shithub: libvpx

ref: 7a000715767c3765575977d77e3d22d2e763450b
dir: /vp8/encoder/ratectrl.c/

View raw version
/*
 *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */


#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <limits.h>
#include <assert.h>

#include "math.h"
#include "vp8/common/common.h"
#include "ratectrl.h"
#include "vp8/common/entropymode.h"
#include "vpx_mem/vpx_mem.h"
#include "vp8/common/systemdependent.h"
#include "encodemv.h"


#define MIN_BPB_FACTOR          0.005
#define MAX_BPB_FACTOR          50

extern const MB_PREDICTION_MODE vp8_mode_order[MAX_MODES];
extern const MV_REFERENCE_FRAME vp8_ref_frame_order[MAX_MODES];



#ifdef MODE_STATS
extern unsigned int y_modes[VP8_YMODES];
extern unsigned int uv_modes[VP8_UV_MODES];
extern unsigned int b_modes[B_MODE_COUNT];

extern unsigned int inter_y_modes[MB_MODE_COUNT];
extern unsigned int inter_uv_modes[VP8_UV_MODES];
extern unsigned int inter_b_modes[B_MODE_COUNT];
#endif

// Bits Per MB at different Q (Multiplied by 512)
#define BPER_MB_NORMBITS    9

// % adjustment to target kf size based on seperation from previous frame
static const int kf_boost_seperation_adjustment[16] =
{
    30,   40,   50,   55,   60,   65,   70,   75,
    80,   85,   90,   95,  100,  100,  100,  100,
};

static const int gf_adjust_table[101] =
{
    100,
    115, 130, 145, 160, 175, 190, 200, 210, 220, 230,
    240, 260, 270, 280, 290, 300, 310, 320, 330, 340,
    350, 360, 370, 380, 390, 400, 400, 400, 400, 400,
    400, 400, 400, 400, 400, 400, 400, 400, 400, 400,
    400, 400, 400, 400, 400, 400, 400, 400, 400, 400,
    400, 400, 400, 400, 400, 400, 400, 400, 400, 400,
    400, 400, 400, 400, 400, 400, 400, 400, 400, 400,
    400, 400, 400, 400, 400, 400, 400, 400, 400, 400,
    400, 400, 400, 400, 400, 400, 400, 400, 400, 400,
    400, 400, 400, 400, 400, 400, 400, 400, 400, 400,
};

static const int gf_intra_usage_adjustment[20] =
{
    125, 120, 115, 110, 105, 100,  95,  85,  80,  75,
    70,  65,  60,  55,  50,  50,  50,  50,  50,  50,
};

static const int gf_interval_table[101] =
{
    7,
    7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
    7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
    7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
    8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
    8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
    9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
    9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
    10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
    10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
    11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
};

static const unsigned int prior_key_frame_weight[KEY_FRAME_CONTEXT] = { 1, 2, 3, 4, 5 };

// These functions use formulaic calculations to make playing with the
// quantizer tables easier. If necessary they can be replaced by lookup
// tables if and when things settle down in the experimental bitstream
double vp8_convert_qindex_to_q( int qindex )
{
    // Convert the index to a real Q value (scaled down to match old Q values)
    return (double)vp8_ac_yquant( qindex, 0 ) / 4.0;
}

int vp8_gfboost_qadjust( int qindex )
{
    int retval;
    double q;

    q = vp8_convert_qindex_to_q(qindex);
    retval = (int)( ( 0.00000828 * q * q * q ) +
                    ( -0.0055 * q * q ) +
                    ( 1.32 * q ) + 79.3 );
    return retval;
}

int kfboost_qadjust( int qindex )
{
    int retval;
    double q;

    q = vp8_convert_qindex_to_q(qindex);
    retval = (int)( ( 0.00000973 * q * q * q ) +
                    ( -0.00613 * q * q ) +
                    ( 1.316 * q ) + 121.2 );
    return retval;
}

int vp8_bits_per_mb( FRAME_TYPE frame_type, int qindex  )
{
    if ( frame_type == KEY_FRAME )
        return (int)(4500000 / vp8_convert_qindex_to_q(qindex));
    else
        return (int)(2850000 / vp8_convert_qindex_to_q(qindex));
}


void vp8_save_coding_context(VP8_COMP *cpi)
{
    CODING_CONTEXT *const cc = & cpi->coding_context;
    VP8_COMMON *cm = &cpi->common;
    MACROBLOCKD *xd = &cpi->mb.e_mbd;

    // Stores a snapshot of key state variables which can subsequently be
    // restored with a call to vp8_restore_coding_context. These functions are
    // intended for use in a re-code loop in vp8_compress_frame where the
    // quantizer value is adjusted between loop iterations.

    vp8_copy(cc->mvc,      cm->fc.mvc);
    vp8_copy(cc->mvcosts,  cpi->mb.mvcosts);
#if CONFIG_HIGH_PRECISION_MV
    vp8_copy(cc->mvc_hp,     cm->fc.mvc_hp);
    vp8_copy(cc->mvcosts_hp,  cpi->mb.mvcosts_hp);
#endif

    vp8_copy( cc->mv_ref_ct, cm->mv_ref_ct );
    vp8_copy( cc->mode_context, cm->mode_context );
    vp8_copy( cc->mv_ref_ct_a, cm->mv_ref_ct_a );
    vp8_copy( cc->mode_context_a, cm->mode_context_a );

    vp8_copy( cc->ymode_prob, cm->fc.ymode_prob );
    vp8_copy( cc->uv_mode_prob, cm->fc.uv_mode_prob );

    // Stats
#ifdef MODE_STATS
    vp8_copy(cc->y_modes,       y_modes);
    vp8_copy(cc->uv_modes,      uv_modes);
    vp8_copy(cc->b_modes,       b_modes);
    vp8_copy(cc->inter_y_modes,  inter_y_modes);
    vp8_copy(cc->inter_uv_modes, inter_uv_modes);
    vp8_copy(cc->inter_b_modes,  inter_b_modes);
#endif

    vp8_copy( cc->segment_pred_probs, cm->segment_pred_probs );
    vp8_copy( cc->ref_pred_probs_update, cpi->ref_pred_probs_update );
    vp8_copy( cc->ref_pred_probs, cm->ref_pred_probs );
    vp8_copy( cc->prob_comppred, cm->prob_comppred );

    vpx_memcpy( cpi->coding_context.last_frame_seg_map_copy,
                cm->last_frame_seg_map, (cm->mb_rows * cm->mb_cols) );

    vp8_copy( cc->last_ref_lf_deltas, xd->last_ref_lf_deltas );
    vp8_copy( cc->last_mode_lf_deltas, xd->last_mode_lf_deltas );

    vp8_copy( cc->coef_probs, cm->fc.coef_probs );
    vp8_copy( cc->coef_probs_8x8, cm->fc.coef_probs_8x8 );
}

void vp8_restore_coding_context(VP8_COMP *cpi)
{
    CODING_CONTEXT *const cc = & cpi->coding_context;
    VP8_COMMON *cm = &cpi->common;
    MACROBLOCKD *xd = &cpi->mb.e_mbd;

    // Restore key state variables to the snapshot state stored in the
    // previous call to vp8_save_coding_context.

    vp8_copy(cm->fc.mvc, cc->mvc);
    vp8_copy(cpi->mb.mvcosts, cc->mvcosts);
#if CONFIG_HIGH_PRECISION_MV
    vp8_copy(cm->fc.mvc_hp, cc->mvc_hp);
    vp8_copy(cpi->mb.mvcosts_hp, cc->mvcosts_hp);
#endif

    vp8_copy( cm->mv_ref_ct, cc->mv_ref_ct );
    vp8_copy( cm->mode_context, cc->mode_context );
    vp8_copy( cm->mv_ref_ct_a, cc->mv_ref_ct_a );
    vp8_copy( cm->mode_context_a, cc->mode_context_a );

    vp8_copy( cm->fc.ymode_prob, cc->ymode_prob);
    vp8_copy( cm->fc.uv_mode_prob, cc->uv_mode_prob);

    // Stats
#ifdef MODE_STATS
    vp8_copy(y_modes, cc->y_modes);
    vp8_copy(uv_modes, cc->uv_modes);
    vp8_copy(b_modes, cc->b_modes);
    vp8_copy(inter_y_modes, cc->inter_y_modes);
    vp8_copy(inter_uv_modes, cc->inter_uv_modes);
    vp8_copy(inter_b_modes, cc->inter_b_modes);
#endif

    vp8_copy( cm->segment_pred_probs, cc->segment_pred_probs );
    vp8_copy( cpi->ref_pred_probs_update, cc->ref_pred_probs_update );
    vp8_copy( cm->ref_pred_probs, cc->ref_pred_probs );
    vp8_copy( cm->prob_comppred, cc->prob_comppred );

    vpx_memcpy( cm->last_frame_seg_map,
                cpi->coding_context.last_frame_seg_map_copy,
                (cm->mb_rows * cm->mb_cols) );

    vp8_copy( xd->last_ref_lf_deltas, cc->last_ref_lf_deltas );
    vp8_copy( xd->last_mode_lf_deltas, cc->last_mode_lf_deltas );

    vp8_copy( cm->fc.coef_probs, cc->coef_probs );
    vp8_copy( cm->fc.coef_probs_8x8, cc->coef_probs_8x8 );
}


void vp8_setup_key_frame(VP8_COMP *cpi)
{
    // Setup for Key frame:
    vp8_default_coef_probs(& cpi->common);
    vp8_kf_default_bmode_probs(cpi->common.kf_bmode_prob);
    vp8_init_mbmode_probs(& cpi->common);

    vpx_memcpy(cpi->common.fc.mvc, vp8_default_mv_context, sizeof(vp8_default_mv_context));
    {
        int flag[2] = {1, 1};
        vp8_build_component_cost_table(cpi->mb.mvcost, (const MV_CONTEXT *) cpi->common.fc.mvc, flag);
    }
#if CONFIG_HIGH_PRECISION_MV
    vpx_memcpy(cpi->common.fc.mvc_hp, vp8_default_mv_context_hp, sizeof(vp8_default_mv_context_hp));
    {
        int flag[2] = {1, 1};
        vp8_build_component_cost_table_hp(cpi->mb.mvcost_hp, (const MV_CONTEXT_HP *) cpi->common.fc.mvc_hp, flag);
    }
#endif



    cpi->common.txfm_mode = ALLOW_8X8;

    //cpi->common.filter_level = 0;      // Reset every key frame.
    cpi->common.filter_level = cpi->common.base_qindex * 3 / 8 ;

    // interval before next GF
    cpi->frames_till_gf_update_due = cpi->baseline_gf_interval;

    cpi->common.refresh_golden_frame = TRUE;
    cpi->common.refresh_alt_ref_frame = TRUE;

    vpx_memcpy(&cpi->common.lfc, &cpi->common.fc, sizeof(cpi->common.fc));
    vpx_memcpy(&cpi->common.lfc_a, &cpi->common.fc, sizeof(cpi->common.fc));

    vp8_init_mode_contexts(&cpi->common);
    vpx_memcpy( cpi->common.vp8_mode_contexts,
                cpi->common.mode_context,
                sizeof(cpi->common.mode_context));
    vpx_memcpy( cpi->common.vp8_mode_contexts,
                default_vp8_mode_contexts,
                sizeof(default_vp8_mode_contexts));

}
void vp8_setup_inter_frame(VP8_COMP *cpi)
{

    cpi->common.txfm_mode = ALLOW_8X8;

    if(cpi->common.refresh_alt_ref_frame)
    {
        vpx_memcpy( &cpi->common.fc,
                    &cpi->common.lfc_a,
                    sizeof(cpi->common.fc));
        vpx_memcpy( cpi->common.vp8_mode_contexts,
                    cpi->common.mode_context_a,
                    sizeof(cpi->common.vp8_mode_contexts));
    }
    else
    {
        vpx_memcpy( &cpi->common.fc,
                    &cpi->common.lfc,
                    sizeof(cpi->common.fc));
        vpx_memcpy( cpi->common.vp8_mode_contexts,
                    cpi->common.mode_context,
                    sizeof(cpi->common.vp8_mode_contexts));
    }
}


static int estimate_bits_at_q(int frame_kind, int Q, int MBs,
                              double correction_factor)
{
    int Bpm = (int)(.5 + correction_factor * vp8_bits_per_mb(frame_kind, Q));

    /* Attempt to retain reasonable accuracy without overflow. The cutoff is
     * chosen such that the maximum product of Bpm and MBs fits 31 bits. The
     * largest Bpm takes 20 bits.
     */
    if (MBs > (1 << 11))
        return (Bpm >> BPER_MB_NORMBITS) * MBs;
    else
        return (Bpm * MBs) >> BPER_MB_NORMBITS;
}


static void calc_iframe_target_size(VP8_COMP *cpi)
{
    // boost defaults to half second
    int kf_boost;
    int target;

    // Clear down mmx registers to allow floating point in what follows
    vp8_clear_system_state();  //__asm emms;

    // New Two pass RC
    target = cpi->per_frame_bandwidth;

    if (cpi->oxcf.rc_max_intra_bitrate_pct)
    {
        unsigned int max_rate = cpi->per_frame_bandwidth
                                * cpi->oxcf.rc_max_intra_bitrate_pct / 100;

        if (target > max_rate)
            target = max_rate;
    }

    cpi->this_frame_target = target;

}


//  Do the best we can to define the parameteres for the next GF based
//  on what information we have available.
//
//  In this experimental code only two pass is supported
//  so we just use the interval determined in the two pass code.
static void calc_gf_params(VP8_COMP *cpi)
{
    // Set the gf interval
    cpi->frames_till_gf_update_due = cpi->baseline_gf_interval;
}


static void calc_pframe_target_size(VP8_COMP *cpi)
{
    int min_frame_target;
    int Adjustment;

    min_frame_target = 0;

    min_frame_target = cpi->min_frame_bandwidth;

    if (min_frame_target < (cpi->av_per_frame_bandwidth >> 5))
        min_frame_target = cpi->av_per_frame_bandwidth >> 5;


    // Special alt reference frame case
    if (cpi->common.refresh_alt_ref_frame)
    {
        // Per frame bit target for the alt ref frame
        cpi->per_frame_bandwidth = cpi->twopass.gf_bits;
        cpi->this_frame_target = cpi->per_frame_bandwidth;
    }

    // Normal frames (gf,and inter)
    else
    {
        cpi->this_frame_target = cpi->per_frame_bandwidth;
    }

    // Sanity check that the total sum of adjustments is not above the maximum allowed
    // That is that having allowed for KF and GF penalties we have not pushed the
    // current interframe target to low. If the adjustment we apply here is not capable of recovering
    // all the extra bits we have spent in the KF or GF then the remainder will have to be recovered over
    // a longer time span via other buffer / rate control mechanisms.
    if (cpi->this_frame_target < min_frame_target)
        cpi->this_frame_target = min_frame_target;

    if (!cpi->common.refresh_alt_ref_frame)
        // Note the baseline target data rate for this inter frame.
        cpi->inter_frame_target = cpi->this_frame_target;

    // Adjust target frame size for Golden Frames:
    if ( cpi->frames_till_gf_update_due == 0 )
    {
        //int Boost = 0;
        int Q = (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q;

        cpi->common.refresh_golden_frame = TRUE;

        calc_gf_params(cpi);

        // If we are using alternate ref instead of gf then do not apply the boost
        // It will instead be applied to the altref update
        // Jims modified boost
        if (!cpi->source_alt_ref_active)
        {
            if (cpi->oxcf.fixed_q < 0)
            {
                // The spend on the GF is defined in the two pass code
                // for two pass encodes
                cpi->this_frame_target = cpi->per_frame_bandwidth;
            }
            else
                cpi->this_frame_target =
                    (estimate_bits_at_q(1, Q, cpi->common.MBs, 1.0)
                     * cpi->last_boost) / 100;

        }
        // If there is an active ARF at this location use the minimum
        // bits on this frame even if it is a contructed arf.
        // The active maximum quantizer insures that an appropriate
        // number of bits will be spent if needed for contstructed ARFs.
        else
        {
            cpi->this_frame_target = 0;
        }

        cpi->current_gf_interval = cpi->frames_till_gf_update_due;
    }
}


void vp8_update_rate_correction_factors(VP8_COMP *cpi, int damp_var)
{
    int    Q = cpi->common.base_qindex;
    int    correction_factor = 100;
    double rate_correction_factor;
    double adjustment_limit;

    int    projected_size_based_on_q = 0;

    // Clear down mmx registers to allow floating point in what follows
    vp8_clear_system_state();  //__asm emms;

    if (cpi->common.frame_type == KEY_FRAME)
    {
        rate_correction_factor = cpi->key_frame_rate_correction_factor;
    }
    else
    {
        if (cpi->common.refresh_alt_ref_frame || cpi->common.refresh_golden_frame)
            rate_correction_factor = cpi->gf_rate_correction_factor;
        else
            rate_correction_factor = cpi->rate_correction_factor;
    }

    // Work out how big we would have expected the frame to be at this Q given the current correction factor.
    // Stay in double to avoid int overflow when values are large
    projected_size_based_on_q =
        (int)(((.5 + rate_correction_factor *
                     vp8_bits_per_mb(cpi->common.frame_type, Q)) *
               cpi->common.MBs) / (1 << BPER_MB_NORMBITS));

    // Make some allowance for cpi->zbin_over_quant
    if (cpi->zbin_over_quant > 0)
    {
        int Z = cpi->zbin_over_quant;
        double Factor = 0.99;
        double factor_adjustment = 0.01 / 256.0; //(double)ZBIN_OQ_MAX;

        while (Z > 0)
        {
            Z --;
            projected_size_based_on_q =
                (int)(Factor * projected_size_based_on_q);
            Factor += factor_adjustment;

            if (Factor  >= 0.999)
                Factor = 0.999;
        }
    }

    // Work out a size correction factor.
    //if ( cpi->this_frame_target > 0 )
    //  correction_factor = (100 * cpi->projected_frame_size) / cpi->this_frame_target;
    if (projected_size_based_on_q > 0)
        correction_factor = (100 * cpi->projected_frame_size) / projected_size_based_on_q;

    // More heavily damped adjustment used if we have been oscillating either side of target
    switch (damp_var)
    {
    case 0:
        adjustment_limit = 0.75;
        break;
    case 1:
        adjustment_limit = 0.375;
        break;
    case 2:
    default:
        adjustment_limit = 0.25;
        break;
    }

    //if ( (correction_factor > 102) && (Q < cpi->active_worst_quality) )
    if (correction_factor > 102)
    {
        // We are not already at the worst allowable quality
        correction_factor = (int)(100.5 + ((correction_factor - 100) * adjustment_limit));
        rate_correction_factor = ((rate_correction_factor * correction_factor) / 100);

        // Keep rate_correction_factor within limits
        if (rate_correction_factor > MAX_BPB_FACTOR)
            rate_correction_factor = MAX_BPB_FACTOR;
    }
    //else if ( (correction_factor < 99) && (Q > cpi->active_best_quality) )
    else if (correction_factor < 99)
    {
        // We are not already at the best allowable quality
        correction_factor = (int)(100.5 - ((100 - correction_factor) * adjustment_limit));
        rate_correction_factor = ((rate_correction_factor * correction_factor) / 100);

        // Keep rate_correction_factor within limits
        if (rate_correction_factor < MIN_BPB_FACTOR)
            rate_correction_factor = MIN_BPB_FACTOR;
    }

    if (cpi->common.frame_type == KEY_FRAME)
        cpi->key_frame_rate_correction_factor = rate_correction_factor;
    else
    {
        if (cpi->common.refresh_alt_ref_frame || cpi->common.refresh_golden_frame)
            cpi->gf_rate_correction_factor = rate_correction_factor;
        else
            cpi->rate_correction_factor = rate_correction_factor;
    }
}


int vp8_regulate_q(VP8_COMP *cpi, int target_bits_per_frame)
{
    int Q = cpi->active_worst_quality;

    int i;
    int last_error = INT_MAX;
    int target_bits_per_mb;
    int bits_per_mb_at_this_q;
    double correction_factor;

    // Reset Zbin OQ value
    cpi->zbin_over_quant = 0;

    // Select the appropriate correction factor based upon type of frame.
    if (cpi->common.frame_type == KEY_FRAME)
        correction_factor = cpi->key_frame_rate_correction_factor;
    else
    {
        if (cpi->common.refresh_alt_ref_frame || cpi->common.refresh_golden_frame)
            correction_factor = cpi->gf_rate_correction_factor;
        else
            correction_factor = cpi->rate_correction_factor;
    }

    // Calculate required scaling factor based on target frame size and size of frame produced using previous Q
    if (target_bits_per_frame >= (INT_MAX >> BPER_MB_NORMBITS))
        target_bits_per_mb = (target_bits_per_frame / cpi->common.MBs) << BPER_MB_NORMBITS;       // Case where we would overflow int
    else
        target_bits_per_mb = (target_bits_per_frame << BPER_MB_NORMBITS) / cpi->common.MBs;

    i = cpi->active_best_quality;

    do
    {
        bits_per_mb_at_this_q =
            (int)(.5 + correction_factor *
                       vp8_bits_per_mb(cpi->common.frame_type, i ));

        if (bits_per_mb_at_this_q <= target_bits_per_mb)
        {
            if ((target_bits_per_mb - bits_per_mb_at_this_q) <= last_error)
                Q = i;
            else
                Q = i - 1;

            break;
        }
        else
            last_error = bits_per_mb_at_this_q - target_bits_per_mb;
    }
    while (++i <= cpi->active_worst_quality);


    // If we are at MAXQ then enable Q over-run which seeks to claw back additional bits through things like
    // the RD multiplier and zero bin size.
    if (Q >= MAXQ)
    {
        int zbin_oqmax;

        double Factor = 0.99;
        double factor_adjustment = 0.01 / 256.0; //(double)ZBIN_OQ_MAX;

        if (cpi->common.frame_type == KEY_FRAME)
            zbin_oqmax = 0; //ZBIN_OQ_MAX/16
        else if (cpi->common.refresh_alt_ref_frame || (cpi->common.refresh_golden_frame && !cpi->source_alt_ref_active))
            zbin_oqmax = 16;
        else
            zbin_oqmax = ZBIN_OQ_MAX;

        // Each incrment in the zbin is assumed to have a fixed effect on bitrate. This is not of course true.
        // The effect will be highly clip dependent and may well have sudden steps.
        // The idea here is to acheive higher effective quantizers than the normal maximum by expanding the zero
        // bin and hence decreasing the number of low magnitude non zero coefficients.
        while (cpi->zbin_over_quant < zbin_oqmax)
        {
            cpi->zbin_over_quant ++;

            if (cpi->zbin_over_quant > zbin_oqmax)
                cpi->zbin_over_quant = zbin_oqmax;

            // Adjust bits_per_mb_at_this_q estimate
            bits_per_mb_at_this_q = (int)(Factor * bits_per_mb_at_this_q);
            Factor += factor_adjustment;

            if (Factor  >= 0.999)
                Factor = 0.999;

            if (bits_per_mb_at_this_q <= target_bits_per_mb)    // Break out if we get down to the target rate
                break;
        }

    }

    return Q;
}


static int estimate_keyframe_frequency(VP8_COMP *cpi)
{
    int i;

    // Average key frame frequency
    int av_key_frame_frequency = 0;

    /* First key frame at start of sequence is a special case. We have no
     * frequency data.
     */
    if (cpi->key_frame_count == 1)
    {
        /* Assume a default of 1 kf every 2 seconds, or the max kf interval,
         * whichever is smaller.
         */
        int key_freq = cpi->oxcf.key_freq>0 ? cpi->oxcf.key_freq : 1;
        av_key_frame_frequency = (int)cpi->output_frame_rate * 2;

        if (cpi->oxcf.auto_key && av_key_frame_frequency > key_freq)
            av_key_frame_frequency = cpi->oxcf.key_freq;

        cpi->prior_key_frame_distance[KEY_FRAME_CONTEXT - 1]
            = av_key_frame_frequency;
    }
    else
    {
        unsigned int total_weight = 0;
        int last_kf_interval =
                (cpi->frames_since_key > 0) ? cpi->frames_since_key : 1;

        /* reset keyframe context and calculate weighted average of last
         * KEY_FRAME_CONTEXT keyframes
         */
        for (i = 0; i < KEY_FRAME_CONTEXT; i++)
        {
            if (i < KEY_FRAME_CONTEXT - 1)
                cpi->prior_key_frame_distance[i]
                    = cpi->prior_key_frame_distance[i+1];
            else
                cpi->prior_key_frame_distance[i] = last_kf_interval;

            av_key_frame_frequency += prior_key_frame_weight[i]
                                      * cpi->prior_key_frame_distance[i];
            total_weight += prior_key_frame_weight[i];
        }

        av_key_frame_frequency  /= total_weight;

    }
    return av_key_frame_frequency;
}


void vp8_adjust_key_frame_context(VP8_COMP *cpi)
{
    // Clear down mmx registers to allow floating point in what follows
    vp8_clear_system_state();

    cpi->frames_since_key = 0;
    cpi->key_frame_count++;
}


void vp8_compute_frame_size_bounds(VP8_COMP *cpi, int *frame_under_shoot_limit, int *frame_over_shoot_limit)
{
    // Set-up bounds on acceptable frame size:
    if (cpi->oxcf.fixed_q >= 0)
    {
        // Fixed Q scenario: frame size never outranges target (there is no target!)
        *frame_under_shoot_limit = 0;
        *frame_over_shoot_limit  = INT_MAX;
    }
    else
    {
        if (cpi->common.frame_type == KEY_FRAME)
        {
            *frame_over_shoot_limit  = cpi->this_frame_target * 9 / 8;
            *frame_under_shoot_limit = cpi->this_frame_target * 7 / 8;
        }
        else
        {
            if (cpi->common.refresh_alt_ref_frame || cpi->common.refresh_golden_frame)
            {
                *frame_over_shoot_limit  = cpi->this_frame_target * 9 / 8;
                *frame_under_shoot_limit = cpi->this_frame_target * 7 / 8;
            }
            else
            {
                // Stron overshoot limit for constrained quality
                if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY)
                {
                    *frame_over_shoot_limit  = cpi->this_frame_target * 11 / 8;
                    *frame_under_shoot_limit = cpi->this_frame_target * 2 / 8;
                }
                else
                {
                    *frame_over_shoot_limit  = cpi->this_frame_target * 11 / 8;
                    *frame_under_shoot_limit = cpi->this_frame_target * 5 / 8;
                }
            }
        }

        // For very small rate targets where the fractional adjustment
        // (eg * 7/8) may be tiny make sure there is at least a minimum
        // range.
        *frame_over_shoot_limit += 200;
        *frame_under_shoot_limit -= 200;
        if ( *frame_under_shoot_limit < 0 )
            *frame_under_shoot_limit = 0;
    }
}


// return of 0 means drop frame
int vp8_pick_frame_size(VP8_COMP *cpi)
{
    VP8_COMMON *cm = &cpi->common;

    if (cm->frame_type == KEY_FRAME)
        calc_iframe_target_size(cpi);
    else
        calc_pframe_target_size(cpi);

    return 1;
}