ref: 9adb2a4945398bc1e19a15d9bac52a5a22b095e7
dir: /test/avg_test.cc/
/* * Copyright (c) 2012 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <limits.h> #include <stdio.h> #include <string.h> #include <tuple> #include "third_party/googletest/src/include/gtest/gtest.h" #include "./vp9_rtcd.h" #include "./vpx_config.h" #include "./vpx_dsp_rtcd.h" #include "test/acm_random.h" #include "test/clear_system_state.h" #include "test/register_state_check.h" #include "test/util.h" #include "vpx/vpx_codec.h" #include "vpx_mem/vpx_mem.h" #include "vpx_ports/vpx_timer.h" using libvpx_test::ACMRandom; namespace { template <typename Pixel> class AverageTestBase : public ::testing::Test { public: AverageTestBase(int width, int height) : width_(width), height_(height), source_data_(NULL), source_stride_(0), bit_depth_(8) {} virtual void TearDown() { vpx_free(source_data_); source_data_ = NULL; libvpx_test::ClearSystemState(); } protected: // Handle blocks up to 4 blocks 64x64 with stride up to 128 static const int kDataAlignment = 16; static const int kDataBlockSize = 64 * 128; virtual void SetUp() { source_data_ = reinterpret_cast<Pixel *>( vpx_memalign(kDataAlignment, kDataBlockSize * sizeof(source_data_[0]))); ASSERT_TRUE(source_data_ != NULL); source_stride_ = (width_ + 31) & ~31; bit_depth_ = 8; rnd_.Reset(ACMRandom::DeterministicSeed()); } // Sum Pixels static unsigned int ReferenceAverage8x8(const Pixel *source, int pitch) { unsigned int average = 0; for (int h = 0; h < 8; ++h) { for (int w = 0; w < 8; ++w) average += source[h * pitch + w]; } return ((average + 32) >> 6); } static unsigned int ReferenceAverage4x4(const Pixel *source, int pitch) { unsigned int average = 0; for (int h = 0; h < 4; ++h) { for (int w = 0; w < 4; ++w) average += source[h * pitch + w]; } return ((average + 8) >> 4); } void FillConstant(Pixel fill_constant) { for (int i = 0; i < width_ * height_; ++i) { source_data_[i] = fill_constant; } } void FillRandom() { for (int i = 0; i < width_ * height_; ++i) { source_data_[i] = rnd_.Rand16() & ((1 << bit_depth_) - 1); } } int width_, height_; Pixel *source_data_; int source_stride_; int bit_depth_; ACMRandom rnd_; }; typedef unsigned int (*AverageFunction)(const uint8_t *s, int pitch); typedef std::tuple<int, int, int, int, AverageFunction> AvgFunc; class AverageTest : public AverageTestBase<uint8_t>, public ::testing::WithParamInterface<AvgFunc> { public: AverageTest() : AverageTestBase(GET_PARAM(0), GET_PARAM(1)) {} protected: void CheckAverages() { const int block_size = GET_PARAM(3); unsigned int expected = 0; if (block_size == 8) { expected = ReferenceAverage8x8(source_data_ + GET_PARAM(2), source_stride_); } else if (block_size == 4) { expected = ReferenceAverage4x4(source_data_ + GET_PARAM(2), source_stride_); } ASM_REGISTER_STATE_CHECK( GET_PARAM(4)(source_data_ + GET_PARAM(2), source_stride_)); unsigned int actual = GET_PARAM(4)(source_data_ + GET_PARAM(2), source_stride_); EXPECT_EQ(expected, actual); } }; #if CONFIG_VP9_HIGHBITDEPTH class AverageTestHBD : public AverageTestBase<uint16_t>, public ::testing::WithParamInterface<AvgFunc> { public: AverageTestHBD() : AverageTestBase(GET_PARAM(0), GET_PARAM(1)) {} protected: void CheckAverages() { const int block_size = GET_PARAM(3); unsigned int expected = 0; if (block_size == 8) { expected = ReferenceAverage8x8(source_data_ + GET_PARAM(2), source_stride_); } else if (block_size == 4) { expected = ReferenceAverage4x4(source_data_ + GET_PARAM(2), source_stride_); } ASM_REGISTER_STATE_CHECK(GET_PARAM(4)( CONVERT_TO_BYTEPTR(source_data_ + GET_PARAM(2)), source_stride_)); unsigned int actual = GET_PARAM(4)( CONVERT_TO_BYTEPTR(source_data_ + GET_PARAM(2)), source_stride_); EXPECT_EQ(expected, actual); } }; #endif // CONFIG_VP9_HIGHBITDEPTH typedef void (*IntProRowFunc)(int16_t hbuf[16], uint8_t const *ref, const int ref_stride, const int height); typedef std::tuple<int, IntProRowFunc, IntProRowFunc> IntProRowParam; class IntProRowTest : public AverageTestBase<uint8_t>, public ::testing::WithParamInterface<IntProRowParam> { public: IntProRowTest() : AverageTestBase(16, GET_PARAM(0)), hbuf_asm_(NULL), hbuf_c_(NULL) { asm_func_ = GET_PARAM(1); c_func_ = GET_PARAM(2); } protected: virtual void SetUp() { source_data_ = reinterpret_cast<uint8_t *>( vpx_memalign(kDataAlignment, kDataBlockSize * sizeof(source_data_[0]))); ASSERT_TRUE(source_data_ != NULL); hbuf_asm_ = reinterpret_cast<int16_t *>( vpx_memalign(kDataAlignment, sizeof(*hbuf_asm_) * 16)); hbuf_c_ = reinterpret_cast<int16_t *>( vpx_memalign(kDataAlignment, sizeof(*hbuf_c_) * 16)); } virtual void TearDown() { vpx_free(source_data_); source_data_ = NULL; vpx_free(hbuf_c_); hbuf_c_ = NULL; vpx_free(hbuf_asm_); hbuf_asm_ = NULL; } void RunComparison() { ASM_REGISTER_STATE_CHECK(c_func_(hbuf_c_, source_data_, 0, height_)); ASM_REGISTER_STATE_CHECK(asm_func_(hbuf_asm_, source_data_, 0, height_)); EXPECT_EQ(0, memcmp(hbuf_c_, hbuf_asm_, sizeof(*hbuf_c_) * 16)) << "Output mismatch"; } private: IntProRowFunc asm_func_; IntProRowFunc c_func_; int16_t *hbuf_asm_; int16_t *hbuf_c_; }; typedef int16_t (*IntProColFunc)(uint8_t const *ref, const int width); typedef std::tuple<int, IntProColFunc, IntProColFunc> IntProColParam; class IntProColTest : public AverageTestBase<uint8_t>, public ::testing::WithParamInterface<IntProColParam> { public: IntProColTest() : AverageTestBase(GET_PARAM(0), 1), sum_asm_(0), sum_c_(0) { asm_func_ = GET_PARAM(1); c_func_ = GET_PARAM(2); } protected: void RunComparison() { ASM_REGISTER_STATE_CHECK(sum_c_ = c_func_(source_data_, width_)); ASM_REGISTER_STATE_CHECK(sum_asm_ = asm_func_(source_data_, width_)); EXPECT_EQ(sum_c_, sum_asm_) << "Output mismatch"; } private: IntProColFunc asm_func_; IntProColFunc c_func_; int16_t sum_asm_; int16_t sum_c_; }; typedef int (*SatdFunc)(const tran_low_t *coeffs, int length); typedef std::tuple<int, SatdFunc> SatdTestParam; class SatdTest : public ::testing::Test, public ::testing::WithParamInterface<SatdTestParam> { protected: virtual void SetUp() { satd_size_ = GET_PARAM(0); satd_func_ = GET_PARAM(1); rnd_.Reset(ACMRandom::DeterministicSeed()); src_ = reinterpret_cast<tran_low_t *>( vpx_memalign(16, sizeof(*src_) * satd_size_)); ASSERT_TRUE(src_ != NULL); } virtual void TearDown() { libvpx_test::ClearSystemState(); vpx_free(src_); } void FillConstant(const tran_low_t val) { for (int i = 0; i < satd_size_; ++i) src_[i] = val; } virtual void FillRandom() = 0; void Check(const int expected) { int total; ASM_REGISTER_STATE_CHECK(total = satd_func_(src_, satd_size_)); EXPECT_EQ(expected, total); } tran_low_t *GetCoeff() const { return src_; } int satd_size_; ACMRandom rnd_; tran_low_t *src_; private: SatdFunc satd_func_; }; class SatdLowbdTest : public SatdTest { protected: virtual void FillRandom() { for (int i = 0; i < satd_size_; ++i) { const int16_t tmp = rnd_.Rand16Signed(); src_[i] = (tran_low_t)tmp; } } }; typedef int64_t (*BlockErrorFunc)(const tran_low_t *coeff, const tran_low_t *dqcoeff, int block_size); typedef std::tuple<int, BlockErrorFunc> BlockErrorTestFPParam; class BlockErrorTestFP : public ::testing::Test, public ::testing::WithParamInterface<BlockErrorTestFPParam> { protected: virtual void SetUp() { txfm_size_ = GET_PARAM(0); block_error_func_ = GET_PARAM(1); rnd_.Reset(ACMRandom::DeterministicSeed()); coeff_ = reinterpret_cast<tran_low_t *>( vpx_memalign(16, sizeof(*coeff_) * txfm_size_)); dqcoeff_ = reinterpret_cast<tran_low_t *>( vpx_memalign(16, sizeof(*dqcoeff_) * txfm_size_)); ASSERT_TRUE(coeff_ != NULL); ASSERT_TRUE(dqcoeff_ != NULL); } virtual void TearDown() { libvpx_test::ClearSystemState(); vpx_free(coeff_); vpx_free(dqcoeff_); } void FillConstant(const tran_low_t coeff_val, const tran_low_t dqcoeff_val) { for (int i = 0; i < txfm_size_; ++i) coeff_[i] = coeff_val; for (int i = 0; i < txfm_size_; ++i) dqcoeff_[i] = dqcoeff_val; } void FillRandom() { // Just two fixed seeds rnd_.Reset(0xb0b9); for (int i = 0; i < txfm_size_; ++i) coeff_[i] = rnd_.Rand16() >> 1; rnd_.Reset(0xb0c8); for (int i = 0; i < txfm_size_; ++i) dqcoeff_[i] = rnd_.Rand16() >> 1; } void Check(const int64_t expected) { int64_t total; ASM_REGISTER_STATE_CHECK( total = block_error_func_(coeff_, dqcoeff_, txfm_size_)); EXPECT_EQ(expected, total); } tran_low_t *GetCoeff() const { return coeff_; } tran_low_t *GetDQCoeff() const { return dqcoeff_; } int txfm_size_; private: tran_low_t *coeff_; tran_low_t *dqcoeff_; BlockErrorFunc block_error_func_; ACMRandom rnd_; }; TEST_P(AverageTest, MinValue) { FillConstant(0); CheckAverages(); } TEST_P(AverageTest, MaxValue) { FillConstant(255); CheckAverages(); } TEST_P(AverageTest, Random) { // The reference frame, but not the source frame, may be unaligned for // certain types of searches. for (int i = 0; i < 1000; i++) { FillRandom(); CheckAverages(); } } #if CONFIG_VP9_HIGHBITDEPTH TEST_P(AverageTestHBD, MinValue) { FillConstant(0); CheckAverages(); } TEST_P(AverageTestHBD, MaxValue) { FillConstant((1 << VPX_BITS_12) - 1); CheckAverages(); } TEST_P(AverageTestHBD, Random) { bit_depth_ = VPX_BITS_12; // The reference frame, but not the source frame, may be unaligned for // certain types of searches. for (int i = 0; i < 1000; i++) { FillRandom(); CheckAverages(); } } #endif // CONFIG_VP9_HIGHBITDEPTH TEST_P(IntProRowTest, MinValue) { FillConstant(0); RunComparison(); } TEST_P(IntProRowTest, MaxValue) { FillConstant(255); RunComparison(); } TEST_P(IntProRowTest, Random) { FillRandom(); RunComparison(); } TEST_P(IntProColTest, MinValue) { FillConstant(0); RunComparison(); } TEST_P(IntProColTest, MaxValue) { FillConstant(255); RunComparison(); } TEST_P(IntProColTest, Random) { FillRandom(); RunComparison(); } TEST_P(SatdLowbdTest, MinValue) { const int kMin = -32640; const int expected = -kMin * satd_size_; FillConstant(kMin); Check(expected); } TEST_P(SatdLowbdTest, MaxValue) { const int kMax = 32640; const int expected = kMax * satd_size_; FillConstant(kMax); Check(expected); } TEST_P(SatdLowbdTest, Random) { int expected; switch (satd_size_) { case 16: expected = 263252; break; case 64: expected = 1105420; break; case 256: expected = 4252250; break; case 1024: expected = 16876840; break; default: FAIL() << "Invalid satd size (" << satd_size_ << ") valid: 16/64/256/1024"; } FillRandom(); Check(expected); } TEST_P(SatdLowbdTest, DISABLED_Speed) { const int kCountSpeedTestBlock = 20000; vpx_usec_timer timer; const int blocksize = GET_PARAM(0); FillRandom(); tran_low_t *coeff = GetCoeff(); vpx_usec_timer_start(&timer); for (int i = 0; i < kCountSpeedTestBlock; ++i) { GET_PARAM(1)(coeff, blocksize); } vpx_usec_timer_mark(&timer); const int elapsed_time = static_cast<int>(vpx_usec_timer_elapsed(&timer)); printf("blocksize: %4d time: %4d us\n", blocksize, elapsed_time); } #if CONFIG_VP9_HIGHBITDEPTH class SatdHighbdTest : public SatdTest { protected: virtual void FillRandom() { for (int i = 0; i < satd_size_; ++i) { src_[i] = rnd_.Rand20Signed(); } } }; TEST_P(SatdHighbdTest, MinValue) { const int kMin = -524280; const int expected = -kMin * satd_size_; FillConstant(kMin); Check(expected); } TEST_P(SatdHighbdTest, MaxValue) { const int kMax = 524280; const int expected = kMax * satd_size_; FillConstant(kMax); Check(expected); } TEST_P(SatdHighbdTest, Random) { int expected; switch (satd_size_) { case 16: expected = 5249712; break; case 64: expected = 18362120; break; case 256: expected = 66100520; break; case 1024: expected = 266094734; break; default: FAIL() << "Invalid satd size (" << satd_size_ << ") valid: 16/64/256/1024"; } FillRandom(); Check(expected); } TEST_P(SatdHighbdTest, DISABLED_Speed) { const int kCountSpeedTestBlock = 20000; vpx_usec_timer timer; const int blocksize = GET_PARAM(0); FillRandom(); tran_low_t *coeff = GetCoeff(); vpx_usec_timer_start(&timer); for (int i = 0; i < kCountSpeedTestBlock; ++i) { GET_PARAM(1)(coeff, blocksize); } vpx_usec_timer_mark(&timer); const int elapsed_time = static_cast<int>(vpx_usec_timer_elapsed(&timer)); printf("blocksize: %4d time: %4d us\n", blocksize, elapsed_time); } #endif // CONFIG_VP9_HIGHBITDEPTH TEST_P(BlockErrorTestFP, MinValue) { const int64_t kMin = -32640; const int64_t expected = kMin * kMin * txfm_size_; FillConstant(kMin, 0); Check(expected); } TEST_P(BlockErrorTestFP, MaxValue) { const int64_t kMax = 32640; const int64_t expected = kMax * kMax * txfm_size_; FillConstant(kMax, 0); Check(expected); } TEST_P(BlockErrorTestFP, Random) { int64_t expected; switch (txfm_size_) { case 16: expected = 2051681432; break; case 64: expected = 11075114379; break; case 256: expected = 44386271116; break; case 1024: expected = 184774996089; break; default: FAIL() << "Invalid satd size (" << txfm_size_ << ") valid: 16/64/256/1024"; } FillRandom(); Check(expected); } TEST_P(BlockErrorTestFP, DISABLED_Speed) { const int kCountSpeedTestBlock = 20000; vpx_usec_timer timer; const int blocksize = GET_PARAM(0); FillRandom(); tran_low_t *coeff = GetCoeff(); tran_low_t *dqcoeff = GetDQCoeff(); vpx_usec_timer_start(&timer); for (int i = 0; i < kCountSpeedTestBlock; ++i) { GET_PARAM(1)(coeff, dqcoeff, blocksize); } vpx_usec_timer_mark(&timer); const int elapsed_time = static_cast<int>(vpx_usec_timer_elapsed(&timer)); printf("blocksize: %4d time: %4d us\n", blocksize, elapsed_time); } using std::make_tuple; INSTANTIATE_TEST_CASE_P( C, AverageTest, ::testing::Values(make_tuple(16, 16, 1, 8, &vpx_avg_8x8_c), make_tuple(16, 16, 1, 4, &vpx_avg_4x4_c))); #if CONFIG_VP9_HIGHBITDEPTH INSTANTIATE_TEST_CASE_P( C, AverageTestHBD, ::testing::Values(make_tuple(16, 16, 1, 8, &vpx_highbd_avg_8x8_c), make_tuple(16, 16, 1, 4, &vpx_highbd_avg_4x4_c))); #if HAVE_SSE2 INSTANTIATE_TEST_CASE_P( SSE2, AverageTestHBD, ::testing::Values(make_tuple(16, 16, 1, 8, &vpx_highbd_avg_8x8_sse2), make_tuple(16, 16, 1, 4, &vpx_highbd_avg_4x4_sse2))); #endif // HAVE_SSE2 INSTANTIATE_TEST_CASE_P(C, SatdHighbdTest, ::testing::Values(make_tuple(16, &vpx_satd_c), make_tuple(64, &vpx_satd_c), make_tuple(256, &vpx_satd_c), make_tuple(1024, &vpx_satd_c))); #endif // CONFIG_VP9_HIGHBITDEPTH INSTANTIATE_TEST_CASE_P(C, SatdLowbdTest, ::testing::Values(make_tuple(16, &vpx_satd_c), make_tuple(64, &vpx_satd_c), make_tuple(256, &vpx_satd_c), make_tuple(1024, &vpx_satd_c))); INSTANTIATE_TEST_CASE_P( C, BlockErrorTestFP, ::testing::Values(make_tuple(16, &vp9_block_error_fp_c), make_tuple(64, &vp9_block_error_fp_c), make_tuple(256, &vp9_block_error_fp_c), make_tuple(1024, &vp9_block_error_fp_c))); #if HAVE_SSE2 INSTANTIATE_TEST_CASE_P( SSE2, AverageTest, ::testing::Values(make_tuple(16, 16, 0, 8, &vpx_avg_8x8_sse2), make_tuple(16, 16, 5, 8, &vpx_avg_8x8_sse2), make_tuple(32, 32, 15, 8, &vpx_avg_8x8_sse2), make_tuple(16, 16, 0, 4, &vpx_avg_4x4_sse2), make_tuple(16, 16, 5, 4, &vpx_avg_4x4_sse2), make_tuple(32, 32, 15, 4, &vpx_avg_4x4_sse2))); INSTANTIATE_TEST_CASE_P( SSE2, IntProRowTest, ::testing::Values(make_tuple(16, &vpx_int_pro_row_sse2, &vpx_int_pro_row_c), make_tuple(32, &vpx_int_pro_row_sse2, &vpx_int_pro_row_c), make_tuple(64, &vpx_int_pro_row_sse2, &vpx_int_pro_row_c))); INSTANTIATE_TEST_CASE_P( SSE2, IntProColTest, ::testing::Values(make_tuple(16, &vpx_int_pro_col_sse2, &vpx_int_pro_col_c), make_tuple(32, &vpx_int_pro_col_sse2, &vpx_int_pro_col_c), make_tuple(64, &vpx_int_pro_col_sse2, &vpx_int_pro_col_c))); INSTANTIATE_TEST_CASE_P(SSE2, SatdLowbdTest, ::testing::Values(make_tuple(16, &vpx_satd_sse2), make_tuple(64, &vpx_satd_sse2), make_tuple(256, &vpx_satd_sse2), make_tuple(1024, &vpx_satd_sse2))); INSTANTIATE_TEST_CASE_P( SSE2, BlockErrorTestFP, ::testing::Values(make_tuple(16, &vp9_block_error_fp_sse2), make_tuple(64, &vp9_block_error_fp_sse2), make_tuple(256, &vp9_block_error_fp_sse2), make_tuple(1024, &vp9_block_error_fp_sse2))); #endif // HAVE_SSE2 #if HAVE_AVX2 INSTANTIATE_TEST_CASE_P(AVX2, SatdLowbdTest, ::testing::Values(make_tuple(16, &vpx_satd_avx2), make_tuple(64, &vpx_satd_avx2), make_tuple(256, &vpx_satd_avx2), make_tuple(1024, &vpx_satd_avx2))); #if CONFIG_VP9_HIGHBITDEPTH INSTANTIATE_TEST_CASE_P( AVX2, SatdHighbdTest, ::testing::Values(make_tuple(16, &vpx_highbd_satd_avx2), make_tuple(64, &vpx_highbd_satd_avx2), make_tuple(256, &vpx_highbd_satd_avx2), make_tuple(1024, &vpx_highbd_satd_avx2))); #endif // CONFIG_VP9_HIGHBITDEPTH INSTANTIATE_TEST_CASE_P( AVX2, BlockErrorTestFP, ::testing::Values(make_tuple(16, &vp9_block_error_fp_avx2), make_tuple(64, &vp9_block_error_fp_avx2), make_tuple(256, &vp9_block_error_fp_avx2), make_tuple(1024, &vp9_block_error_fp_avx2))); #endif #if HAVE_NEON INSTANTIATE_TEST_CASE_P( NEON, AverageTest, ::testing::Values(make_tuple(16, 16, 0, 8, &vpx_avg_8x8_neon), make_tuple(16, 16, 5, 8, &vpx_avg_8x8_neon), make_tuple(32, 32, 15, 8, &vpx_avg_8x8_neon), make_tuple(16, 16, 0, 4, &vpx_avg_4x4_neon), make_tuple(16, 16, 5, 4, &vpx_avg_4x4_neon), make_tuple(32, 32, 15, 4, &vpx_avg_4x4_neon))); INSTANTIATE_TEST_CASE_P( NEON, IntProRowTest, ::testing::Values(make_tuple(16, &vpx_int_pro_row_neon, &vpx_int_pro_row_c), make_tuple(32, &vpx_int_pro_row_neon, &vpx_int_pro_row_c), make_tuple(64, &vpx_int_pro_row_neon, &vpx_int_pro_row_c))); INSTANTIATE_TEST_CASE_P( NEON, IntProColTest, ::testing::Values(make_tuple(16, &vpx_int_pro_col_neon, &vpx_int_pro_col_c), make_tuple(32, &vpx_int_pro_col_neon, &vpx_int_pro_col_c), make_tuple(64, &vpx_int_pro_col_neon, &vpx_int_pro_col_c))); INSTANTIATE_TEST_CASE_P(NEON, SatdLowbdTest, ::testing::Values(make_tuple(16, &vpx_satd_neon), make_tuple(64, &vpx_satd_neon), make_tuple(256, &vpx_satd_neon), make_tuple(1024, &vpx_satd_neon))); // TODO(jianj): Remove the highbitdepth flag once the SIMD functions are // in place. #if !CONFIG_VP9_HIGHBITDEPTH INSTANTIATE_TEST_CASE_P( NEON, BlockErrorTestFP, ::testing::Values(make_tuple(16, &vp9_block_error_fp_neon), make_tuple(64, &vp9_block_error_fp_neon), make_tuple(256, &vp9_block_error_fp_neon), make_tuple(1024, &vp9_block_error_fp_neon))); #endif // !CONFIG_VP9_HIGHBITDEPTH #endif // HAVE_NEON #if HAVE_MSA INSTANTIATE_TEST_CASE_P( MSA, AverageTest, ::testing::Values(make_tuple(16, 16, 0, 8, &vpx_avg_8x8_msa), make_tuple(16, 16, 5, 8, &vpx_avg_8x8_msa), make_tuple(32, 32, 15, 8, &vpx_avg_8x8_msa), make_tuple(16, 16, 0, 4, &vpx_avg_4x4_msa), make_tuple(16, 16, 5, 4, &vpx_avg_4x4_msa), make_tuple(32, 32, 15, 4, &vpx_avg_4x4_msa))); INSTANTIATE_TEST_CASE_P( MSA, IntProRowTest, ::testing::Values(make_tuple(16, &vpx_int_pro_row_msa, &vpx_int_pro_row_c), make_tuple(32, &vpx_int_pro_row_msa, &vpx_int_pro_row_c), make_tuple(64, &vpx_int_pro_row_msa, &vpx_int_pro_row_c))); INSTANTIATE_TEST_CASE_P( MSA, IntProColTest, ::testing::Values(make_tuple(16, &vpx_int_pro_col_msa, &vpx_int_pro_col_c), make_tuple(32, &vpx_int_pro_col_msa, &vpx_int_pro_col_c), make_tuple(64, &vpx_int_pro_col_msa, &vpx_int_pro_col_c))); // TODO(jingning): Remove the highbitdepth flag once the SIMD functions are // in place. #if !CONFIG_VP9_HIGHBITDEPTH INSTANTIATE_TEST_CASE_P(MSA, SatdLowbdTest, ::testing::Values(make_tuple(16, &vpx_satd_msa), make_tuple(64, &vpx_satd_msa), make_tuple(256, &vpx_satd_msa), make_tuple(1024, &vpx_satd_msa))); #endif // !CONFIG_VP9_HIGHBITDEPTH #endif // HAVE_MSA } // namespace