ref: 7af6c6c9ca56ee62dd5de4dd73f0acae1d65ba09
dir: /vpx_dsp/x86/quantize_avx.c/
/* * Copyright (c) 2017 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <assert.h> #if defined(_MSC_VER) #include <intrin.h> #endif #include <immintrin.h> #include "./vpx_dsp_rtcd.h" #include "vpx/vpx_integer.h" #include "vpx_dsp/x86/bitdepth_conversion_sse2.h" void vpx_quantize_b_avx(const tran_low_t *coeff_ptr, intptr_t n_coeffs, int skip_block, const int16_t *zbin_ptr, const int16_t *round_ptr, const int16_t *quant_ptr, const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr, const int16_t *scan_ptr, const int16_t *iscan_ptr) { const __m128i zero = _mm_setzero_si128(); const __m256i big_zero = _mm256_setzero_si256(); int index; __m128i zbin, round, quant, dequant, shift; __m128i coeff0, coeff1; __m128i qcoeff0, qcoeff1; __m128i cmp_mask0, cmp_mask1; __m128i all_zero; __m128i qtmp0, qtmp1; __m128i zero_coeff0, zero_coeff1, iscan0, iscan1; __m128i eob = zero, eob0, eob1; (void)scan_ptr; (void)skip_block; assert(!skip_block); *eob_ptr = 0; // Setup global values. zbin = _mm_load_si128((const __m128i *)zbin_ptr); // x86 has no "greater *or equal*" comparison. Subtract 1 from zbin so // it is a strict "greater" comparison. zbin = _mm_sub_epi16(zbin, _mm_set1_epi16(1)); round = _mm_load_si128((const __m128i *)round_ptr); quant = _mm_load_si128((const __m128i *)quant_ptr); dequant = _mm_load_si128((const __m128i *)dequant_ptr); shift = _mm_load_si128((const __m128i *)quant_shift_ptr); // Do DC and first 15 AC. coeff0 = load_tran_low(coeff_ptr); coeff1 = load_tran_low(coeff_ptr + 8); qcoeff0 = _mm_abs_epi16(coeff0); qcoeff1 = _mm_abs_epi16(coeff1); cmp_mask0 = _mm_cmpgt_epi16(qcoeff0, zbin); zbin = _mm_unpackhi_epi64(zbin, zbin); // Switch DC to AC cmp_mask1 = _mm_cmpgt_epi16(qcoeff1, zbin); all_zero = _mm_or_si128(cmp_mask0, cmp_mask1); if (_mm_test_all_zeros(all_zero, all_zero)) { _mm256_store_si256((__m256i *)(qcoeff_ptr), big_zero); _mm256_store_si256((__m256i *)(dqcoeff_ptr), big_zero); #if CONFIG_VP9_HIGHBITDEPTH _mm256_store_si256((__m256i *)(qcoeff_ptr + 8), big_zero); _mm256_store_si256((__m256i *)(dqcoeff_ptr + 8), big_zero); #endif // CONFIG_VP9_HIGHBITDEPTH if (n_coeffs == 16) return; round = _mm_unpackhi_epi64(round, round); quant = _mm_unpackhi_epi64(quant, quant); shift = _mm_unpackhi_epi64(shift, shift); dequant = _mm_unpackhi_epi64(dequant, dequant); } else { qcoeff0 = _mm_adds_epi16(qcoeff0, round); round = _mm_unpackhi_epi64(round, round); qcoeff1 = _mm_adds_epi16(qcoeff1, round); qtmp0 = _mm_mulhi_epi16(qcoeff0, quant); quant = _mm_unpackhi_epi64(quant, quant); qtmp1 = _mm_mulhi_epi16(qcoeff1, quant); qtmp0 = _mm_add_epi16(qtmp0, qcoeff0); qtmp1 = _mm_add_epi16(qtmp1, qcoeff1); qcoeff0 = _mm_mulhi_epi16(qtmp0, shift); shift = _mm_unpackhi_epi64(shift, shift); qcoeff1 = _mm_mulhi_epi16(qtmp1, shift); // Reinsert signs qcoeff0 = _mm_sign_epi16(qcoeff0, coeff0); qcoeff1 = _mm_sign_epi16(qcoeff1, coeff1); // Mask out zbin threshold coeffs qcoeff0 = _mm_and_si128(qcoeff0, cmp_mask0); qcoeff1 = _mm_and_si128(qcoeff1, cmp_mask1); store_tran_low(qcoeff0, qcoeff_ptr); store_tran_low(qcoeff1, qcoeff_ptr + 8); coeff0 = _mm_mullo_epi16(qcoeff0, dequant); dequant = _mm_unpackhi_epi64(dequant, dequant); coeff1 = _mm_mullo_epi16(qcoeff1, dequant); store_tran_low(coeff0, dqcoeff_ptr); store_tran_low(coeff1, dqcoeff_ptr + 8); // Scan for eob. zero_coeff0 = _mm_cmpeq_epi16(coeff0, zero); zero_coeff1 = _mm_cmpeq_epi16(coeff1, zero); iscan0 = _mm_load_si128((const __m128i *)(iscan_ptr)); iscan1 = _mm_load_si128((const __m128i *)(iscan_ptr + 8)); // Add one to convert from indices to counts iscan0 = _mm_sub_epi16(iscan0, cmp_mask0); iscan1 = _mm_sub_epi16(iscan1, cmp_mask1); eob = _mm_andnot_si128(zero_coeff0, iscan0); eob1 = _mm_andnot_si128(zero_coeff1, iscan1); eob = _mm_max_epi16(eob, eob1); } // AC only loop. for (index = 16; index < n_coeffs; index += 16) { coeff0 = load_tran_low(coeff_ptr + index); coeff1 = load_tran_low(coeff_ptr + index + 8); qcoeff0 = _mm_abs_epi16(coeff0); qcoeff1 = _mm_abs_epi16(coeff1); cmp_mask0 = _mm_cmpgt_epi16(qcoeff0, zbin); cmp_mask1 = _mm_cmpgt_epi16(qcoeff1, zbin); all_zero = _mm_or_si128(cmp_mask0, cmp_mask1); if (_mm_test_all_zeros(all_zero, all_zero)) { _mm256_store_si256((__m256i *)(qcoeff_ptr + index), big_zero); _mm256_store_si256((__m256i *)(dqcoeff_ptr + index), big_zero); #if CONFIG_VP9_HIGHBITDEPTH _mm256_store_si256((__m256i *)(qcoeff_ptr + index + 8), big_zero); _mm256_store_si256((__m256i *)(dqcoeff_ptr + index + 8), big_zero); #endif // CONFIG_VP9_HIGHBITDEPTH continue; } qcoeff0 = _mm_adds_epi16(qcoeff0, round); qcoeff1 = _mm_adds_epi16(qcoeff1, round); qtmp0 = _mm_mulhi_epi16(qcoeff0, quant); qtmp1 = _mm_mulhi_epi16(qcoeff1, quant); qtmp0 = _mm_add_epi16(qtmp0, qcoeff0); qtmp1 = _mm_add_epi16(qtmp1, qcoeff1); qcoeff0 = _mm_mulhi_epi16(qtmp0, shift); qcoeff1 = _mm_mulhi_epi16(qtmp1, shift); qcoeff0 = _mm_sign_epi16(qcoeff0, coeff0); qcoeff1 = _mm_sign_epi16(qcoeff1, coeff1); qcoeff0 = _mm_and_si128(qcoeff0, cmp_mask0); qcoeff1 = _mm_and_si128(qcoeff1, cmp_mask1); store_tran_low(qcoeff0, qcoeff_ptr + index); store_tran_low(qcoeff1, qcoeff_ptr + index + 8); coeff0 = _mm_mullo_epi16(qcoeff0, dequant); coeff1 = _mm_mullo_epi16(qcoeff1, dequant); store_tran_low(coeff0, dqcoeff_ptr + index); store_tran_low(coeff1, dqcoeff_ptr + index + 8); zero_coeff0 = _mm_cmpeq_epi16(coeff0, zero); zero_coeff1 = _mm_cmpeq_epi16(coeff1, zero); iscan0 = _mm_load_si128((const __m128i *)(iscan_ptr + index)); iscan1 = _mm_load_si128((const __m128i *)(iscan_ptr + index + 8)); iscan0 = _mm_sub_epi16(iscan0, cmp_mask0); iscan1 = _mm_sub_epi16(iscan1, cmp_mask1); eob0 = _mm_andnot_si128(zero_coeff0, iscan0); eob1 = _mm_andnot_si128(zero_coeff1, iscan1); eob0 = _mm_max_epi16(eob0, eob1); eob = _mm_max_epi16(eob, eob0); } // Accumulate eob. { __m128i eob_shuffled; eob_shuffled = _mm_shuffle_epi32(eob, 0xe); eob = _mm_max_epi16(eob, eob_shuffled); eob_shuffled = _mm_shufflelo_epi16(eob, 0xe); eob = _mm_max_epi16(eob, eob_shuffled); eob_shuffled = _mm_shufflelo_epi16(eob, 0x1); eob = _mm_max_epi16(eob, eob_shuffled); *eob_ptr = _mm_extract_epi16(eob, 1); } } void vpx_quantize_b_32x32_avx( const tran_low_t *coeff_ptr, intptr_t n_coeffs, int skip_block, const int16_t *zbin_ptr, const int16_t *round_ptr, const int16_t *quant_ptr, const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr, const int16_t *scan_ptr, const int16_t *iscan_ptr) { const __m128i zero = _mm_setzero_si128(); const __m128i one = _mm_set1_epi16(1); const __m256i big_zero = _mm256_setzero_si256(); int index; __m128i zbin, round, quant, dequant, shift; __m128i coeff0, coeff1; __m128i qcoeff0, qcoeff1; __m128i cmp_mask0, cmp_mask1; __m128i all_zero; __m128i qtmp0, qtmp1; __m128i zero_coeff0, zero_coeff1, iscan0, iscan1; __m128i eob = zero, eob0, eob1; (void)scan_ptr; (void)n_coeffs; (void)skip_block; assert(!skip_block); *eob_ptr = 0; // Setup global values. // The 32x32 halves zbin and round. zbin = _mm_load_si128((const __m128i *)zbin_ptr); // Shift with rounding. zbin = _mm_add_epi16(zbin, one); zbin = _mm_srli_epi16(zbin, 1); // x86 has no "greater *or equal*" comparison. Subtract 1 from zbin so // it is a strict "greater" comparison. zbin = _mm_sub_epi16(zbin, one); round = _mm_load_si128((const __m128i *)round_ptr); round = _mm_add_epi16(round, one); round = _mm_srli_epi16(round, 1); quant = _mm_load_si128((const __m128i *)quant_ptr); dequant = _mm_load_si128((const __m128i *)dequant_ptr); shift = _mm_load_si128((const __m128i *)quant_shift_ptr); shift = _mm_slli_epi16(shift, 1); // Do DC and first 15 AC. coeff0 = load_tran_low(coeff_ptr); coeff1 = load_tran_low(coeff_ptr + 8); qcoeff0 = _mm_abs_epi16(coeff0); qcoeff1 = _mm_abs_epi16(coeff1); cmp_mask0 = _mm_cmpgt_epi16(qcoeff0, zbin); zbin = _mm_unpackhi_epi64(zbin, zbin); // Switch DC to AC cmp_mask1 = _mm_cmpgt_epi16(qcoeff1, zbin); all_zero = _mm_or_si128(cmp_mask0, cmp_mask1); if (_mm_test_all_zeros(all_zero, all_zero)) { _mm256_store_si256((__m256i *)(qcoeff_ptr), big_zero); _mm256_store_si256((__m256i *)(dqcoeff_ptr), big_zero); #if CONFIG_VP9_HIGHBITDEPTH _mm256_store_si256((__m256i *)(qcoeff_ptr + 8), big_zero); _mm256_store_si256((__m256i *)(dqcoeff_ptr + 8), big_zero); #endif // CONFIG_VP9_HIGHBITDEPTH round = _mm_unpackhi_epi64(round, round); quant = _mm_unpackhi_epi64(quant, quant); shift = _mm_unpackhi_epi64(shift, shift); dequant = _mm_unpackhi_epi64(dequant, dequant); } else { qcoeff0 = _mm_adds_epi16(qcoeff0, round); round = _mm_unpackhi_epi64(round, round); qcoeff1 = _mm_adds_epi16(qcoeff1, round); qtmp0 = _mm_mulhi_epi16(qcoeff0, quant); quant = _mm_unpackhi_epi64(quant, quant); qtmp1 = _mm_mulhi_epi16(qcoeff1, quant); qtmp0 = _mm_add_epi16(qtmp0, qcoeff0); qtmp1 = _mm_add_epi16(qtmp1, qcoeff1); qcoeff0 = _mm_mulhi_epi16(qtmp0, shift); shift = _mm_unpackhi_epi64(shift, shift); qcoeff1 = _mm_mulhi_epi16(qtmp1, shift); // Reinsert signs qcoeff0 = _mm_sign_epi16(qcoeff0, coeff0); qcoeff1 = _mm_sign_epi16(qcoeff1, coeff1); // Mask out zbin threshold coeffs qcoeff0 = _mm_and_si128(qcoeff0, cmp_mask0); qcoeff1 = _mm_and_si128(qcoeff1, cmp_mask1); store_tran_low(qcoeff0, qcoeff_ptr); store_tran_low(qcoeff1, qcoeff_ptr + 8); // Un-sign to bias rounding like C. // dequant is almost always negative, so this is probably the backwards way // to handle the sign. However, it matches the previous assembly. coeff0 = _mm_abs_epi16(qcoeff0); coeff1 = _mm_abs_epi16(qcoeff1); coeff0 = _mm_mullo_epi16(coeff0, dequant); dequant = _mm_unpackhi_epi64(dequant, dequant); coeff1 = _mm_mullo_epi16(coeff1, dequant); // "Divide" by 2. coeff0 = _mm_srli_epi16(coeff0, 1); coeff1 = _mm_srli_epi16(coeff1, 1); coeff0 = _mm_sign_epi16(coeff0, qcoeff0); coeff1 = _mm_sign_epi16(coeff1, qcoeff1); store_tran_low(coeff0, dqcoeff_ptr); store_tran_low(coeff1, dqcoeff_ptr + 8); // Scan for eob. zero_coeff0 = _mm_cmpeq_epi16(coeff0, zero); zero_coeff1 = _mm_cmpeq_epi16(coeff1, zero); iscan0 = _mm_load_si128((const __m128i *)(iscan_ptr)); iscan1 = _mm_load_si128((const __m128i *)(iscan_ptr + 8)); // Add one to convert from indices to counts iscan0 = _mm_sub_epi16(iscan0, cmp_mask0); iscan1 = _mm_sub_epi16(iscan1, cmp_mask1); eob = _mm_andnot_si128(zero_coeff0, iscan0); eob1 = _mm_andnot_si128(zero_coeff1, iscan1); eob = _mm_max_epi16(eob, eob1); } // AC only loop. for (index = 16; index < 32 * 32; index += 16) { coeff0 = load_tran_low(coeff_ptr + index); coeff1 = load_tran_low(coeff_ptr + index + 8); qcoeff0 = _mm_abs_epi16(coeff0); qcoeff1 = _mm_abs_epi16(coeff1); cmp_mask0 = _mm_cmpgt_epi16(qcoeff0, zbin); cmp_mask1 = _mm_cmpgt_epi16(qcoeff1, zbin); all_zero = _mm_or_si128(cmp_mask0, cmp_mask1); if (_mm_test_all_zeros(all_zero, all_zero)) { _mm256_store_si256((__m256i *)(qcoeff_ptr + index), big_zero); _mm256_store_si256((__m256i *)(dqcoeff_ptr + index), big_zero); #if CONFIG_VP9_HIGHBITDEPTH _mm256_store_si256((__m256i *)(qcoeff_ptr + index + 8), big_zero); _mm256_store_si256((__m256i *)(dqcoeff_ptr + index + 8), big_zero); #endif // CONFIG_VP9_HIGHBITDEPTH continue; } qcoeff0 = _mm_adds_epi16(qcoeff0, round); qcoeff1 = _mm_adds_epi16(qcoeff1, round); qtmp0 = _mm_mulhi_epi16(qcoeff0, quant); qtmp1 = _mm_mulhi_epi16(qcoeff1, quant); qtmp0 = _mm_add_epi16(qtmp0, qcoeff0); qtmp1 = _mm_add_epi16(qtmp1, qcoeff1); qcoeff0 = _mm_mulhi_epi16(qtmp0, shift); qcoeff1 = _mm_mulhi_epi16(qtmp1, shift); qcoeff0 = _mm_sign_epi16(qcoeff0, coeff0); qcoeff1 = _mm_sign_epi16(qcoeff1, coeff1); qcoeff0 = _mm_and_si128(qcoeff0, cmp_mask0); qcoeff1 = _mm_and_si128(qcoeff1, cmp_mask1); store_tran_low(qcoeff0, qcoeff_ptr + index); store_tran_low(qcoeff1, qcoeff_ptr + index + 8); coeff0 = _mm_abs_epi16(qcoeff0); coeff1 = _mm_abs_epi16(qcoeff1); coeff0 = _mm_mullo_epi16(coeff0, dequant); coeff1 = _mm_mullo_epi16(coeff1, dequant); coeff0 = _mm_srli_epi16(coeff0, 1); coeff1 = _mm_srli_epi16(coeff1, 1); coeff0 = _mm_sign_epi16(coeff0, qcoeff0); coeff1 = _mm_sign_epi16(coeff1, qcoeff1); store_tran_low(coeff0, dqcoeff_ptr + index); store_tran_low(coeff1, dqcoeff_ptr + index + 8); zero_coeff0 = _mm_cmpeq_epi16(coeff0, zero); zero_coeff1 = _mm_cmpeq_epi16(coeff1, zero); iscan0 = _mm_load_si128((const __m128i *)(iscan_ptr + index)); iscan1 = _mm_load_si128((const __m128i *)(iscan_ptr + index + 8)); iscan0 = _mm_sub_epi16(iscan0, cmp_mask0); iscan1 = _mm_sub_epi16(iscan1, cmp_mask1); eob0 = _mm_andnot_si128(zero_coeff0, iscan0); eob1 = _mm_andnot_si128(zero_coeff1, iscan1); eob0 = _mm_max_epi16(eob0, eob1); eob = _mm_max_epi16(eob, eob0); } // Accumulate eob. { __m128i eob_shuffled; eob_shuffled = _mm_shuffle_epi32(eob, 0xe); eob = _mm_max_epi16(eob, eob_shuffled); eob_shuffled = _mm_shufflelo_epi16(eob, 0xe); eob = _mm_max_epi16(eob, eob_shuffled); eob_shuffled = _mm_shufflelo_epi16(eob, 0x1); eob = _mm_max_epi16(eob, eob_shuffled); *eob_ptr = _mm_extract_epi16(eob, 1); } }