ref: 7593588eb1c7e786b62c5f21c081a4bfb1d00d4f
dir: /vp9/encoder/vp9_svc_layercontext.c/
/* * Copyright (c) 2014 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <math.h> #include "vp9/encoder/vp9_aq_cyclicrefresh.h" #include "vp9/encoder/vp9_encoder.h" #include "vp9/encoder/vp9_svc_layercontext.h" #include "vp9/encoder/vp9_extend.h" #include "vpx_dsp/vpx_dsp_common.h" #define SMALL_FRAME_WIDTH 32 #define SMALL_FRAME_HEIGHT 16 static void swap_ptr(void *a, void *b) { void **a_p = (void **)a; void **b_p = (void **)b; void *c = *a_p; *a_p = *b_p; *b_p = c; } void vp9_init_layer_context(VP9_COMP *const cpi) { SVC *const svc = &cpi->svc; const VP9EncoderConfig *const oxcf = &cpi->oxcf; int mi_rows = cpi->common.mi_rows; int mi_cols = cpi->common.mi_cols; int sl, tl, i; int alt_ref_idx = svc->number_spatial_layers; svc->spatial_layer_id = 0; svc->temporal_layer_id = 0; svc->force_zero_mode_spatial_ref = 0; svc->use_base_mv = 0; svc->use_partition_reuse = 0; svc->use_gf_temporal_ref = 1; svc->use_gf_temporal_ref_current_layer = 0; svc->scaled_temp_is_alloc = 0; svc->scaled_one_half = 0; svc->current_superframe = 0; svc->non_reference_frame = 0; svc->skip_enhancement_layer = 0; svc->disable_inter_layer_pred = INTER_LAYER_PRED_ON; svc->framedrop_mode = CONSTRAINED_LAYER_DROP; svc->set_intra_only_frame = 0; svc->previous_frame_is_intra_only = 0; svc->superframe_has_layer_sync = 0; svc->use_set_ref_frame_config = 0; svc->num_encoded_top_layer = 0; for (i = 0; i < REF_FRAMES; ++i) { svc->fb_idx_spatial_layer_id[i] = -1; svc->fb_idx_temporal_layer_id[i] = -1; svc->fb_idx_base[i] = 0; } for (sl = 0; sl < oxcf->ss_number_layers; ++sl) { svc->last_layer_dropped[sl] = 0; svc->drop_spatial_layer[sl] = 0; svc->ext_frame_flags[sl] = 0; svc->lst_fb_idx[sl] = 0; svc->gld_fb_idx[sl] = 1; svc->alt_fb_idx[sl] = 2; svc->downsample_filter_type[sl] = BILINEAR; svc->downsample_filter_phase[sl] = 8; // Set to 8 for averaging filter. svc->framedrop_thresh[sl] = oxcf->drop_frames_water_mark; svc->fb_idx_upd_tl0[sl] = -1; svc->drop_count[sl] = 0; svc->spatial_layer_sync[sl] = 0; } svc->max_consec_drop = INT_MAX; svc->buffer_gf_temporal_ref[1].idx = 7; svc->buffer_gf_temporal_ref[0].idx = 6; svc->buffer_gf_temporal_ref[1].is_used = 0; svc->buffer_gf_temporal_ref[0].is_used = 0; if (cpi->oxcf.error_resilient_mode == 0 && cpi->oxcf.pass == 2) { if (vpx_realloc_frame_buffer(&cpi->svc.empty_frame.img, SMALL_FRAME_WIDTH, SMALL_FRAME_HEIGHT, cpi->common.subsampling_x, cpi->common.subsampling_y, #if CONFIG_VP9_HIGHBITDEPTH cpi->common.use_highbitdepth, #endif VP9_ENC_BORDER_IN_PIXELS, cpi->common.byte_alignment, NULL, NULL, NULL)) vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR, "Failed to allocate empty frame for multiple frame " "contexts"); memset(cpi->svc.empty_frame.img.buffer_alloc, 0x80, cpi->svc.empty_frame.img.buffer_alloc_sz); } for (sl = 0; sl < oxcf->ss_number_layers; ++sl) { for (tl = 0; tl < oxcf->ts_number_layers; ++tl) { int layer = LAYER_IDS_TO_IDX(sl, tl, oxcf->ts_number_layers); LAYER_CONTEXT *const lc = &svc->layer_context[layer]; RATE_CONTROL *const lrc = &lc->rc; int i; lc->current_video_frame_in_layer = 0; lc->layer_size = 0; lc->frames_from_key_frame = 0; lc->last_frame_type = FRAME_TYPES; lrc->ni_av_qi = oxcf->worst_allowed_q; lrc->total_actual_bits = 0; lrc->total_target_vs_actual = 0; lrc->ni_tot_qi = 0; lrc->tot_q = 0.0; lrc->avg_q = 0.0; lrc->ni_frames = 0; lrc->decimation_count = 0; lrc->decimation_factor = 0; lrc->worst_quality = oxcf->worst_allowed_q; lrc->best_quality = oxcf->best_allowed_q; for (i = 0; i < RATE_FACTOR_LEVELS; ++i) { lrc->rate_correction_factors[i] = 1.0; } if (cpi->oxcf.rc_mode == VPX_CBR) { lc->target_bandwidth = oxcf->layer_target_bitrate[layer]; lrc->last_q[INTER_FRAME] = oxcf->worst_allowed_q; lrc->avg_frame_qindex[INTER_FRAME] = oxcf->worst_allowed_q; lrc->avg_frame_qindex[KEY_FRAME] = oxcf->worst_allowed_q; } else { lc->target_bandwidth = oxcf->layer_target_bitrate[layer]; lrc->last_q[KEY_FRAME] = oxcf->best_allowed_q; lrc->last_q[INTER_FRAME] = oxcf->best_allowed_q; lrc->avg_frame_qindex[KEY_FRAME] = (oxcf->worst_allowed_q + oxcf->best_allowed_q) / 2; lrc->avg_frame_qindex[INTER_FRAME] = (oxcf->worst_allowed_q + oxcf->best_allowed_q) / 2; if (oxcf->ss_enable_auto_arf[sl]) lc->alt_ref_idx = alt_ref_idx++; else lc->alt_ref_idx = INVALID_IDX; lc->gold_ref_idx = INVALID_IDX; } lrc->buffer_level = oxcf->starting_buffer_level_ms * lc->target_bandwidth / 1000; lrc->bits_off_target = lrc->buffer_level; // Initialize the cyclic refresh parameters. If spatial layers are used // (i.e., ss_number_layers > 1), these need to be updated per spatial // layer. // Cyclic refresh is only applied on base temporal layer. if (oxcf->ss_number_layers > 1 && tl == 0) { size_t last_coded_q_map_size; size_t consec_zero_mv_size; VP9_COMMON *const cm = &cpi->common; lc->sb_index = 0; lc->actual_num_seg1_blocks = 0; lc->actual_num_seg2_blocks = 0; lc->counter_encode_maxq_scene_change = 0; CHECK_MEM_ERROR(cm, lc->map, vpx_malloc(mi_rows * mi_cols * sizeof(*lc->map))); memset(lc->map, 0, mi_rows * mi_cols); last_coded_q_map_size = mi_rows * mi_cols * sizeof(*lc->last_coded_q_map); CHECK_MEM_ERROR(cm, lc->last_coded_q_map, vpx_malloc(last_coded_q_map_size)); assert(MAXQ <= 255); memset(lc->last_coded_q_map, MAXQ, last_coded_q_map_size); consec_zero_mv_size = mi_rows * mi_cols * sizeof(*lc->consec_zero_mv); CHECK_MEM_ERROR(cm, lc->consec_zero_mv, vpx_malloc(consec_zero_mv_size)); memset(lc->consec_zero_mv, 0, consec_zero_mv_size); } } } // Still have extra buffer for base layer golden frame if (!(svc->number_temporal_layers > 1 && cpi->oxcf.rc_mode == VPX_CBR) && alt_ref_idx < REF_FRAMES) svc->layer_context[0].gold_ref_idx = alt_ref_idx; } // Update the layer context from a change_config() call. void vp9_update_layer_context_change_config(VP9_COMP *const cpi, const int target_bandwidth) { SVC *const svc = &cpi->svc; const VP9EncoderConfig *const oxcf = &cpi->oxcf; const RATE_CONTROL *const rc = &cpi->rc; int sl, tl, layer = 0, spatial_layer_target; float bitrate_alloc = 1.0; cpi->svc.temporal_layering_mode = oxcf->temporal_layering_mode; if (svc->temporal_layering_mode != VP9E_TEMPORAL_LAYERING_MODE_NOLAYERING) { for (sl = 0; sl < oxcf->ss_number_layers; ++sl) { for (tl = 0; tl < oxcf->ts_number_layers; ++tl) { layer = LAYER_IDS_TO_IDX(sl, tl, oxcf->ts_number_layers); svc->layer_context[layer].target_bandwidth = oxcf->layer_target_bitrate[layer]; } layer = LAYER_IDS_TO_IDX( sl, ((oxcf->ts_number_layers - 1) < 0 ? 0 : (oxcf->ts_number_layers - 1)), oxcf->ts_number_layers); spatial_layer_target = svc->layer_context[layer].target_bandwidth = oxcf->layer_target_bitrate[layer]; for (tl = 0; tl < oxcf->ts_number_layers; ++tl) { LAYER_CONTEXT *const lc = &svc->layer_context[sl * oxcf->ts_number_layers + tl]; RATE_CONTROL *const lrc = &lc->rc; lc->spatial_layer_target_bandwidth = spatial_layer_target; bitrate_alloc = (float)lc->target_bandwidth / target_bandwidth; lrc->starting_buffer_level = (int64_t)(rc->starting_buffer_level * bitrate_alloc); lrc->optimal_buffer_level = (int64_t)(rc->optimal_buffer_level * bitrate_alloc); lrc->maximum_buffer_size = (int64_t)(rc->maximum_buffer_size * bitrate_alloc); lrc->bits_off_target = VPXMIN(lrc->bits_off_target, lrc->maximum_buffer_size); lrc->buffer_level = VPXMIN(lrc->buffer_level, lrc->maximum_buffer_size); lc->framerate = cpi->framerate / oxcf->ts_rate_decimator[tl]; lrc->avg_frame_bandwidth = (int)(lc->target_bandwidth / lc->framerate); lrc->max_frame_bandwidth = rc->max_frame_bandwidth; lrc->worst_quality = rc->worst_quality; lrc->best_quality = rc->best_quality; } } } else { int layer_end; if (svc->number_temporal_layers > 1 && cpi->oxcf.rc_mode == VPX_CBR) { layer_end = svc->number_temporal_layers; } else { layer_end = svc->number_spatial_layers; } for (layer = 0; layer < layer_end; ++layer) { LAYER_CONTEXT *const lc = &svc->layer_context[layer]; RATE_CONTROL *const lrc = &lc->rc; lc->target_bandwidth = oxcf->layer_target_bitrate[layer]; bitrate_alloc = (float)lc->target_bandwidth / target_bandwidth; // Update buffer-related quantities. lrc->starting_buffer_level = (int64_t)(rc->starting_buffer_level * bitrate_alloc); lrc->optimal_buffer_level = (int64_t)(rc->optimal_buffer_level * bitrate_alloc); lrc->maximum_buffer_size = (int64_t)(rc->maximum_buffer_size * bitrate_alloc); lrc->bits_off_target = VPXMIN(lrc->bits_off_target, lrc->maximum_buffer_size); lrc->buffer_level = VPXMIN(lrc->buffer_level, lrc->maximum_buffer_size); // Update framerate-related quantities. if (svc->number_temporal_layers > 1 && cpi->oxcf.rc_mode == VPX_CBR) { lc->framerate = cpi->framerate / oxcf->ts_rate_decimator[layer]; } else { lc->framerate = cpi->framerate; } lrc->avg_frame_bandwidth = (int)(lc->target_bandwidth / lc->framerate); lrc->max_frame_bandwidth = rc->max_frame_bandwidth; // Update qp-related quantities. lrc->worst_quality = rc->worst_quality; lrc->best_quality = rc->best_quality; } } } static LAYER_CONTEXT *get_layer_context(VP9_COMP *const cpi) { if (is_one_pass_cbr_svc(cpi)) return &cpi->svc.layer_context[cpi->svc.spatial_layer_id * cpi->svc.number_temporal_layers + cpi->svc.temporal_layer_id]; else return (cpi->svc.number_temporal_layers > 1 && cpi->oxcf.rc_mode == VPX_CBR) ? &cpi->svc.layer_context[cpi->svc.temporal_layer_id] : &cpi->svc.layer_context[cpi->svc.spatial_layer_id]; } void vp9_update_temporal_layer_framerate(VP9_COMP *const cpi) { SVC *const svc = &cpi->svc; const VP9EncoderConfig *const oxcf = &cpi->oxcf; LAYER_CONTEXT *const lc = get_layer_context(cpi); RATE_CONTROL *const lrc = &lc->rc; // Index into spatial+temporal arrays. const int st_idx = svc->spatial_layer_id * svc->number_temporal_layers + svc->temporal_layer_id; const int tl = svc->temporal_layer_id; lc->framerate = cpi->framerate / oxcf->ts_rate_decimator[tl]; lrc->avg_frame_bandwidth = (int)(lc->target_bandwidth / lc->framerate); lrc->max_frame_bandwidth = cpi->rc.max_frame_bandwidth; // Update the average layer frame size (non-cumulative per-frame-bw). if (tl == 0) { lc->avg_frame_size = lrc->avg_frame_bandwidth; } else { const double prev_layer_framerate = cpi->framerate / oxcf->ts_rate_decimator[tl - 1]; const int prev_layer_target_bandwidth = oxcf->layer_target_bitrate[st_idx - 1]; lc->avg_frame_size = (int)((lc->target_bandwidth - prev_layer_target_bandwidth) / (lc->framerate - prev_layer_framerate)); } } void vp9_update_spatial_layer_framerate(VP9_COMP *const cpi, double framerate) { const VP9EncoderConfig *const oxcf = &cpi->oxcf; LAYER_CONTEXT *const lc = get_layer_context(cpi); RATE_CONTROL *const lrc = &lc->rc; lc->framerate = framerate; lrc->avg_frame_bandwidth = (int)(lc->target_bandwidth / lc->framerate); lrc->min_frame_bandwidth = (int)(lrc->avg_frame_bandwidth * oxcf->two_pass_vbrmin_section / 100); lrc->max_frame_bandwidth = (int)(((int64_t)lrc->avg_frame_bandwidth * oxcf->two_pass_vbrmax_section) / 100); vp9_rc_set_gf_interval_range(cpi, lrc); } void vp9_restore_layer_context(VP9_COMP *const cpi) { LAYER_CONTEXT *const lc = get_layer_context(cpi); const int old_frame_since_key = cpi->rc.frames_since_key; const int old_frame_to_key = cpi->rc.frames_to_key; const int old_ext_use_post_encode_drop = cpi->rc.ext_use_post_encode_drop; cpi->rc = lc->rc; cpi->twopass = lc->twopass; cpi->oxcf.target_bandwidth = lc->target_bandwidth; cpi->alt_ref_source = lc->alt_ref_source; // Check if it is one_pass_cbr_svc mode and lc->speed > 0 (real-time mode // does not use speed = 0). if (is_one_pass_cbr_svc(cpi) && lc->speed > 0) { cpi->oxcf.speed = lc->speed; } // Reset the frames_since_key and frames_to_key counters to their values // before the layer restore. Keep these defined for the stream (not layer). if (cpi->svc.number_temporal_layers > 1 || cpi->svc.number_spatial_layers > 1) { cpi->rc.frames_since_key = old_frame_since_key; cpi->rc.frames_to_key = old_frame_to_key; } cpi->rc.ext_use_post_encode_drop = old_ext_use_post_encode_drop; // For spatial-svc, allow cyclic-refresh to be applied on the spatial layers, // for the base temporal layer. if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cpi->svc.number_spatial_layers > 1 && cpi->svc.temporal_layer_id == 0) { CYCLIC_REFRESH *const cr = cpi->cyclic_refresh; swap_ptr(&cr->map, &lc->map); swap_ptr(&cr->last_coded_q_map, &lc->last_coded_q_map); swap_ptr(&cpi->consec_zero_mv, &lc->consec_zero_mv); cr->sb_index = lc->sb_index; cr->actual_num_seg1_blocks = lc->actual_num_seg1_blocks; cr->actual_num_seg2_blocks = lc->actual_num_seg2_blocks; cr->counter_encode_maxq_scene_change = lc->counter_encode_maxq_scene_change; } } void vp9_save_layer_context(VP9_COMP *const cpi) { const VP9EncoderConfig *const oxcf = &cpi->oxcf; LAYER_CONTEXT *const lc = get_layer_context(cpi); lc->rc = cpi->rc; lc->twopass = cpi->twopass; lc->target_bandwidth = (int)oxcf->target_bandwidth; lc->alt_ref_source = cpi->alt_ref_source; // For spatial-svc, allow cyclic-refresh to be applied on the spatial layers, // for the base temporal layer. if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cpi->svc.number_spatial_layers > 1 && cpi->svc.temporal_layer_id == 0) { CYCLIC_REFRESH *const cr = cpi->cyclic_refresh; signed char *temp = lc->map; uint8_t *temp2 = lc->last_coded_q_map; uint8_t *temp3 = lc->consec_zero_mv; lc->map = cr->map; cr->map = temp; lc->last_coded_q_map = cr->last_coded_q_map; cr->last_coded_q_map = temp2; lc->consec_zero_mv = cpi->consec_zero_mv; cpi->consec_zero_mv = temp3; lc->sb_index = cr->sb_index; lc->actual_num_seg1_blocks = cr->actual_num_seg1_blocks; lc->actual_num_seg2_blocks = cr->actual_num_seg2_blocks; lc->counter_encode_maxq_scene_change = cr->counter_encode_maxq_scene_change; } } #if !CONFIG_REALTIME_ONLY void vp9_init_second_pass_spatial_svc(VP9_COMP *cpi) { SVC *const svc = &cpi->svc; int i; for (i = 0; i < svc->number_spatial_layers; ++i) { TWO_PASS *const twopass = &svc->layer_context[i].twopass; svc->spatial_layer_id = i; vp9_init_second_pass(cpi); twopass->total_stats.spatial_layer_id = i; twopass->total_left_stats.spatial_layer_id = i; } svc->spatial_layer_id = 0; } #endif // !CONFIG_REALTIME_ONLY void vp9_inc_frame_in_layer(VP9_COMP *const cpi) { LAYER_CONTEXT *const lc = &cpi->svc.layer_context[cpi->svc.spatial_layer_id * cpi->svc.number_temporal_layers]; ++lc->current_video_frame_in_layer; ++lc->frames_from_key_frame; if (cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 1) ++cpi->svc.current_superframe; } void get_layer_resolution(const int width_org, const int height_org, const int num, const int den, int *width_out, int *height_out) { int w, h; if (width_out == NULL || height_out == NULL || den == 0) return; w = width_org * num / den; h = height_org * num / den; // make height and width even to make chrome player happy w += w % 2; h += h % 2; *width_out = w; *height_out = h; } static void reset_fb_idx_unused(VP9_COMP *const cpi) { // If a reference frame is not referenced or refreshed, then set the // fb_idx for that reference to the first one used/referenced. // This is to avoid setting fb_idx for a reference to a slot that is not // used/needed (i.e., since that reference is not referenced or refreshed). static const int flag_list[4] = { 0, VP9_LAST_FLAG, VP9_GOLD_FLAG, VP9_ALT_FLAG }; MV_REFERENCE_FRAME ref_frame; MV_REFERENCE_FRAME first_ref = 0; int first_fb_idx = 0; int fb_idx[3] = { cpi->lst_fb_idx, cpi->gld_fb_idx, cpi->alt_fb_idx }; for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ref_frame++) { if (cpi->ref_frame_flags & flag_list[ref_frame]) { first_ref = ref_frame; first_fb_idx = fb_idx[ref_frame - 1]; break; } } if (first_ref > 0) { if (first_ref != LAST_FRAME && !(cpi->ref_frame_flags & flag_list[LAST_FRAME]) && !cpi->ext_refresh_last_frame) cpi->lst_fb_idx = first_fb_idx; else if (first_ref != GOLDEN_FRAME && !(cpi->ref_frame_flags & flag_list[GOLDEN_FRAME]) && !cpi->ext_refresh_golden_frame) cpi->gld_fb_idx = first_fb_idx; else if (first_ref != ALTREF_FRAME && !(cpi->ref_frame_flags & flag_list[ALTREF_FRAME]) && !cpi->ext_refresh_alt_ref_frame) cpi->alt_fb_idx = first_fb_idx; } } // The function sets proper ref_frame_flags, buffer indices, and buffer update // variables for temporal layering mode 3 - that does 0-2-1-2 temporal layering // scheme. static void set_flags_and_fb_idx_for_temporal_mode3(VP9_COMP *const cpi) { int frame_num_within_temporal_struct = 0; int spatial_id, temporal_id; spatial_id = cpi->svc.spatial_layer_id = cpi->svc.spatial_layer_to_encode; frame_num_within_temporal_struct = cpi->svc .layer_context[cpi->svc.spatial_layer_id * cpi->svc.number_temporal_layers] .current_video_frame_in_layer % 4; temporal_id = cpi->svc.temporal_layer_id = (frame_num_within_temporal_struct & 1) ? 2 : (frame_num_within_temporal_struct >> 1); cpi->ext_refresh_last_frame = cpi->ext_refresh_golden_frame = cpi->ext_refresh_alt_ref_frame = 0; if (!temporal_id) { cpi->ext_refresh_frame_flags_pending = 1; cpi->ext_refresh_last_frame = 1; if (!spatial_id) { cpi->ref_frame_flags = VP9_LAST_FLAG; } else if (cpi->svc.layer_context[temporal_id].is_key_frame) { // base layer is a key frame. cpi->ref_frame_flags = VP9_LAST_FLAG; cpi->ext_refresh_last_frame = 0; cpi->ext_refresh_golden_frame = 1; } else { cpi->ref_frame_flags = VP9_LAST_FLAG | VP9_GOLD_FLAG; } } else if (temporal_id == 1) { cpi->ext_refresh_frame_flags_pending = 1; cpi->ext_refresh_alt_ref_frame = 1; if (!spatial_id) { cpi->ref_frame_flags = VP9_LAST_FLAG; } else { cpi->ref_frame_flags = VP9_LAST_FLAG | VP9_GOLD_FLAG; } } else { if (frame_num_within_temporal_struct == 1) { // the first tl2 picture if (spatial_id == cpi->svc.number_spatial_layers - 1) { // top layer cpi->ext_refresh_frame_flags_pending = 1; if (!spatial_id) cpi->ref_frame_flags = VP9_LAST_FLAG; else cpi->ref_frame_flags = VP9_LAST_FLAG | VP9_GOLD_FLAG; } else if (!spatial_id) { cpi->ext_refresh_frame_flags_pending = 1; cpi->ext_refresh_alt_ref_frame = 1; cpi->ref_frame_flags = VP9_LAST_FLAG; } else if (spatial_id < cpi->svc.number_spatial_layers - 1) { cpi->ext_refresh_frame_flags_pending = 1; cpi->ext_refresh_alt_ref_frame = 1; cpi->ref_frame_flags = VP9_LAST_FLAG | VP9_GOLD_FLAG; } } else { // The second tl2 picture if (spatial_id == cpi->svc.number_spatial_layers - 1) { // top layer cpi->ext_refresh_frame_flags_pending = 1; if (!spatial_id) cpi->ref_frame_flags = VP9_LAST_FLAG; else cpi->ref_frame_flags = VP9_LAST_FLAG | VP9_GOLD_FLAG; } else if (!spatial_id) { cpi->ext_refresh_frame_flags_pending = 1; cpi->ref_frame_flags = VP9_LAST_FLAG; cpi->ext_refresh_alt_ref_frame = 1; } else { // top layer cpi->ext_refresh_frame_flags_pending = 1; cpi->ref_frame_flags = VP9_LAST_FLAG | VP9_GOLD_FLAG; cpi->ext_refresh_alt_ref_frame = 1; } } } if (temporal_id == 0) { cpi->lst_fb_idx = spatial_id; if (spatial_id) { if (cpi->svc.layer_context[temporal_id].is_key_frame) { cpi->lst_fb_idx = spatial_id - 1; cpi->gld_fb_idx = spatial_id; } else { cpi->gld_fb_idx = spatial_id - 1; } } else { cpi->gld_fb_idx = 0; } cpi->alt_fb_idx = 0; } else if (temporal_id == 1) { cpi->lst_fb_idx = spatial_id; cpi->gld_fb_idx = cpi->svc.number_spatial_layers + spatial_id - 1; cpi->alt_fb_idx = cpi->svc.number_spatial_layers + spatial_id; } else if (frame_num_within_temporal_struct == 1) { cpi->lst_fb_idx = spatial_id; cpi->gld_fb_idx = cpi->svc.number_spatial_layers + spatial_id - 1; cpi->alt_fb_idx = cpi->svc.number_spatial_layers + spatial_id; } else { cpi->lst_fb_idx = cpi->svc.number_spatial_layers + spatial_id; cpi->gld_fb_idx = cpi->svc.number_spatial_layers + spatial_id - 1; cpi->alt_fb_idx = cpi->svc.number_spatial_layers + spatial_id; } reset_fb_idx_unused(cpi); } // The function sets proper ref_frame_flags, buffer indices, and buffer update // variables for temporal layering mode 2 - that does 0-1-0-1 temporal layering // scheme. static void set_flags_and_fb_idx_for_temporal_mode2(VP9_COMP *const cpi) { int spatial_id, temporal_id; spatial_id = cpi->svc.spatial_layer_id = cpi->svc.spatial_layer_to_encode; temporal_id = cpi->svc.temporal_layer_id = cpi->svc .layer_context[cpi->svc.spatial_layer_id * cpi->svc.number_temporal_layers] .current_video_frame_in_layer & 1; cpi->ext_refresh_last_frame = cpi->ext_refresh_golden_frame = cpi->ext_refresh_alt_ref_frame = 0; if (!temporal_id) { cpi->ext_refresh_frame_flags_pending = 1; cpi->ext_refresh_last_frame = 1; if (!spatial_id) { cpi->ref_frame_flags = VP9_LAST_FLAG; } else if (cpi->svc.layer_context[temporal_id].is_key_frame) { // base layer is a key frame. cpi->ref_frame_flags = VP9_LAST_FLAG; cpi->ext_refresh_last_frame = 0; cpi->ext_refresh_golden_frame = 1; } else { cpi->ref_frame_flags = VP9_LAST_FLAG | VP9_GOLD_FLAG; } } else if (temporal_id == 1) { cpi->ext_refresh_frame_flags_pending = 1; cpi->ext_refresh_alt_ref_frame = 1; if (!spatial_id) { cpi->ref_frame_flags = VP9_LAST_FLAG; } else { if (spatial_id == cpi->svc.number_spatial_layers - 1) cpi->ext_refresh_alt_ref_frame = 0; cpi->ref_frame_flags = VP9_LAST_FLAG | VP9_GOLD_FLAG; } } if (temporal_id == 0) { cpi->lst_fb_idx = spatial_id; if (spatial_id) { if (cpi->svc.layer_context[temporal_id].is_key_frame) { cpi->lst_fb_idx = spatial_id - 1; cpi->gld_fb_idx = spatial_id; } else { cpi->gld_fb_idx = spatial_id - 1; } } else { cpi->gld_fb_idx = 0; } cpi->alt_fb_idx = 0; } else if (temporal_id == 1) { cpi->lst_fb_idx = spatial_id; cpi->gld_fb_idx = cpi->svc.number_spatial_layers + spatial_id - 1; cpi->alt_fb_idx = cpi->svc.number_spatial_layers + spatial_id; } reset_fb_idx_unused(cpi); } // The function sets proper ref_frame_flags, buffer indices, and buffer update // variables for temporal layering mode 0 - that has no temporal layering. static void set_flags_and_fb_idx_for_temporal_mode_noLayering( VP9_COMP *const cpi) { int spatial_id; spatial_id = cpi->svc.spatial_layer_id = cpi->svc.spatial_layer_to_encode; cpi->ext_refresh_last_frame = cpi->ext_refresh_golden_frame = cpi->ext_refresh_alt_ref_frame = 0; cpi->ext_refresh_frame_flags_pending = 1; cpi->ext_refresh_last_frame = 1; if (!spatial_id) { cpi->ref_frame_flags = VP9_LAST_FLAG; } else if (cpi->svc.layer_context[0].is_key_frame) { cpi->ref_frame_flags = VP9_LAST_FLAG; cpi->ext_refresh_last_frame = 0; cpi->ext_refresh_golden_frame = 1; } else { cpi->ref_frame_flags = VP9_LAST_FLAG | VP9_GOLD_FLAG; } cpi->lst_fb_idx = spatial_id; if (spatial_id) { if (cpi->svc.layer_context[0].is_key_frame) { cpi->lst_fb_idx = spatial_id - 1; cpi->gld_fb_idx = spatial_id; } else { cpi->gld_fb_idx = spatial_id - 1; } } else { cpi->gld_fb_idx = 0; } reset_fb_idx_unused(cpi); } static void set_flags_and_fb_idx_bypass_via_set_ref_frame_config( VP9_COMP *const cpi) { SVC *const svc = &cpi->svc; int sl = svc->spatial_layer_id = svc->spatial_layer_to_encode; cpi->svc.temporal_layer_id = cpi->svc.temporal_layer_id_per_spatial[sl]; cpi->ext_refresh_frame_flags_pending = 1; cpi->lst_fb_idx = svc->lst_fb_idx[sl]; cpi->gld_fb_idx = svc->gld_fb_idx[sl]; cpi->alt_fb_idx = svc->alt_fb_idx[sl]; cpi->ext_refresh_last_frame = 0; cpi->ext_refresh_golden_frame = 0; cpi->ext_refresh_alt_ref_frame = 0; cpi->ref_frame_flags = 0; if (svc->reference_last[sl]) cpi->ref_frame_flags |= VP9_LAST_FLAG; if (svc->reference_golden[sl]) cpi->ref_frame_flags |= VP9_GOLD_FLAG; if (svc->reference_altref[sl]) cpi->ref_frame_flags |= VP9_ALT_FLAG; } void vp9_copy_flags_ref_update_idx(VP9_COMP *const cpi) { SVC *const svc = &cpi->svc; static const int flag_list[4] = { 0, VP9_LAST_FLAG, VP9_GOLD_FLAG, VP9_ALT_FLAG }; int sl = svc->spatial_layer_id; svc->lst_fb_idx[sl] = cpi->lst_fb_idx; svc->gld_fb_idx[sl] = cpi->gld_fb_idx; svc->alt_fb_idx[sl] = cpi->alt_fb_idx; // For the fixed SVC mode: pass the refresh_lst/gld/alt_frame flags to the // update_buffer_slot, this is needed for the GET_SVC_REF_FRAME_CONFIG api. if (svc->temporal_layering_mode != VP9E_TEMPORAL_LAYERING_MODE_BYPASS) { int ref; for (ref = 0; ref < REF_FRAMES; ++ref) { svc->update_buffer_slot[sl] &= ~(1 << ref); if ((ref == svc->lst_fb_idx[sl] && cpi->refresh_last_frame) || (ref == svc->gld_fb_idx[sl] && cpi->refresh_golden_frame) || (ref == svc->alt_fb_idx[sl] && cpi->refresh_alt_ref_frame)) svc->update_buffer_slot[sl] |= (1 << ref); } } // TODO(jianj): Remove these 3, deprecated. svc->update_last[sl] = (uint8_t)cpi->refresh_last_frame; svc->update_golden[sl] = (uint8_t)cpi->refresh_golden_frame; svc->update_altref[sl] = (uint8_t)cpi->refresh_alt_ref_frame; svc->reference_last[sl] = (uint8_t)(cpi->ref_frame_flags & flag_list[LAST_FRAME]); svc->reference_golden[sl] = (uint8_t)(cpi->ref_frame_flags & flag_list[GOLDEN_FRAME]); svc->reference_altref[sl] = (uint8_t)(cpi->ref_frame_flags & flag_list[ALTREF_FRAME]); } int vp9_one_pass_cbr_svc_start_layer(VP9_COMP *const cpi) { int width = 0, height = 0; SVC *const svc = &cpi->svc; LAYER_CONTEXT *lc = NULL; svc->skip_enhancement_layer = 0; if (svc->number_spatial_layers > 1) { svc->use_base_mv = 1; svc->use_partition_reuse = 1; } svc->force_zero_mode_spatial_ref = 1; svc->mi_stride[svc->spatial_layer_id] = cpi->common.mi_stride; svc->mi_rows[svc->spatial_layer_id] = cpi->common.mi_rows; svc->mi_cols[svc->spatial_layer_id] = cpi->common.mi_cols; if (svc->temporal_layering_mode == VP9E_TEMPORAL_LAYERING_MODE_0212) { set_flags_and_fb_idx_for_temporal_mode3(cpi); } else if (svc->temporal_layering_mode == VP9E_TEMPORAL_LAYERING_MODE_NOLAYERING) { set_flags_and_fb_idx_for_temporal_mode_noLayering(cpi); } else if (svc->temporal_layering_mode == VP9E_TEMPORAL_LAYERING_MODE_0101) { set_flags_and_fb_idx_for_temporal_mode2(cpi); } else if (svc->temporal_layering_mode == VP9E_TEMPORAL_LAYERING_MODE_BYPASS && svc->use_set_ref_frame_config) { set_flags_and_fb_idx_bypass_via_set_ref_frame_config(cpi); } if (cpi->lst_fb_idx == svc->buffer_gf_temporal_ref[0].idx || cpi->gld_fb_idx == svc->buffer_gf_temporal_ref[0].idx || cpi->alt_fb_idx == svc->buffer_gf_temporal_ref[0].idx) svc->buffer_gf_temporal_ref[0].is_used = 1; if (cpi->lst_fb_idx == svc->buffer_gf_temporal_ref[1].idx || cpi->gld_fb_idx == svc->buffer_gf_temporal_ref[1].idx || cpi->alt_fb_idx == svc->buffer_gf_temporal_ref[1].idx) svc->buffer_gf_temporal_ref[1].is_used = 1; // For the fixed (non-flexible/bypass) SVC mode: // If long term temporal reference is enabled at the sequence level // (use_gf_temporal_ref == 1), and inter_layer is disabled (on inter-frames), // we can use golden as a second temporal reference // (since the spatial/inter-layer reference is disabled). // We check that the fb_idx for this reference (buffer_gf_temporal_ref.idx) is // unused (slot 7 and 6 should be available for 3-3 layer system). // For now usage of this second temporal reference will only be used for // highest and next to highest spatial layer (i.e., top and middle layer for // 3 spatial layers). svc->use_gf_temporal_ref_current_layer = 0; if (svc->use_gf_temporal_ref && !svc->buffer_gf_temporal_ref[0].is_used && !svc->buffer_gf_temporal_ref[1].is_used && svc->temporal_layering_mode != VP9E_TEMPORAL_LAYERING_MODE_BYPASS && svc->disable_inter_layer_pred != INTER_LAYER_PRED_ON && svc->number_spatial_layers <= 3 && svc->number_temporal_layers <= 3 && svc->spatial_layer_id >= svc->number_spatial_layers - 2) { // Enable the second (long-term) temporal reference at the frame-level. svc->use_gf_temporal_ref_current_layer = 1; } // Check if current superframe has any layer sync, only check once on // base layer. if (svc->spatial_layer_id == 0) { int sl = 0; // Default is no sync. svc->superframe_has_layer_sync = 0; for (sl = 0; sl < svc->number_spatial_layers; ++sl) { if (cpi->svc.spatial_layer_sync[sl]) svc->superframe_has_layer_sync = 1; } } // Reset the drop flags for all spatial layers, on the base layer. if (svc->spatial_layer_id == 0) { vp9_zero(svc->drop_spatial_layer); // TODO(jianj/marpan): Investigate why setting svc->lst/gld/alt_fb_idx // causes an issue with frame dropping and temporal layers, when the frame // flags are passed via the encode call (bypass mode). Issue is that we're // resetting ext_refresh_frame_flags_pending to 0 on frame drops. if (svc->temporal_layering_mode != VP9E_TEMPORAL_LAYERING_MODE_BYPASS) { memset(&svc->lst_fb_idx, -1, sizeof(svc->lst_fb_idx)); memset(&svc->gld_fb_idx, -1, sizeof(svc->lst_fb_idx)); memset(&svc->alt_fb_idx, -1, sizeof(svc->lst_fb_idx)); // These are set by API before the superframe is encoded and they are // passed to encoder layer by layer. Don't reset them on layer 0 in bypass // mode. vp9_zero(svc->update_buffer_slot); vp9_zero(svc->reference_last); vp9_zero(svc->reference_golden); vp9_zero(svc->reference_altref); // TODO(jianj): Remove these 3, deprecated. vp9_zero(svc->update_last); vp9_zero(svc->update_golden); vp9_zero(svc->update_altref); } } lc = &svc->layer_context[svc->spatial_layer_id * svc->number_temporal_layers + svc->temporal_layer_id]; // Setting the worst/best_quality via the encoder control: SET_SVC_PARAMETERS, // only for non-BYPASS mode for now. if (svc->temporal_layering_mode != VP9E_TEMPORAL_LAYERING_MODE_BYPASS || svc->use_set_ref_frame_config) { RATE_CONTROL *const lrc = &lc->rc; lrc->worst_quality = vp9_quantizer_to_qindex(lc->max_q); lrc->best_quality = vp9_quantizer_to_qindex(lc->min_q); } get_layer_resolution(cpi->oxcf.width, cpi->oxcf.height, lc->scaling_factor_num, lc->scaling_factor_den, &width, &height); // Use Eightap_smooth for low resolutions. if (width * height <= 320 * 240) svc->downsample_filter_type[svc->spatial_layer_id] = EIGHTTAP_SMOOTH; // For scale factors > 0.75, set the phase to 0 (aligns decimated pixel // to source pixel). lc = &svc->layer_context[svc->spatial_layer_id * svc->number_temporal_layers + svc->temporal_layer_id]; if (lc->scaling_factor_num > (3 * lc->scaling_factor_den) >> 2) svc->downsample_filter_phase[svc->spatial_layer_id] = 0; // The usage of use_base_mv or partition_reuse assumes down-scale of 2x2. // For now, turn off use of base motion vectors and partition reuse if the // spatial scale factors for any layers are not 2, // keep the case of 3 spatial layers with scale factor of 4x4 for base layer. // TODO(marpan): Fix this to allow for use_base_mv for scale factors != 2. if (svc->number_spatial_layers > 1) { int sl; for (sl = 0; sl < svc->number_spatial_layers - 1; ++sl) { lc = &svc->layer_context[sl * svc->number_temporal_layers + svc->temporal_layer_id]; if ((lc->scaling_factor_num != lc->scaling_factor_den >> 1) && !(lc->scaling_factor_num == lc->scaling_factor_den >> 2 && sl == 0 && svc->number_spatial_layers == 3)) { svc->use_base_mv = 0; svc->use_partition_reuse = 0; break; } } // For non-zero spatial layers: if the previous spatial layer was dropped // disable the base_mv and partition_reuse features. if (svc->spatial_layer_id > 0 && svc->drop_spatial_layer[svc->spatial_layer_id - 1]) { svc->use_base_mv = 0; svc->use_partition_reuse = 0; } } svc->non_reference_frame = 0; if (cpi->common.frame_type != KEY_FRAME && !cpi->ext_refresh_last_frame && !cpi->ext_refresh_golden_frame && !cpi->ext_refresh_alt_ref_frame) svc->non_reference_frame = 1; // For non-flexible mode, where update_buffer_slot is used, need to check if // all buffer slots are not refreshed. if (svc->temporal_layering_mode == VP9E_TEMPORAL_LAYERING_MODE_BYPASS) { if (svc->update_buffer_slot[svc->spatial_layer_id] != 0) svc->non_reference_frame = 0; } if (svc->spatial_layer_id == 0) { svc->high_source_sad_superframe = 0; svc->high_num_blocks_with_motion = 0; } if (svc->temporal_layering_mode != VP9E_TEMPORAL_LAYERING_MODE_BYPASS && svc->last_layer_dropped[svc->spatial_layer_id] && svc->fb_idx_upd_tl0[svc->spatial_layer_id] != -1 && !svc->layer_context[svc->temporal_layer_id].is_key_frame) { // For fixed/non-flexible mode, if the previous frame (same spatial layer // from previous superframe) was dropped, make sure the lst_fb_idx // for this frame corresponds to the buffer index updated on (last) encoded // TL0 frame (with same spatial layer). cpi->lst_fb_idx = svc->fb_idx_upd_tl0[svc->spatial_layer_id]; } if (vp9_set_size_literal(cpi, width, height) != 0) return VPX_CODEC_INVALID_PARAM; return 0; } struct lookahead_entry *vp9_svc_lookahead_pop(VP9_COMP *const cpi, struct lookahead_ctx *ctx, int drain) { struct lookahead_entry *buf = NULL; if (ctx->sz && (drain || ctx->sz == ctx->max_sz - MAX_PRE_FRAMES)) { buf = vp9_lookahead_peek(ctx, 0); if (buf != NULL) { // Only remove the buffer when pop the highest layer. if (cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 1) { vp9_lookahead_pop(ctx, drain); } } } return buf; } void vp9_free_svc_cyclic_refresh(VP9_COMP *const cpi) { int sl, tl; SVC *const svc = &cpi->svc; const VP9EncoderConfig *const oxcf = &cpi->oxcf; for (sl = 0; sl < oxcf->ss_number_layers; ++sl) { for (tl = 0; tl < oxcf->ts_number_layers; ++tl) { int layer = LAYER_IDS_TO_IDX(sl, tl, oxcf->ts_number_layers); LAYER_CONTEXT *const lc = &svc->layer_context[layer]; if (lc->map) vpx_free(lc->map); if (lc->last_coded_q_map) vpx_free(lc->last_coded_q_map); if (lc->consec_zero_mv) vpx_free(lc->consec_zero_mv); } } } // Reset on key frame: reset counters, references and buffer updates. void vp9_svc_reset_temporal_layers(VP9_COMP *const cpi, int is_key) { int sl, tl; SVC *const svc = &cpi->svc; LAYER_CONTEXT *lc = NULL; for (sl = 0; sl < svc->number_spatial_layers; ++sl) { for (tl = 0; tl < svc->number_temporal_layers; ++tl) { lc = &cpi->svc.layer_context[sl * svc->number_temporal_layers + tl]; lc->current_video_frame_in_layer = 0; if (is_key) lc->frames_from_key_frame = 0; } } if (svc->temporal_layering_mode == VP9E_TEMPORAL_LAYERING_MODE_0212) { set_flags_and_fb_idx_for_temporal_mode3(cpi); } else if (svc->temporal_layering_mode == VP9E_TEMPORAL_LAYERING_MODE_NOLAYERING) { set_flags_and_fb_idx_for_temporal_mode_noLayering(cpi); } else if (svc->temporal_layering_mode == VP9E_TEMPORAL_LAYERING_MODE_0101) { set_flags_and_fb_idx_for_temporal_mode2(cpi); } vp9_update_temporal_layer_framerate(cpi); vp9_restore_layer_context(cpi); } void vp9_svc_check_reset_layer_rc_flag(VP9_COMP *const cpi) { SVC *svc = &cpi->svc; int sl, tl; for (sl = 0; sl < svc->number_spatial_layers; ++sl) { // Check for reset based on avg_frame_bandwidth for spatial layer sl. int layer = LAYER_IDS_TO_IDX(sl, svc->number_temporal_layers - 1, svc->number_temporal_layers); LAYER_CONTEXT *lc = &svc->layer_context[layer]; RATE_CONTROL *lrc = &lc->rc; if (lrc->avg_frame_bandwidth > (3 * lrc->last_avg_frame_bandwidth >> 1) || lrc->avg_frame_bandwidth < (lrc->last_avg_frame_bandwidth >> 1)) { // Reset for all temporal layers with spatial layer sl. for (tl = 0; tl < svc->number_temporal_layers; ++tl) { int layer = LAYER_IDS_TO_IDX(sl, tl, svc->number_temporal_layers); LAYER_CONTEXT *lc = &svc->layer_context[layer]; RATE_CONTROL *lrc = &lc->rc; lrc->rc_1_frame = 0; lrc->rc_2_frame = 0; lrc->bits_off_target = lrc->optimal_buffer_level; lrc->buffer_level = lrc->optimal_buffer_level; } } } } void vp9_svc_constrain_inter_layer_pred(VP9_COMP *const cpi) { VP9_COMMON *const cm = &cpi->common; SVC *const svc = &cpi->svc; // Check for disabling inter-layer (spatial) prediction, if // svc.disable_inter_layer_pred is set. If the previous spatial layer was // dropped then disable the prediction from this (scaled) reference. // For INTER_LAYER_PRED_OFF_NONKEY: inter-layer prediction is disabled // on key frames or if any spatial layer is a sync layer. if ((svc->disable_inter_layer_pred == INTER_LAYER_PRED_OFF_NONKEY && !svc->layer_context[svc->temporal_layer_id].is_key_frame && !svc->superframe_has_layer_sync) || svc->disable_inter_layer_pred == INTER_LAYER_PRED_OFF || svc->drop_spatial_layer[svc->spatial_layer_id - 1]) { MV_REFERENCE_FRAME ref_frame; static const int flag_list[4] = { 0, VP9_LAST_FLAG, VP9_GOLD_FLAG, VP9_ALT_FLAG }; for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, ref_frame); if (yv12 != NULL && (cpi->ref_frame_flags & flag_list[ref_frame])) { const struct scale_factors *const scale_fac = &cm->frame_refs[ref_frame - 1].sf; if (vp9_is_scaled(scale_fac)) cpi->ref_frame_flags &= (~flag_list[ref_frame]); } } } // For fixed/non-flexible SVC: check for disabling inter-layer prediction. // If the reference for inter-layer prediction (the reference that is scaled) // is not the previous spatial layer from the same superframe, then we disable // inter-layer prediction. Only need to check when inter_layer prediction is // not set to OFF mode. if (svc->temporal_layering_mode != VP9E_TEMPORAL_LAYERING_MODE_BYPASS && svc->disable_inter_layer_pred != INTER_LAYER_PRED_OFF) { // We only use LAST and GOLDEN for prediction in real-time mode, so we // check both here. MV_REFERENCE_FRAME ref_frame; for (ref_frame = LAST_FRAME; ref_frame <= GOLDEN_FRAME; ref_frame++) { struct scale_factors *scale_fac = &cm->frame_refs[ref_frame - 1].sf; if (vp9_is_scaled(scale_fac)) { // If this reference was updated on the previous spatial layer of the // current superframe, then we keep this reference (don't disable). // Otherwise we disable the inter-layer prediction. // This condition is verified by checking if the current frame buffer // index is equal to any of the slots for the previous spatial layer, // and if so, check if that slot was updated/refreshed. If that is the // case, then this reference is valid for inter-layer prediction under // the mode INTER_LAYER_PRED_ON_CONSTRAINED. int fb_idx = ref_frame == LAST_FRAME ? cpi->lst_fb_idx : cpi->gld_fb_idx; int ref_flag = ref_frame == LAST_FRAME ? VP9_LAST_FLAG : VP9_GOLD_FLAG; int sl = svc->spatial_layer_id; int disable = 1; if (fb_idx < 0) continue; if ((fb_idx == svc->lst_fb_idx[sl - 1] && (svc->update_buffer_slot[sl - 1] & (1 << fb_idx))) || (fb_idx == svc->gld_fb_idx[sl - 1] && (svc->update_buffer_slot[sl - 1] & (1 << fb_idx))) || (fb_idx == svc->alt_fb_idx[sl - 1] && (svc->update_buffer_slot[sl - 1] & (1 << fb_idx)))) disable = 0; if (disable) cpi->ref_frame_flags &= (~ref_flag); } } } } void vp9_svc_assert_constraints_pattern(VP9_COMP *const cpi) { SVC *const svc = &cpi->svc; // For fixed/non-flexible mode, the following constraint are expected, // when inter-layer prediciton is on (default). if (svc->temporal_layering_mode != VP9E_TEMPORAL_LAYERING_MODE_BYPASS && svc->disable_inter_layer_pred == INTER_LAYER_PRED_ON && svc->framedrop_mode != LAYER_DROP) { if (!svc->layer_context[svc->temporal_layer_id].is_key_frame) { // On non-key frames: LAST is always temporal reference, GOLDEN is // spatial reference. if (svc->temporal_layer_id == 0) // Base temporal only predicts from base temporal. assert(svc->fb_idx_temporal_layer_id[cpi->lst_fb_idx] == 0); else // Non-base temporal only predicts from lower temporal layer. assert(svc->fb_idx_temporal_layer_id[cpi->lst_fb_idx] < svc->temporal_layer_id); if (svc->spatial_layer_id > 0 && cpi->ref_frame_flags & VP9_GOLD_FLAG && svc->spatial_layer_id > svc->first_spatial_layer_to_encode) { // Non-base spatial only predicts from lower spatial layer with same // temporal_id. assert(svc->fb_idx_spatial_layer_id[cpi->gld_fb_idx] == svc->spatial_layer_id - 1); assert(svc->fb_idx_temporal_layer_id[cpi->gld_fb_idx] == svc->temporal_layer_id); } } else if (svc->spatial_layer_id > 0 && svc->spatial_layer_id > svc->first_spatial_layer_to_encode) { // Only 1 reference for frame whose base is key; reference may be LAST // or GOLDEN, so we check both. if (cpi->ref_frame_flags & VP9_LAST_FLAG) { assert(svc->fb_idx_spatial_layer_id[cpi->lst_fb_idx] == svc->spatial_layer_id - 1); assert(svc->fb_idx_temporal_layer_id[cpi->lst_fb_idx] == svc->temporal_layer_id); } else if (cpi->ref_frame_flags & VP9_GOLD_FLAG) { assert(svc->fb_idx_spatial_layer_id[cpi->gld_fb_idx] == svc->spatial_layer_id - 1); assert(svc->fb_idx_temporal_layer_id[cpi->gld_fb_idx] == svc->temporal_layer_id); } } } else if (svc->use_gf_temporal_ref_current_layer && !svc->layer_context[svc->temporal_layer_id].is_key_frame) { // For the usage of golden as second long term reference: the // temporal_layer_id of that reference must be base temporal layer 0, and // spatial_layer_id of that reference must be same as current // spatial_layer_id. If not, disable feature. // TODO(marpan): Investigate when this can happen, and maybe put this check // and reset in a different place. if (svc->fb_idx_spatial_layer_id[cpi->gld_fb_idx] != svc->spatial_layer_id || svc->fb_idx_temporal_layer_id[cpi->gld_fb_idx] != 0) svc->use_gf_temporal_ref_current_layer = 0; } } #if CONFIG_VP9_TEMPORAL_DENOISING int vp9_denoise_svc_non_key(VP9_COMP *const cpi) { int layer = LAYER_IDS_TO_IDX(cpi->svc.spatial_layer_id, cpi->svc.temporal_layer_id, cpi->svc.number_temporal_layers); LAYER_CONTEXT *lc = &cpi->svc.layer_context[layer]; return denoise_svc(cpi) && !lc->is_key_frame; } #endif void vp9_svc_check_spatial_layer_sync(VP9_COMP *const cpi) { SVC *const svc = &cpi->svc; // Only for superframes whose base is not key, as those are // already sync frames. if (!svc->layer_context[svc->temporal_layer_id].is_key_frame) { if (svc->spatial_layer_id == 0) { // On base spatial layer: if the current superframe has a layer sync then // reset the pattern counters and reset to base temporal layer. if (svc->superframe_has_layer_sync) vp9_svc_reset_temporal_layers(cpi, cpi->common.frame_type == KEY_FRAME); } // If the layer sync is set for this current spatial layer then // disable the temporal reference. if (svc->spatial_layer_id > 0 && svc->spatial_layer_sync[svc->spatial_layer_id]) { cpi->ref_frame_flags &= (~VP9_LAST_FLAG); if (svc->use_gf_temporal_ref_current_layer) { int index = svc->spatial_layer_id; // If golden is used as second reference: need to remove it from // prediction, reset refresh period to 0, and update the reference. svc->use_gf_temporal_ref_current_layer = 0; cpi->rc.baseline_gf_interval = 0; cpi->rc.frames_till_gf_update_due = 0; // On layer sync frame we must update the buffer index used for long // term reference. Use the alt_ref since it is not used or updated on // sync frames. if (svc->number_spatial_layers == 3) index = svc->spatial_layer_id - 1; assert(index >= 0); cpi->alt_fb_idx = svc->buffer_gf_temporal_ref[index].idx; cpi->ext_refresh_alt_ref_frame = 1; } } } } void vp9_svc_update_ref_frame_buffer_idx(VP9_COMP *const cpi) { SVC *const svc = &cpi->svc; // Update the usage of frame buffer index for base spatial layers. if (svc->spatial_layer_id == 0) { if ((cpi->ref_frame_flags & VP9_LAST_FLAG) || cpi->refresh_last_frame) svc->fb_idx_base[cpi->lst_fb_idx] = 1; if ((cpi->ref_frame_flags & VP9_GOLD_FLAG) || cpi->refresh_golden_frame) svc->fb_idx_base[cpi->gld_fb_idx] = 1; if ((cpi->ref_frame_flags & VP9_ALT_FLAG) || cpi->refresh_alt_ref_frame) svc->fb_idx_base[cpi->alt_fb_idx] = 1; } } static void vp9_svc_update_ref_frame_bypass_mode(VP9_COMP *const cpi) { // For non-flexible/bypass SVC mode: check for refreshing other buffer // slots. SVC *const svc = &cpi->svc; VP9_COMMON *const cm = &cpi->common; BufferPool *const pool = cm->buffer_pool; int i; for (i = 0; i < REF_FRAMES; i++) { if (cm->frame_type == KEY_FRAME || svc->update_buffer_slot[svc->spatial_layer_id] & (1 << i)) { ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[i], cm->new_fb_idx); svc->fb_idx_spatial_layer_id[i] = svc->spatial_layer_id; svc->fb_idx_temporal_layer_id[i] = svc->temporal_layer_id; } } } void vp9_svc_update_ref_frame(VP9_COMP *const cpi) { VP9_COMMON *const cm = &cpi->common; SVC *const svc = &cpi->svc; BufferPool *const pool = cm->buffer_pool; if (svc->temporal_layering_mode == VP9E_TEMPORAL_LAYERING_MODE_BYPASS && svc->use_set_ref_frame_config) { vp9_svc_update_ref_frame_bypass_mode(cpi); } else if (cm->frame_type == KEY_FRAME) { // Keep track of frame index for each reference frame. int i; // On key frame update all reference frame slots. for (i = 0; i < REF_FRAMES; i++) { svc->fb_idx_spatial_layer_id[i] = svc->spatial_layer_id; svc->fb_idx_temporal_layer_id[i] = svc->temporal_layer_id; // LAST/GOLDEN/ALTREF is already updated above. if (i != cpi->lst_fb_idx && i != cpi->gld_fb_idx && i != cpi->alt_fb_idx) ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[i], cm->new_fb_idx); } } else { if (cpi->refresh_last_frame) { svc->fb_idx_spatial_layer_id[cpi->lst_fb_idx] = svc->spatial_layer_id; svc->fb_idx_temporal_layer_id[cpi->lst_fb_idx] = svc->temporal_layer_id; } if (cpi->refresh_golden_frame) { svc->fb_idx_spatial_layer_id[cpi->gld_fb_idx] = svc->spatial_layer_id; svc->fb_idx_temporal_layer_id[cpi->gld_fb_idx] = svc->temporal_layer_id; } if (cpi->refresh_alt_ref_frame) { svc->fb_idx_spatial_layer_id[cpi->alt_fb_idx] = svc->spatial_layer_id; svc->fb_idx_temporal_layer_id[cpi->alt_fb_idx] = svc->temporal_layer_id; } } // Copy flags from encoder to SVC struct. vp9_copy_flags_ref_update_idx(cpi); vp9_svc_update_ref_frame_buffer_idx(cpi); } void vp9_svc_adjust_frame_rate(VP9_COMP *const cpi) { int64_t this_duration = cpi->svc.timebase_fac * cpi->svc.duration[cpi->svc.spatial_layer_id]; vp9_new_framerate(cpi, 10000000.0 / this_duration); } void vp9_svc_adjust_avg_frame_qindex(VP9_COMP *const cpi) { VP9_COMMON *const cm = &cpi->common; SVC *const svc = &cpi->svc; RATE_CONTROL *const rc = &cpi->rc; // On key frames in CBR mode: reset the avg_frame_index for base layer // (to level closer to worst_quality) if the overshoot is significant. // Reset it for all temporal layers on base spatial layer. if (cm->frame_type == KEY_FRAME && cpi->oxcf.rc_mode == VPX_CBR && rc->projected_frame_size > 3 * rc->avg_frame_bandwidth) { int tl; rc->avg_frame_qindex[INTER_FRAME] = VPXMAX(rc->avg_frame_qindex[INTER_FRAME], (cm->base_qindex + rc->worst_quality) >> 1); for (tl = 0; tl < svc->number_temporal_layers; ++tl) { const int layer = LAYER_IDS_TO_IDX(0, tl, svc->number_temporal_layers); LAYER_CONTEXT *lc = &svc->layer_context[layer]; RATE_CONTROL *lrc = &lc->rc; lrc->avg_frame_qindex[INTER_FRAME] = rc->avg_frame_qindex[INTER_FRAME]; } } }