ref: 9a156855c9e737b7dd2a8a0a465aa86ee01f6bda
dir: /vp9/common/vp9_idct.c/
/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <math.h> #include "./vp9_rtcd.h" #include "./vpx_dsp_rtcd.h" #include "vp9/common/vp9_blockd.h" #include "vp9/common/vp9_idct.h" #include "vpx_dsp/inv_txfm.h" #include "vpx_ports/mem.h" void vp9_iht4x4_16_add_c(const tran_low_t *input, uint8_t *dest, int stride, int tx_type) { const transform_2d IHT_4[] = { { idct4_c, idct4_c }, // DCT_DCT = 0 { iadst4_c, idct4_c }, // ADST_DCT = 1 { idct4_c, iadst4_c }, // DCT_ADST = 2 { iadst4_c, iadst4_c } // ADST_ADST = 3 }; int i, j; tran_low_t out[4 * 4]; tran_low_t *outptr = out; tran_low_t temp_in[4], temp_out[4]; // inverse transform row vectors for (i = 0; i < 4; ++i) { IHT_4[tx_type].rows(input, outptr); input += 4; outptr += 4; } // inverse transform column vectors for (i = 0; i < 4; ++i) { for (j = 0; j < 4; ++j) temp_in[j] = out[j * 4 + i]; IHT_4[tx_type].cols(temp_in, temp_out); for (j = 0; j < 4; ++j) { dest[j * stride + i] = clip_pixel_add(dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 4)); } } } static const transform_2d IHT_8[] = { { idct8_c, idct8_c }, // DCT_DCT = 0 { iadst8_c, idct8_c }, // ADST_DCT = 1 { idct8_c, iadst8_c }, // DCT_ADST = 2 { iadst8_c, iadst8_c } // ADST_ADST = 3 }; void vp9_iht8x8_64_add_c(const tran_low_t *input, uint8_t *dest, int stride, int tx_type) { int i, j; tran_low_t out[8 * 8]; tran_low_t *outptr = out; tran_low_t temp_in[8], temp_out[8]; const transform_2d ht = IHT_8[tx_type]; // inverse transform row vectors for (i = 0; i < 8; ++i) { ht.rows(input, outptr); input += 8; outptr += 8; } // inverse transform column vectors for (i = 0; i < 8; ++i) { for (j = 0; j < 8; ++j) temp_in[j] = out[j * 8 + i]; ht.cols(temp_in, temp_out); for (j = 0; j < 8; ++j) { dest[j * stride + i] = clip_pixel_add(dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 5)); } } } static const transform_2d IHT_16[] = { { idct16_c, idct16_c }, // DCT_DCT = 0 { iadst16_c, idct16_c }, // ADST_DCT = 1 { idct16_c, iadst16_c }, // DCT_ADST = 2 { iadst16_c, iadst16_c } // ADST_ADST = 3 }; void vp9_iht16x16_256_add_c(const tran_low_t *input, uint8_t *dest, int stride, int tx_type) { int i, j; tran_low_t out[16 * 16]; tran_low_t *outptr = out; tran_low_t temp_in[16], temp_out[16]; const transform_2d ht = IHT_16[tx_type]; // Rows for (i = 0; i < 16; ++i) { ht.rows(input, outptr); input += 16; outptr += 16; } // Columns for (i = 0; i < 16; ++i) { for (j = 0; j < 16; ++j) temp_in[j] = out[j * 16 + i]; ht.cols(temp_in, temp_out); for (j = 0; j < 16; ++j) { dest[j * stride + i] = clip_pixel_add(dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 6)); } } } // idct void vp9_idct4x4_add(const tran_low_t *input, uint8_t *dest, int stride, int eob) { if (eob > 1) vpx_idct4x4_16_add(input, dest, stride); else vpx_idct4x4_1_add(input, dest, stride); } void vp9_iwht4x4_add(const tran_low_t *input, uint8_t *dest, int stride, int eob) { if (eob > 1) vpx_iwht4x4_16_add(input, dest, stride); else vpx_iwht4x4_1_add(input, dest, stride); } void vp9_idct8x8_add(const tran_low_t *input, uint8_t *dest, int stride, int eob) { // If dc is 1, then input[0] is the reconstructed value, do not need // dequantization. Also, when dc is 1, dc is counted in eobs, namely eobs >=1. // The calculation can be simplified if there are not many non-zero dct // coefficients. Use eobs to decide what to do. if (eob == 1) // DC only DCT coefficient vpx_idct8x8_1_add(input, dest, stride); else if (eob <= 12) vpx_idct8x8_12_add(input, dest, stride); else vpx_idct8x8_64_add(input, dest, stride); } void vp9_idct16x16_add(const tran_low_t *input, uint8_t *dest, int stride, int eob) { /* The calculation can be simplified if there are not many non-zero dct * coefficients. Use eobs to separate different cases. */ if (eob == 1) /* DC only DCT coefficient. */ vpx_idct16x16_1_add(input, dest, stride); else if (eob <= 10) vpx_idct16x16_10_add(input, dest, stride); else if (eob <= 38) vpx_idct16x16_38_add(input, dest, stride); else vpx_idct16x16_256_add(input, dest, stride); } void vp9_idct32x32_add(const tran_low_t *input, uint8_t *dest, int stride, int eob) { if (eob == 1) vpx_idct32x32_1_add(input, dest, stride); else if (eob <= 34) // non-zero coeff only in upper-left 8x8 vpx_idct32x32_34_add(input, dest, stride); else if (eob <= 135) // non-zero coeff only in upper-left 16x16 vpx_idct32x32_135_add(input, dest, stride); else vpx_idct32x32_1024_add(input, dest, stride); } // iht void vp9_iht4x4_add(TX_TYPE tx_type, const tran_low_t *input, uint8_t *dest, int stride, int eob) { if (tx_type == DCT_DCT) vp9_idct4x4_add(input, dest, stride, eob); else vp9_iht4x4_16_add(input, dest, stride, tx_type); } void vp9_iht8x8_add(TX_TYPE tx_type, const tran_low_t *input, uint8_t *dest, int stride, int eob) { if (tx_type == DCT_DCT) { vp9_idct8x8_add(input, dest, stride, eob); } else { vp9_iht8x8_64_add(input, dest, stride, tx_type); } } void vp9_iht16x16_add(TX_TYPE tx_type, const tran_low_t *input, uint8_t *dest, int stride, int eob) { if (tx_type == DCT_DCT) { vp9_idct16x16_add(input, dest, stride, eob); } else { vp9_iht16x16_256_add(input, dest, stride, tx_type); } } #if CONFIG_VP9_HIGHBITDEPTH void vp9_highbd_iht4x4_16_add_c(const tran_low_t *input, uint16_t *dest, int stride, int tx_type, int bd) { const highbd_transform_2d IHT_4[] = { { vpx_highbd_idct4_c, vpx_highbd_idct4_c }, // DCT_DCT = 0 { vpx_highbd_iadst4_c, vpx_highbd_idct4_c }, // ADST_DCT = 1 { vpx_highbd_idct4_c, vpx_highbd_iadst4_c }, // DCT_ADST = 2 { vpx_highbd_iadst4_c, vpx_highbd_iadst4_c } // ADST_ADST = 3 }; int i, j; tran_low_t out[4 * 4]; tran_low_t *outptr = out; tran_low_t temp_in[4], temp_out[4]; // Inverse transform row vectors. for (i = 0; i < 4; ++i) { IHT_4[tx_type].rows(input, outptr, bd); input += 4; outptr += 4; } // Inverse transform column vectors. for (i = 0; i < 4; ++i) { for (j = 0; j < 4; ++j) temp_in[j] = out[j * 4 + i]; IHT_4[tx_type].cols(temp_in, temp_out, bd); for (j = 0; j < 4; ++j) { dest[j * stride + i] = highbd_clip_pixel_add( dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 4), bd); } } } static const highbd_transform_2d HIGH_IHT_8[] = { { vpx_highbd_idct8_c, vpx_highbd_idct8_c }, // DCT_DCT = 0 { vpx_highbd_iadst8_c, vpx_highbd_idct8_c }, // ADST_DCT = 1 { vpx_highbd_idct8_c, vpx_highbd_iadst8_c }, // DCT_ADST = 2 { vpx_highbd_iadst8_c, vpx_highbd_iadst8_c } // ADST_ADST = 3 }; void vp9_highbd_iht8x8_64_add_c(const tran_low_t *input, uint16_t *dest, int stride, int tx_type, int bd) { int i, j; tran_low_t out[8 * 8]; tran_low_t *outptr = out; tran_low_t temp_in[8], temp_out[8]; const highbd_transform_2d ht = HIGH_IHT_8[tx_type]; // Inverse transform row vectors. for (i = 0; i < 8; ++i) { ht.rows(input, outptr, bd); input += 8; outptr += 8; } // Inverse transform column vectors. for (i = 0; i < 8; ++i) { for (j = 0; j < 8; ++j) temp_in[j] = out[j * 8 + i]; ht.cols(temp_in, temp_out, bd); for (j = 0; j < 8; ++j) { dest[j * stride + i] = highbd_clip_pixel_add( dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 5), bd); } } } static const highbd_transform_2d HIGH_IHT_16[] = { { vpx_highbd_idct16_c, vpx_highbd_idct16_c }, // DCT_DCT = 0 { vpx_highbd_iadst16_c, vpx_highbd_idct16_c }, // ADST_DCT = 1 { vpx_highbd_idct16_c, vpx_highbd_iadst16_c }, // DCT_ADST = 2 { vpx_highbd_iadst16_c, vpx_highbd_iadst16_c } // ADST_ADST = 3 }; void vp9_highbd_iht16x16_256_add_c(const tran_low_t *input, uint16_t *dest, int stride, int tx_type, int bd) { int i, j; tran_low_t out[16 * 16]; tran_low_t *outptr = out; tran_low_t temp_in[16], temp_out[16]; const highbd_transform_2d ht = HIGH_IHT_16[tx_type]; // Rows for (i = 0; i < 16; ++i) { ht.rows(input, outptr, bd); input += 16; outptr += 16; } // Columns for (i = 0; i < 16; ++i) { for (j = 0; j < 16; ++j) temp_in[j] = out[j * 16 + i]; ht.cols(temp_in, temp_out, bd); for (j = 0; j < 16; ++j) { dest[j * stride + i] = highbd_clip_pixel_add( dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 6), bd); } } } // idct void vp9_highbd_idct4x4_add(const tran_low_t *input, uint16_t *dest, int stride, int eob, int bd) { if (eob > 1) vpx_highbd_idct4x4_16_add(input, dest, stride, bd); else vpx_highbd_idct4x4_1_add(input, dest, stride, bd); } void vp9_highbd_iwht4x4_add(const tran_low_t *input, uint16_t *dest, int stride, int eob, int bd) { if (eob > 1) vpx_highbd_iwht4x4_16_add(input, dest, stride, bd); else vpx_highbd_iwht4x4_1_add(input, dest, stride, bd); } void vp9_highbd_idct8x8_add(const tran_low_t *input, uint16_t *dest, int stride, int eob, int bd) { // If dc is 1, then input[0] is the reconstructed value, do not need // dequantization. Also, when dc is 1, dc is counted in eobs, namely eobs >=1. // The calculation can be simplified if there are not many non-zero dct // coefficients. Use eobs to decide what to do. // DC only DCT coefficient if (eob == 1) { vpx_highbd_idct8x8_1_add(input, dest, stride, bd); } else if (eob <= 12) { vpx_highbd_idct8x8_12_add(input, dest, stride, bd); } else { vpx_highbd_idct8x8_64_add(input, dest, stride, bd); } } void vp9_highbd_idct16x16_add(const tran_low_t *input, uint16_t *dest, int stride, int eob, int bd) { // The calculation can be simplified if there are not many non-zero dct // coefficients. Use eobs to separate different cases. // DC only DCT coefficient. if (eob == 1) { vpx_highbd_idct16x16_1_add(input, dest, stride, bd); } else if (eob <= 10) { vpx_highbd_idct16x16_10_add(input, dest, stride, bd); } else if (eob <= 38) { vpx_highbd_idct16x16_38_add(input, dest, stride, bd); } else { vpx_highbd_idct16x16_256_add(input, dest, stride, bd); } } void vp9_highbd_idct32x32_add(const tran_low_t *input, uint16_t *dest, int stride, int eob, int bd) { // Non-zero coeff only in upper-left 8x8 if (eob == 1) { vpx_highbd_idct32x32_1_add(input, dest, stride, bd); } else if (eob <= 34) { vpx_highbd_idct32x32_34_add(input, dest, stride, bd); } else if (eob <= 135) { vpx_highbd_idct32x32_135_add(input, dest, stride, bd); } else { vpx_highbd_idct32x32_1024_add(input, dest, stride, bd); } } // iht void vp9_highbd_iht4x4_add(TX_TYPE tx_type, const tran_low_t *input, uint16_t *dest, int stride, int eob, int bd) { if (tx_type == DCT_DCT) vp9_highbd_idct4x4_add(input, dest, stride, eob, bd); else vp9_highbd_iht4x4_16_add(input, dest, stride, tx_type, bd); } void vp9_highbd_iht8x8_add(TX_TYPE tx_type, const tran_low_t *input, uint16_t *dest, int stride, int eob, int bd) { if (tx_type == DCT_DCT) { vp9_highbd_idct8x8_add(input, dest, stride, eob, bd); } else { vp9_highbd_iht8x8_64_add(input, dest, stride, tx_type, bd); } } void vp9_highbd_iht16x16_add(TX_TYPE tx_type, const tran_low_t *input, uint16_t *dest, int stride, int eob, int bd) { if (tx_type == DCT_DCT) { vp9_highbd_idct16x16_add(input, dest, stride, eob, bd); } else { vp9_highbd_iht16x16_256_add(input, dest, stride, tx_type, bd); } } #endif // CONFIG_VP9_HIGHBITDEPTH