd); out = HIGHBD_WRAPLOW(dct_const_round_shift(out * cospi_16_64), bd); a1 = ROUND_POWER_OF_TWO(out, 4); dc = _mm_set1_epi16(a1); for (i = 0; i < 4; ++i) { d = _mm_loadl_epi64((const __m128i *)dest); d = add_dc_clamp(&zero, &max, &dc, &d); _mm_storel_epi64((__m128i *)dest, d); dest += stride; } }