ref: 62c47475325915008e3f9cca6b636aeca07ab607
dir: /tools/tiny_ssim.c/
/* * Copyright (c) 2016 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <assert.h> #include <errno.h> #include <math.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include "vpx/vpx_codec.h" #include "vpx/vpx_integer.h" #include "./y4minput.h" #include "vpx_dsp/ssim.h" #include "vpx_ports/mem.h" static const int64_t cc1 = 26634; // (64^2*(.01*255)^2 static const int64_t cc2 = 239708; // (64^2*(.03*255)^2 static const int64_t cc1_10 = 428658; // (64^2*(.01*1023)^2 static const int64_t cc2_10 = 3857925; // (64^2*(.03*1023)^2 static const int64_t cc1_12 = 6868593; // (64^2*(.01*4095)^2 static const int64_t cc2_12 = 61817334; // (64^2*(.03*4095)^2 #if CONFIG_VP9_HIGHBITDEPTH static uint64_t calc_plane_error16(uint16_t *orig, int orig_stride, uint16_t *recon, int recon_stride, unsigned int cols, unsigned int rows) { unsigned int row, col; uint64_t total_sse = 0; int diff; for (row = 0; row < rows; row++) { for (col = 0; col < cols; col++) { diff = orig[col] - recon[col]; total_sse += diff * diff; } orig += orig_stride; recon += recon_stride; } return total_sse; } #endif static uint64_t calc_plane_error(uint8_t *orig, int orig_stride, uint8_t *recon, int recon_stride, unsigned int cols, unsigned int rows) { unsigned int row, col; uint64_t total_sse = 0; int diff; for (row = 0; row < rows; row++) { for (col = 0; col < cols; col++) { diff = orig[col] - recon[col]; total_sse += diff * diff; } orig += orig_stride; recon += recon_stride; } return total_sse; } #define MAX_PSNR 100 static double mse2psnr(double samples, double peak, double mse) { double psnr; if (mse > 0.0) psnr = 10.0 * log10(peak * peak * samples / mse); else psnr = MAX_PSNR; // Limit to prevent / 0 if (psnr > MAX_PSNR) psnr = MAX_PSNR; return psnr; } typedef enum { RAW_YUV, Y4M } input_file_type; typedef struct input_file { FILE *file; input_file_type type; unsigned char *buf; y4m_input y4m; vpx_image_t img; int w; int h; int bit_depth; } input_file_t; // Open a file and determine if its y4m or raw. If y4m get the header. static int open_input_file(const char *file_name, input_file_t *input, int w, int h, int bit_depth) { char y4m_buf[4]; size_t r1; input->type = RAW_YUV; input->buf = NULL; input->file = strcmp(file_name, "-") ? fopen(file_name, "rb") : stdin; if (input->file == NULL) return -1; r1 = fread(y4m_buf, 1, 4, input->file); if (r1 == 4) { if (memcmp(y4m_buf, "YUV4", 4) == 0) input->type = Y4M; switch (input->type) { case Y4M: y4m_input_open(&input->y4m, input->file, y4m_buf, 4, 0); input->w = input->y4m.pic_w; input->h = input->y4m.pic_h; input->bit_depth = input->y4m.bit_depth; // Y4M alloc's its own buf. Init this to avoid problems if we never // read frames. memset(&input->img, 0, sizeof(input->img)); break; case RAW_YUV: fseek(input->file, 0, SEEK_SET); input->w = w; input->h = h; if (bit_depth < 9) input->buf = malloc(w * h * 3 / 2); else input->buf = malloc(w * h * 3); break; } } return 0; } static void close_input_file(input_file_t *in) { if (in->file) fclose(in->file); if (in->type == Y4M) { vpx_img_free(&in->img); } else { free(in->buf); } } static size_t read_input_file(input_file_t *in, unsigned char **y, unsigned char **u, unsigned char **v, int bd) { size_t r1 = 0; switch (in->type) { case Y4M: r1 = y4m_input_fetch_frame(&in->y4m, in->file, &in->img); *y = in->img.planes[0]; *u = in->img.planes[1]; *v = in->img.planes[2]; break; case RAW_YUV: if (bd < 9) { r1 = fread(in->buf, in->w * in->h * 3 / 2, 1, in->file); *y = in->buf; *u = in->buf + in->w * in->h; *v = in->buf + 5 * in->w * in->h / 4; } else { r1 = fread(in->buf, in->w * in->h * 3, 1, in->file); *y = in->buf; *u = in->buf + in->w * in->h / 2; *v = *u + in->w * in->h / 2; } break; } return r1; } void ssim_parms_16x16(const uint8_t *s, int sp, const uint8_t *r, int rp, uint32_t *sum_s, uint32_t *sum_r, uint32_t *sum_sq_s, uint32_t *sum_sq_r, uint32_t *sum_sxr) { int i, j; for (i = 0; i < 16; i++, s += sp, r += rp) { for (j = 0; j < 16; j++) { *sum_s += s[j]; *sum_r += r[j]; *sum_sq_s += s[j] * s[j]; *sum_sq_r += r[j] * r[j]; *sum_sxr += s[j] * r[j]; } } } void ssim_parms_8x8(const uint8_t *s, int sp, const uint8_t *r, int rp, uint32_t *sum_s, uint32_t *sum_r, uint32_t *sum_sq_s, uint32_t *sum_sq_r, uint32_t *sum_sxr) { int i, j; for (i = 0; i < 8; i++, s += sp, r += rp) { for (j = 0; j < 8; j++) { *sum_s += s[j]; *sum_r += r[j]; *sum_sq_s += s[j] * s[j]; *sum_sq_r += r[j] * r[j]; *sum_sxr += s[j] * r[j]; } } } void highbd_ssim_parms_8x8(const uint16_t *s, int sp, const uint16_t *r, int rp, uint32_t *sum_s, uint32_t *sum_r, uint32_t *sum_sq_s, uint32_t *sum_sq_r, uint32_t *sum_sxr) { int i, j; for (i = 0; i < 8; i++, s += sp, r += rp) { for (j = 0; j < 8; j++) { *sum_s += s[j]; *sum_r += r[j]; *sum_sq_s += s[j] * s[j]; *sum_sq_r += r[j] * r[j]; *sum_sxr += s[j] * r[j]; } } } static double similarity(uint32_t sum_s, uint32_t sum_r, uint32_t sum_sq_s, uint32_t sum_sq_r, uint32_t sum_sxr, int count, uint32_t bd) { int64_t ssim_n, ssim_d; int64_t c1 = 0, c2 = 0; if (bd == 8) { // scale the constants by number of pixels c1 = (cc1 * count * count) >> 12; c2 = (cc2 * count * count) >> 12; } else if (bd == 10) { c1 = (cc1_10 * count * count) >> 12; c2 = (cc2_10 * count * count) >> 12; } else if (bd == 12) { c1 = (cc1_12 * count * count) >> 12; c2 = (cc2_12 * count * count) >> 12; } else { assert(0); } ssim_n = (2 * sum_s * sum_r + c1) * ((int64_t)2 * count * sum_sxr - (int64_t)2 * sum_s * sum_r + c2); ssim_d = (sum_s * sum_s + sum_r * sum_r + c1) * ((int64_t)count * sum_sq_s - (int64_t)sum_s * sum_s + (int64_t)count * sum_sq_r - (int64_t)sum_r * sum_r + c2); return ssim_n * 1.0 / ssim_d; } static double ssim_8x8(const uint8_t *s, int sp, const uint8_t *r, int rp) { uint32_t sum_s = 0, sum_r = 0, sum_sq_s = 0, sum_sq_r = 0, sum_sxr = 0; ssim_parms_8x8(s, sp, r, rp, &sum_s, &sum_r, &sum_sq_s, &sum_sq_r, &sum_sxr); return similarity(sum_s, sum_r, sum_sq_s, sum_sq_r, sum_sxr, 64, 8); } static double highbd_ssim_8x8(const uint16_t *s, int sp, const uint16_t *r, int rp, uint32_t bd, uint32_t shift) { uint32_t sum_s = 0, sum_r = 0, sum_sq_s = 0, sum_sq_r = 0, sum_sxr = 0; highbd_ssim_parms_8x8(s, sp, r, rp, &sum_s, &sum_r, &sum_sq_s, &sum_sq_r, &sum_sxr); return similarity(sum_s >> shift, sum_r >> shift, sum_sq_s >> (2 * shift), sum_sq_r >> (2 * shift), sum_sxr >> (2 * shift), 64, bd); } // We are using a 8x8 moving window with starting location of each 8x8 window // on the 4x4 pixel grid. Such arrangement allows the windows to overlap // block boundaries to penalize blocking artifacts. static double ssim2(const uint8_t *img1, const uint8_t *img2, int stride_img1, int stride_img2, int width, int height) { int i, j; int samples = 0; double ssim_total = 0; // sample point start with each 4x4 location for (i = 0; i <= height - 8; i += 4, img1 += stride_img1 * 4, img2 += stride_img2 * 4) { for (j = 0; j <= width - 8; j += 4) { double v = ssim_8x8(img1 + j, stride_img1, img2 + j, stride_img2); ssim_total += v; samples++; } } ssim_total /= samples; return ssim_total; } static double highbd_ssim2(const uint8_t *img1, const uint8_t *img2, int stride_img1, int stride_img2, int width, int height, uint32_t bd, uint32_t shift) { int i, j; int samples = 0; double ssim_total = 0; // sample point start with each 4x4 location for (i = 0; i <= height - 8; i += 4, img1 += stride_img1 * 4, img2 += stride_img2 * 4) { for (j = 0; j <= width - 8; j += 4) { double v = highbd_ssim_8x8(CONVERT_TO_SHORTPTR(img1 + j), stride_img1, CONVERT_TO_SHORTPTR(img2 + j), stride_img2, bd, shift); ssim_total += v; samples++; } } ssim_total /= samples; return ssim_total; } // traditional ssim as per: http://en.wikipedia.org/wiki/Structural_similarity // // Re working out the math -> // // ssim(x,y) = (2*mean(x)*mean(y) + c1)*(2*cov(x,y)+c2) / // ((mean(x)^2+mean(y)^2+c1)*(var(x)+var(y)+c2)) // // mean(x) = sum(x) / n // // cov(x,y) = (n*sum(xi*yi)-sum(x)*sum(y))/(n*n) // // var(x) = (n*sum(xi*xi)-sum(xi)*sum(xi))/(n*n) // // ssim(x,y) = // (2*sum(x)*sum(y)/(n*n) + c1)*(2*(n*sum(xi*yi)-sum(x)*sum(y))/(n*n)+c2) / // (((sum(x)*sum(x)+sum(y)*sum(y))/(n*n) +c1) * // ((n*sum(xi*xi) - sum(xi)*sum(xi))/(n*n)+ // (n*sum(yi*yi) - sum(yi)*sum(yi))/(n*n)+c2))) // // factoring out n*n // // ssim(x,y) = // (2*sum(x)*sum(y) + n*n*c1)*(2*(n*sum(xi*yi)-sum(x)*sum(y))+n*n*c2) / // (((sum(x)*sum(x)+sum(y)*sum(y)) + n*n*c1) * // (n*sum(xi*xi)-sum(xi)*sum(xi)+n*sum(yi*yi)-sum(yi)*sum(yi)+n*n*c2)) // // Replace c1 with n*n * c1 for the final step that leads to this code: // The final step scales by 12 bits so we don't lose precision in the constants. static double ssimv_similarity(const Ssimv *sv, int64_t n) { // Scale the constants by number of pixels. const int64_t c1 = (cc1 * n * n) >> 12; const int64_t c2 = (cc2 * n * n) >> 12; const double l = 1.0 * (2 * sv->sum_s * sv->sum_r + c1) / (sv->sum_s * sv->sum_s + sv->sum_r * sv->sum_r + c1); // Since these variables are unsigned sums, convert to double so // math is done in double arithmetic. const double v = (2.0 * n * sv->sum_sxr - 2 * sv->sum_s * sv->sum_r + c2) / (n * sv->sum_sq_s - sv->sum_s * sv->sum_s + n * sv->sum_sq_r - sv->sum_r * sv->sum_r + c2); return l * v; } // The first term of the ssim metric is a luminance factor. // // (2*mean(x)*mean(y) + c1)/ (mean(x)^2+mean(y)^2+c1) // // This luminance factor is super sensitive to the dark side of luminance // values and completely insensitive on the white side. check out 2 sets // (1,3) and (250,252) the term gives ( 2*1*3/(1+9) = .60 // 2*250*252/ (250^2+252^2) => .99999997 // // As a result in this tweaked version of the calculation in which the // luminance is taken as percentage off from peak possible. // // 255 * 255 - (sum_s - sum_r) / count * (sum_s - sum_r) / count // static double ssimv_similarity2(const Ssimv *sv, int64_t n) { // Scale the constants by number of pixels. const int64_t c1 = (cc1 * n * n) >> 12; const int64_t c2 = (cc2 * n * n) >> 12; const double mean_diff = (1.0 * sv->sum_s - sv->sum_r) / n; const double l = (255 * 255 - mean_diff * mean_diff + c1) / (255 * 255 + c1); // Since these variables are unsigned, sums convert to double so // math is done in double arithmetic. const double v = (2.0 * n * sv->sum_sxr - 2 * sv->sum_s * sv->sum_r + c2) / (n * sv->sum_sq_s - sv->sum_s * sv->sum_s + n * sv->sum_sq_r - sv->sum_r * sv->sum_r + c2); return l * v; } static void ssimv_parms(uint8_t *img1, int img1_pitch, uint8_t *img2, int img2_pitch, Ssimv *sv) { ssim_parms_8x8(img1, img1_pitch, img2, img2_pitch, &sv->sum_s, &sv->sum_r, &sv->sum_sq_s, &sv->sum_sq_r, &sv->sum_sxr); } double get_ssim_metrics(uint8_t *img1, int img1_pitch, uint8_t *img2, int img2_pitch, int width, int height, Ssimv *sv2, Metrics *m, int do_inconsistency) { double dssim_total = 0; double ssim_total = 0; double ssim2_total = 0; double inconsistency_total = 0; int i, j; int c = 0; double norm; double old_ssim_total = 0; // We can sample points as frequently as we like start with 1 per 4x4. for (i = 0; i < height; i += 4, img1 += img1_pitch * 4, img2 += img2_pitch * 4) { for (j = 0; j < width; j += 4, ++c) { Ssimv sv = { 0, 0, 0, 0, 0, 0 }; double ssim; double ssim2; double dssim; uint32_t var_new; uint32_t var_old; uint32_t mean_new; uint32_t mean_old; double ssim_new; double ssim_old; // Not sure there's a great way to handle the edge pixels // in ssim when using a window. Seems biased against edge pixels // however you handle this. This uses only samples that are // fully in the frame. if (j + 8 <= width && i + 8 <= height) { ssimv_parms(img1 + j, img1_pitch, img2 + j, img2_pitch, &sv); } ssim = ssimv_similarity(&sv, 64); ssim2 = ssimv_similarity2(&sv, 64); sv.ssim = ssim2; // dssim is calculated to use as an actual error metric and // is scaled up to the same range as sum square error. // Since we are subsampling every 16th point maybe this should be // *16 ? dssim = 255 * 255 * (1 - ssim2) / 2; // Here I introduce a new error metric: consistency-weighted // SSIM-inconsistency. This metric isolates frames where the // SSIM 'suddenly' changes, e.g. if one frame in every 8 is much // sharper or blurrier than the others. Higher values indicate a // temporally inconsistent SSIM. There are two ideas at work: // // 1) 'SSIM-inconsistency': the total inconsistency value // reflects how much SSIM values are changing between this // source / reference frame pair and the previous pair. // // 2) 'consistency-weighted': weights de-emphasize areas in the // frame where the scene content has changed. Changes in scene // content are detected via changes in local variance and local // mean. // // Thus the overall measure reflects how inconsistent the SSIM // values are, over consistent regions of the frame. // // The metric has three terms: // // term 1 -> uses change in scene Variance to weight error score // 2 * var(Fi)*var(Fi-1) / (var(Fi)^2+var(Fi-1)^2) // larger changes from one frame to the next mean we care // less about consistency. // // term 2 -> uses change in local scene luminance to weight error // 2 * avg(Fi)*avg(Fi-1) / (avg(Fi)^2+avg(Fi-1)^2) // larger changes from one frame to the next mean we care // less about consistency. // // term3 -> measures inconsistency in ssim scores between frames // 1 - ( 2 * ssim(Fi)*ssim(Fi-1)/(ssim(Fi)^2+sssim(Fi-1)^2). // // This term compares the ssim score for the same location in 2 // subsequent frames. var_new = sv.sum_sq_s - sv.sum_s * sv.sum_s / 64; var_old = sv2[c].sum_sq_s - sv2[c].sum_s * sv2[c].sum_s / 64; mean_new = sv.sum_s; mean_old = sv2[c].sum_s; ssim_new = sv.ssim; ssim_old = sv2[c].ssim; if (do_inconsistency) { // We do the metric once for every 4x4 block in the image. Since // we are scaling the error to SSE for use in a psnr calculation // 1.0 = 4x4x255x255 the worst error we can possibly have. static const double kScaling = 4. * 4 * 255 * 255; // The constants have to be non 0 to avoid potential divide by 0 // issues other than that they affect kind of a weighting between // the terms. No testing of what the right terms should be has been // done. static const double c1 = 1, c2 = 1, c3 = 1; // This measures how much consistent variance is in two consecutive // source frames. 1.0 means they have exactly the same variance. const double variance_term = (2.0 * var_old * var_new + c1) / (1.0 * var_old * var_old + 1.0 * var_new * var_new + c1); // This measures how consistent the local mean are between two // consecutive frames. 1.0 means they have exactly the same mean. const double mean_term = (2.0 * mean_old * mean_new + c2) / (1.0 * mean_old * mean_old + 1.0 * mean_new * mean_new + c2); // This measures how consistent the ssims of two // consecutive frames is. 1.0 means they are exactly the same. double ssim_term = pow((2.0 * ssim_old * ssim_new + c3) / (ssim_old * ssim_old + ssim_new * ssim_new + c3), 5); double this_inconsistency; // Floating point math sometimes makes this > 1 by a tiny bit. // We want the metric to scale between 0 and 1.0 so we can convert // it to an snr scaled value. if (ssim_term > 1) ssim_term = 1; // This converts the consistency metric to an inconsistency metric // ( so we can scale it like psnr to something like sum square error. // The reason for the variance and mean terms is the assumption that // if there are big changes in the source we shouldn't penalize // inconsistency in ssim scores a bit less as it will be less visible // to the user. this_inconsistency = (1 - ssim_term) * variance_term * mean_term; this_inconsistency *= kScaling; inconsistency_total += this_inconsistency; } sv2[c] = sv; ssim_total += ssim; ssim2_total += ssim2; dssim_total += dssim; old_ssim_total += ssim_old; } old_ssim_total += 0; } norm = 1. / (width / 4) / (height / 4); ssim_total *= norm; ssim2_total *= norm; m->ssim2 = ssim2_total; m->ssim = ssim_total; if (old_ssim_total == 0) inconsistency_total = 0; m->ssimc = inconsistency_total; m->dssim = dssim_total; return inconsistency_total; } double highbd_calc_ssim(const YV12_BUFFER_CONFIG *source, const YV12_BUFFER_CONFIG *dest, double *weight, uint32_t bd, uint32_t in_bd) { double a, b, c; double ssimv; uint32_t shift = 0; assert(bd >= in_bd); shift = bd - in_bd; a = highbd_ssim2(source->y_buffer, dest->y_buffer, source->y_stride, dest->y_stride, source->y_crop_width, source->y_crop_height, in_bd, shift); b = highbd_ssim2(source->u_buffer, dest->u_buffer, source->uv_stride, dest->uv_stride, source->uv_crop_width, source->uv_crop_height, in_bd, shift); c = highbd_ssim2(source->v_buffer, dest->v_buffer, source->uv_stride, dest->uv_stride, source->uv_crop_width, source->uv_crop_height, in_bd, shift); ssimv = a * .8 + .1 * (b + c); *weight = 1; return ssimv; } int main(int argc, char *argv[]) { FILE *framestats = NULL; int bit_depth = 8; int w = 0, h = 0, tl_skip = 0, tl_skips_remaining = 0; double ssimavg = 0, ssimyavg = 0, ssimuavg = 0, ssimvavg = 0; double psnrglb = 0, psnryglb = 0, psnruglb = 0, psnrvglb = 0; double psnravg = 0, psnryavg = 0, psnruavg = 0, psnrvavg = 0; double *ssimy = NULL, *ssimu = NULL, *ssimv = NULL; uint64_t *psnry = NULL, *psnru = NULL, *psnrv = NULL; size_t i, n_frames = 0, allocated_frames = 0; int return_value = 0; input_file_t in[2]; double peak = 255.0; if (argc < 2) { fprintf(stderr, "Usage: %s file1.{yuv|y4m} file2.{yuv|y4m}" "[WxH tl_skip={0,1,3} frame_stats_file bits]\n", argv[0]); return_value = 1; goto clean_up; } if (argc > 3) { sscanf(argv[3], "%dx%d", &w, &h); } if (argc > 6) { sscanf(argv[6], "%d", &bit_depth); } if (open_input_file(argv[1], &in[0], w, h, bit_depth) < 0) { fprintf(stderr, "File %s can't be opened or parsed!\n", argv[2]); goto clean_up; } if (w == 0 && h == 0) { // If a y4m is the first file and w, h is not set grab from first file. w = in[0].w; h = in[0].h; bit_depth = in[0].bit_depth; } if (bit_depth == 10) peak = 1023.0; if (bit_depth == 12) peak = 4095; if (open_input_file(argv[2], &in[1], w, h, bit_depth) < 0) { fprintf(stderr, "File %s can't be opened or parsed!\n", argv[2]); goto clean_up; } if (in[0].w != in[1].w || in[0].h != in[1].h || in[0].w != w || in[0].h != h || w == 0 || h == 0) { fprintf(stderr, "Failing: Image dimensions don't match or are unspecified!\n"); return_value = 1; goto clean_up; } // Number of frames to skip from file1.yuv for every frame used. Normal values // 0, 1 and 3 correspond to TL2, TL1 and TL0 respectively for a 3TL encoding // in mode 10. 7 would be reasonable for comparing TL0 of a 4-layer encoding. if (argc > 4) { sscanf(argv[4], "%d", &tl_skip); if (argc > 5) { framestats = fopen(argv[5], "w"); if (!framestats) { fprintf(stderr, "Could not open \"%s\" for writing: %s\n", argv[5], strerror(errno)); return_value = 1; goto clean_up; } } } if (w & 1 || h & 1) { fprintf(stderr, "Invalid size %dx%d\n", w, h); return_value = 1; goto clean_up; } while (1) { size_t r1, r2; unsigned char *y[2], *u[2], *v[2]; r1 = read_input_file(&in[0], &y[0], &u[0], &v[0], bit_depth); if (r1) { // Reading parts of file1.yuv that were not used in temporal layer. if (tl_skips_remaining > 0) { --tl_skips_remaining; continue; } // Use frame, but skip |tl_skip| after it. tl_skips_remaining = tl_skip; } r2 = read_input_file(&in[1], &y[1], &u[1], &v[1], bit_depth); if (r1 && r2 && r1 != r2) { fprintf(stderr, "Failed to read data: %s [%d/%d]\n", strerror(errno), (int)r1, (int)r2); return_value = 1; goto clean_up; } else if (r1 == 0 || r2 == 0) { break; } #if CONFIG_VP9_HIGHBITDEPTH #define psnr_and_ssim(ssim, psnr, buf0, buf1, w, h) \ if (bit_depth < 9) { \ ssim = ssim2(buf0, buf1, w, w, w, h); \ psnr = calc_plane_error(buf0, w, buf1, w, w, h); \ } else { \ ssim = highbd_ssim2(CONVERT_TO_BYTEPTR(buf0), CONVERT_TO_BYTEPTR(buf1), w, \ w, w, h, bit_depth, bit_depth - 8); \ psnr = calc_plane_error16(CAST_TO_SHORTPTR(buf0), w, \ CAST_TO_SHORTPTR(buf1), w, w, h); \ } #else #define psnr_and_ssim(ssim, psnr, buf0, buf1, w, h) \ ssim = ssim2(buf0, buf1, w, w, w, h); \ psnr = calc_plane_error(buf0, w, buf1, w, w, h); #endif if (n_frames == allocated_frames) { allocated_frames = allocated_frames == 0 ? 1024 : allocated_frames * 2; ssimy = realloc(ssimy, allocated_frames * sizeof(*ssimy)); ssimu = realloc(ssimu, allocated_frames * sizeof(*ssimu)); ssimv = realloc(ssimv, allocated_frames * sizeof(*ssimv)); psnry = realloc(psnry, allocated_frames * sizeof(*psnry)); psnru = realloc(psnru, allocated_frames * sizeof(*psnru)); psnrv = realloc(psnrv, allocated_frames * sizeof(*psnrv)); } psnr_and_ssim(ssimy[n_frames], psnry[n_frames], y[0], y[1], w, h); psnr_and_ssim(ssimu[n_frames], psnru[n_frames], u[0], u[1], w / 2, h / 2); psnr_and_ssim(ssimv[n_frames], psnrv[n_frames], v[0], v[1], w / 2, h / 2); n_frames++; } if (framestats) { fprintf(framestats, "ssim,ssim-y,ssim-u,ssim-v,psnr,psnr-y,psnr-u,psnr-v\n"); } for (i = 0; i < n_frames; ++i) { double frame_ssim; double frame_psnr, frame_psnry, frame_psnru, frame_psnrv; frame_ssim = 0.8 * ssimy[i] + 0.1 * (ssimu[i] + ssimv[i]); ssimavg += frame_ssim; ssimyavg += ssimy[i]; ssimuavg += ssimu[i]; ssimvavg += ssimv[i]; frame_psnr = mse2psnr(w * h * 6 / 4, peak, (double)psnry[i] + psnru[i] + psnrv[i]); frame_psnry = mse2psnr(w * h * 4 / 4, peak, (double)psnry[i]); frame_psnru = mse2psnr(w * h * 1 / 4, peak, (double)psnru[i]); frame_psnrv = mse2psnr(w * h * 1 / 4, peak, (double)psnrv[i]); psnravg += frame_psnr; psnryavg += frame_psnry; psnruavg += frame_psnru; psnrvavg += frame_psnrv; psnryglb += psnry[i]; psnruglb += psnru[i]; psnrvglb += psnrv[i]; if (framestats) { fprintf(framestats, "%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf\n", frame_ssim, ssimy[i], ssimu[i], ssimv[i], frame_psnr, frame_psnry, frame_psnru, frame_psnrv); } } ssimavg /= n_frames; ssimyavg /= n_frames; ssimuavg /= n_frames; ssimvavg /= n_frames; printf("VpxSSIM: %lf\n", 100 * pow(ssimavg, 8.0)); printf("SSIM: %lf\n", ssimavg); printf("SSIM-Y: %lf\n", ssimyavg); printf("SSIM-U: %lf\n", ssimuavg); printf("SSIM-V: %lf\n", ssimvavg); puts(""); psnravg /= n_frames; psnryavg /= n_frames; psnruavg /= n_frames; psnrvavg /= n_frames; printf("AvgPSNR: %lf\n", psnravg); printf("AvgPSNR-Y: %lf\n", psnryavg); printf("AvgPSNR-U: %lf\n", psnruavg); printf("AvgPSNR-V: %lf\n", psnrvavg); puts(""); psnrglb = psnryglb + psnruglb + psnrvglb; psnrglb = mse2psnr((double)n_frames * w * h * 6 / 4, peak, psnrglb); psnryglb = mse2psnr((double)n_frames * w * h * 4 / 4, peak, psnryglb); psnruglb = mse2psnr((double)n_frames * w * h * 1 / 4, peak, psnruglb); psnrvglb = mse2psnr((double)n_frames * w * h * 1 / 4, peak, psnrvglb); printf("GlbPSNR: %lf\n", psnrglb); printf("GlbPSNR-Y: %lf\n", psnryglb); printf("GlbPSNR-U: %lf\n", psnruglb); printf("GlbPSNR-V: %lf\n", psnrvglb); puts(""); printf("Nframes: %d\n", (int)n_frames); clean_up: close_input_file(&in[0]); close_input_file(&in[1]); if (framestats) fclose(framestats); free(ssimy); free(ssimu); free(ssimv); free(psnry); free(psnru); free(psnrv); return return_value; }