ref: 6c21650c0e7326197f7b96c2e8bd29183c7ed542
dir: /vpx_dsp/arm/avg_neon.c/
/* * Copyright (c) 2015 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <arm_neon.h> #include <assert.h> #include "./vpx_dsp_rtcd.h" #include "./vpx_config.h" #include "vpx/vpx_integer.h" #include "vpx_dsp/arm/idct_neon.h" #include "vpx_dsp/arm/mem_neon.h" #include "vpx_dsp/arm/sum_neon.h" uint32_t vpx_avg_4x4_neon(const uint8_t *a, int a_stride) { const uint8x16_t b = load_unaligned_u8q(a, a_stride); const uint16x8_t c = vaddl_u8(vget_low_u8(b), vget_high_u8(b)); const uint32x2_t d = horizontal_add_uint16x8(c); return vget_lane_u32(vrshr_n_u32(d, 4), 0); } uint32_t vpx_avg_8x8_neon(const uint8_t *a, int a_stride) { int i; uint8x8_t b, c; uint16x8_t sum; uint32x2_t d; b = vld1_u8(a); a += a_stride; c = vld1_u8(a); a += a_stride; sum = vaddl_u8(b, c); for (i = 0; i < 6; ++i) { const uint8x8_t d = vld1_u8(a); a += a_stride; sum = vaddw_u8(sum, d); } d = horizontal_add_uint16x8(sum); return vget_lane_u32(vrshr_n_u32(d, 6), 0); } // coeff: 16 bits, dynamic range [-32640, 32640]. // length: value range {16, 64, 256, 1024}. int vpx_satd_neon(const tran_low_t *coeff, int length) { const int16x4_t zero = vdup_n_s16(0); int32x4_t accum = vdupq_n_s32(0); do { const int16x8_t src0 = load_tran_low_to_s16q(coeff); const int16x8_t src8 = load_tran_low_to_s16q(coeff + 8); accum = vabal_s16(accum, vget_low_s16(src0), zero); accum = vabal_s16(accum, vget_high_s16(src0), zero); accum = vabal_s16(accum, vget_low_s16(src8), zero); accum = vabal_s16(accum, vget_high_s16(src8), zero); length -= 16; coeff += 16; } while (length != 0); { // satd: 26 bits, dynamic range [-32640 * 1024, 32640 * 1024] const int64x2_t s0 = vpaddlq_s32(accum); // cascading summation of 'accum'. const int32x2_t s1 = vadd_s32(vreinterpret_s32_s64(vget_low_s64(s0)), vreinterpret_s32_s64(vget_high_s64(s0))); const int satd = vget_lane_s32(s1, 0); return satd; } } void vpx_int_pro_row_neon(int16_t hbuf[16], uint8_t const *ref, const int ref_stride, const int height) { int i; uint16x8_t vec_sum_lo = vdupq_n_u16(0); uint16x8_t vec_sum_hi = vdupq_n_u16(0); const int shift_factor = ((height >> 5) + 3) * -1; const int16x8_t vec_shift = vdupq_n_s16(shift_factor); for (i = 0; i < height; i += 8) { const uint8x16_t vec_row1 = vld1q_u8(ref); const uint8x16_t vec_row2 = vld1q_u8(ref + ref_stride); const uint8x16_t vec_row3 = vld1q_u8(ref + ref_stride * 2); const uint8x16_t vec_row4 = vld1q_u8(ref + ref_stride * 3); const uint8x16_t vec_row5 = vld1q_u8(ref + ref_stride * 4); const uint8x16_t vec_row6 = vld1q_u8(ref + ref_stride * 5); const uint8x16_t vec_row7 = vld1q_u8(ref + ref_stride * 6); const uint8x16_t vec_row8 = vld1q_u8(ref + ref_stride * 7); vec_sum_lo = vaddw_u8(vec_sum_lo, vget_low_u8(vec_row1)); vec_sum_hi = vaddw_u8(vec_sum_hi, vget_high_u8(vec_row1)); vec_sum_lo = vaddw_u8(vec_sum_lo, vget_low_u8(vec_row2)); vec_sum_hi = vaddw_u8(vec_sum_hi, vget_high_u8(vec_row2)); vec_sum_lo = vaddw_u8(vec_sum_lo, vget_low_u8(vec_row3)); vec_sum_hi = vaddw_u8(vec_sum_hi, vget_high_u8(vec_row3)); vec_sum_lo = vaddw_u8(vec_sum_lo, vget_low_u8(vec_row4)); vec_sum_hi = vaddw_u8(vec_sum_hi, vget_high_u8(vec_row4)); vec_sum_lo = vaddw_u8(vec_sum_lo, vget_low_u8(vec_row5)); vec_sum_hi = vaddw_u8(vec_sum_hi, vget_high_u8(vec_row5)); vec_sum_lo = vaddw_u8(vec_sum_lo, vget_low_u8(vec_row6)); vec_sum_hi = vaddw_u8(vec_sum_hi, vget_high_u8(vec_row6)); vec_sum_lo = vaddw_u8(vec_sum_lo, vget_low_u8(vec_row7)); vec_sum_hi = vaddw_u8(vec_sum_hi, vget_high_u8(vec_row7)); vec_sum_lo = vaddw_u8(vec_sum_lo, vget_low_u8(vec_row8)); vec_sum_hi = vaddw_u8(vec_sum_hi, vget_high_u8(vec_row8)); ref += ref_stride * 8; } vec_sum_lo = vshlq_u16(vec_sum_lo, vec_shift); vec_sum_hi = vshlq_u16(vec_sum_hi, vec_shift); vst1q_s16(hbuf, vreinterpretq_s16_u16(vec_sum_lo)); hbuf += 8; vst1q_s16(hbuf, vreinterpretq_s16_u16(vec_sum_hi)); } int16_t vpx_int_pro_col_neon(uint8_t const *ref, const int width) { int i; uint16x8_t vec_sum = vdupq_n_u16(0); for (i = 0; i < width; i += 16) { const uint8x16_t vec_row = vld1q_u8(ref); vec_sum = vaddw_u8(vec_sum, vget_low_u8(vec_row)); vec_sum = vaddw_u8(vec_sum, vget_high_u8(vec_row)); ref += 16; } return vget_lane_s16(vreinterpret_s16_u32(horizontal_add_uint16x8(vec_sum)), 0); } // ref, src = [0, 510] - max diff = 16-bits // bwl = {2, 3, 4}, width = {16, 32, 64} int vpx_vector_var_neon(int16_t const *ref, int16_t const *src, const int bwl) { int width = 4 << bwl; int32x4_t sse = vdupq_n_s32(0); int16x8_t total = vdupq_n_s16(0); assert(width >= 8); assert((width % 8) == 0); do { const int16x8_t r = vld1q_s16(ref); const int16x8_t s = vld1q_s16(src); const int16x8_t diff = vsubq_s16(r, s); // [-510, 510], 10 bits. const int16x4_t diff_lo = vget_low_s16(diff); const int16x4_t diff_hi = vget_high_s16(diff); sse = vmlal_s16(sse, diff_lo, diff_lo); // dynamic range 26 bits. sse = vmlal_s16(sse, diff_hi, diff_hi); total = vaddq_s16(total, diff); // dynamic range 16 bits. ref += 8; src += 8; width -= 8; } while (width != 0); { // Note: 'total''s pairwise addition could be implemented similarly to // horizontal_add_uint16x8(), but one less vpaddl with 'total' when paired // with the summation of 'sse' performed better on a Cortex-A15. const int32x4_t t0 = vpaddlq_s16(total); // cascading summation of 'total' const int32x2_t t1 = vadd_s32(vget_low_s32(t0), vget_high_s32(t0)); const int32x2_t t2 = vpadd_s32(t1, t1); const int t = vget_lane_s32(t2, 0); const int64x2_t s0 = vpaddlq_s32(sse); // cascading summation of 'sse'. const int32x2_t s1 = vadd_s32(vreinterpret_s32_s64(vget_low_s64(s0)), vreinterpret_s32_s64(vget_high_s64(s0))); const int s = vget_lane_s32(s1, 0); const int shift_factor = bwl + 2; return s - ((t * t) >> shift_factor); } } void vpx_minmax_8x8_neon(const uint8_t *a, int a_stride, const uint8_t *b, int b_stride, int *min, int *max) { // Load and concatenate. const uint8x16_t a01 = vcombine_u8(vld1_u8(a), vld1_u8(a + a_stride)); const uint8x16_t a23 = vcombine_u8(vld1_u8(a + 2 * a_stride), vld1_u8(a + 3 * a_stride)); const uint8x16_t a45 = vcombine_u8(vld1_u8(a + 4 * a_stride), vld1_u8(a + 5 * a_stride)); const uint8x16_t a67 = vcombine_u8(vld1_u8(a + 6 * a_stride), vld1_u8(a + 7 * a_stride)); const uint8x16_t b01 = vcombine_u8(vld1_u8(b), vld1_u8(b + b_stride)); const uint8x16_t b23 = vcombine_u8(vld1_u8(b + 2 * b_stride), vld1_u8(b + 3 * b_stride)); const uint8x16_t b45 = vcombine_u8(vld1_u8(b + 4 * b_stride), vld1_u8(b + 5 * b_stride)); const uint8x16_t b67 = vcombine_u8(vld1_u8(b + 6 * b_stride), vld1_u8(b + 7 * b_stride)); // Absolute difference. const uint8x16_t ab01_diff = vabdq_u8(a01, b01); const uint8x16_t ab23_diff = vabdq_u8(a23, b23); const uint8x16_t ab45_diff = vabdq_u8(a45, b45); const uint8x16_t ab67_diff = vabdq_u8(a67, b67); // Max values between the Q vectors. const uint8x16_t ab0123_max = vmaxq_u8(ab01_diff, ab23_diff); const uint8x16_t ab4567_max = vmaxq_u8(ab45_diff, ab67_diff); const uint8x16_t ab0123_min = vminq_u8(ab01_diff, ab23_diff); const uint8x16_t ab4567_min = vminq_u8(ab45_diff, ab67_diff); const uint8x16_t ab07_max = vmaxq_u8(ab0123_max, ab4567_max); const uint8x16_t ab07_min = vminq_u8(ab0123_min, ab4567_min); // Split to D and start doing pairwise. uint8x8_t ab_max = vmax_u8(vget_high_u8(ab07_max), vget_low_u8(ab07_max)); uint8x8_t ab_min = vmin_u8(vget_high_u8(ab07_min), vget_low_u8(ab07_min)); // Enough runs of vpmax/min propogate the max/min values to every position. ab_max = vpmax_u8(ab_max, ab_max); ab_min = vpmin_u8(ab_min, ab_min); ab_max = vpmax_u8(ab_max, ab_max); ab_min = vpmin_u8(ab_min, ab_min); ab_max = vpmax_u8(ab_max, ab_max); ab_min = vpmin_u8(ab_min, ab_min); *min = *max = 0; // Clear high bits // Store directly to avoid costly neon->gpr transfer. vst1_lane_u8((uint8_t *)max, ab_max, 0); vst1_lane_u8((uint8_t *)min, ab_min, 0); }