ref: 5db8ff42db397f864f7707d7a1890fd70cd8fff6
dir: /vp8/decoder/decodeframe.c/
/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "vpx_config.h" #include "vp8_rtcd.h" #include "./vpx_scale_rtcd.h" #include "onyxd_int.h" #include "vp8/common/header.h" #include "vp8/common/reconintra4x4.h" #include "vp8/common/reconinter.h" #include "detokenize.h" #include "vp8/common/common.h" #include "vp8/common/invtrans.h" #include "vp8/common/alloccommon.h" #include "vp8/common/entropymode.h" #include "vp8/common/quant_common.h" #include "vpx_scale/vpx_scale.h" #include "vp8/common/reconintra.h" #include "vp8/common/setupintrarecon.h" #include "decodemv.h" #include "vp8/common/extend.h" #if CONFIG_ERROR_CONCEALMENT #include "error_concealment.h" #endif #include "vpx_mem/vpx_mem.h" #include "vp8/common/threading.h" #include "decoderthreading.h" #include "dboolhuff.h" #include "vpx_dsp/vpx_dsp_common.h" #include <assert.h> #include <stdio.h> void vp8cx_init_de_quantizer(VP8D_COMP *pbi) { int Q; VP8_COMMON *const pc = &pbi->common; for (Q = 0; Q < QINDEX_RANGE; ++Q) { pc->Y1dequant[Q][0] = (short)vp8_dc_quant(Q, pc->y1dc_delta_q); pc->Y2dequant[Q][0] = (short)vp8_dc2quant(Q, pc->y2dc_delta_q); pc->UVdequant[Q][0] = (short)vp8_dc_uv_quant(Q, pc->uvdc_delta_q); pc->Y1dequant[Q][1] = (short)vp8_ac_yquant(Q); pc->Y2dequant[Q][1] = (short)vp8_ac2quant(Q, pc->y2ac_delta_q); pc->UVdequant[Q][1] = (short)vp8_ac_uv_quant(Q, pc->uvac_delta_q); } } void vp8_mb_init_dequantizer(VP8D_COMP *pbi, MACROBLOCKD *xd) { int i; int QIndex; MB_MODE_INFO *mbmi = &xd->mode_info_context->mbmi; VP8_COMMON *const pc = &pbi->common; /* Decide whether to use the default or alternate baseline Q value. */ if (xd->segmentation_enabled) { /* Abs Value */ if (xd->mb_segement_abs_delta == SEGMENT_ABSDATA) { QIndex = xd->segment_feature_data[MB_LVL_ALT_Q][mbmi->segment_id]; /* Delta Value */ } else { QIndex = pc->base_qindex + xd->segment_feature_data[MB_LVL_ALT_Q][mbmi->segment_id]; } QIndex = (QIndex >= 0) ? ((QIndex <= MAXQ) ? QIndex : MAXQ) : 0; /* Clamp to valid range */ } else { QIndex = pc->base_qindex; } /* Set up the macroblock dequant constants */ xd->dequant_y1_dc[0] = 1; xd->dequant_y1[0] = pc->Y1dequant[QIndex][0]; xd->dequant_y2[0] = pc->Y2dequant[QIndex][0]; xd->dequant_uv[0] = pc->UVdequant[QIndex][0]; for (i = 1; i < 16; ++i) { xd->dequant_y1_dc[i] = xd->dequant_y1[i] = pc->Y1dequant[QIndex][1]; xd->dequant_y2[i] = pc->Y2dequant[QIndex][1]; xd->dequant_uv[i] = pc->UVdequant[QIndex][1]; } } static void decode_macroblock(VP8D_COMP *pbi, MACROBLOCKD *xd, unsigned int mb_idx) { MB_PREDICTION_MODE mode; int i; #if CONFIG_ERROR_CONCEALMENT int corruption_detected = 0; #else (void)mb_idx; #endif if (xd->mode_info_context->mbmi.mb_skip_coeff) { vp8_reset_mb_tokens_context(xd); } else if (!vp8dx_bool_error(xd->current_bc)) { int eobtotal; eobtotal = vp8_decode_mb_tokens(pbi, xd); /* Special case: Force the loopfilter to skip when eobtotal is zero */ xd->mode_info_context->mbmi.mb_skip_coeff = (eobtotal == 0); } mode = xd->mode_info_context->mbmi.mode; if (xd->segmentation_enabled) vp8_mb_init_dequantizer(pbi, xd); #if CONFIG_ERROR_CONCEALMENT if (pbi->ec_active) { int throw_residual; /* When we have independent partitions we can apply residual even * though other partitions within the frame are corrupt. */ throw_residual = (!pbi->independent_partitions && pbi->frame_corrupt_residual); throw_residual = (throw_residual || vp8dx_bool_error(xd->current_bc)); if ((mb_idx >= pbi->mvs_corrupt_from_mb || throw_residual)) { /* MB with corrupt residuals or corrupt mode/motion vectors. * Better to use the predictor as reconstruction. */ pbi->frame_corrupt_residual = 1; memset(xd->qcoeff, 0, sizeof(xd->qcoeff)); corruption_detected = 1; /* force idct to be skipped for B_PRED and use the * prediction only for reconstruction * */ memset(xd->eobs, 0, 25); } } #endif /* do prediction */ if (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) { vp8_build_intra_predictors_mbuv_s( xd, xd->recon_above[1], xd->recon_above[2], xd->recon_left[1], xd->recon_left[2], xd->recon_left_stride[1], xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.uv_stride); if (mode != B_PRED) { vp8_build_intra_predictors_mby_s( xd, xd->recon_above[0], xd->recon_left[0], xd->recon_left_stride[0], xd->dst.y_buffer, xd->dst.y_stride); } else { short *DQC = xd->dequant_y1; int dst_stride = xd->dst.y_stride; /* clear out residual eob info */ if (xd->mode_info_context->mbmi.mb_skip_coeff) memset(xd->eobs, 0, 25); intra_prediction_down_copy(xd, xd->recon_above[0] + 16); for (i = 0; i < 16; ++i) { BLOCKD *b = &xd->block[i]; unsigned char *dst = xd->dst.y_buffer + b->offset; B_PREDICTION_MODE b_mode = xd->mode_info_context->bmi[i].as_mode; unsigned char *Above = dst - dst_stride; unsigned char *yleft = dst - 1; int left_stride = dst_stride; unsigned char top_left = Above[-1]; vp8_intra4x4_predict(Above, yleft, left_stride, b_mode, dst, dst_stride, top_left); if (xd->eobs[i]) { if (xd->eobs[i] > 1) { vp8_dequant_idct_add(b->qcoeff, DQC, dst, dst_stride); } else { vp8_dc_only_idct_add(b->qcoeff[0] * DQC[0], dst, dst_stride, dst, dst_stride); memset(b->qcoeff, 0, 2 * sizeof(b->qcoeff[0])); } } } } } else { vp8_build_inter_predictors_mb(xd); } #if CONFIG_ERROR_CONCEALMENT if (corruption_detected) { return; } #endif if (!xd->mode_info_context->mbmi.mb_skip_coeff) { /* dequantization and idct */ if (mode != B_PRED) { short *DQC = xd->dequant_y1; if (mode != SPLITMV) { BLOCKD *b = &xd->block[24]; /* do 2nd order transform on the dc block */ if (xd->eobs[24] > 1) { vp8_dequantize_b(b, xd->dequant_y2); vp8_short_inv_walsh4x4(&b->dqcoeff[0], xd->qcoeff); memset(b->qcoeff, 0, 16 * sizeof(b->qcoeff[0])); } else { b->dqcoeff[0] = b->qcoeff[0] * xd->dequant_y2[0]; vp8_short_inv_walsh4x4_1(&b->dqcoeff[0], xd->qcoeff); memset(b->qcoeff, 0, 2 * sizeof(b->qcoeff[0])); } /* override the dc dequant constant in order to preserve the * dc components */ DQC = xd->dequant_y1_dc; } vp8_dequant_idct_add_y_block(xd->qcoeff, DQC, xd->dst.y_buffer, xd->dst.y_stride, xd->eobs); } vp8_dequant_idct_add_uv_block(xd->qcoeff + 16 * 16, xd->dequant_uv, xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.uv_stride, xd->eobs + 16); } } static int get_delta_q(vp8_reader *bc, int prev, int *q_update) { int ret_val = 0; if (vp8_read_bit(bc)) { ret_val = vp8_read_literal(bc, 4); if (vp8_read_bit(bc)) ret_val = -ret_val; } /* Trigger a quantizer update if the delta-q value has changed */ if (ret_val != prev) *q_update = 1; return ret_val; } #ifdef PACKET_TESTING #include <stdio.h> FILE *vpxlog = 0; #endif static void yv12_extend_frame_top_c(YV12_BUFFER_CONFIG *ybf) { int i; unsigned char *src_ptr1; unsigned char *dest_ptr1; unsigned int Border; int plane_stride; /***********/ /* Y Plane */ /***********/ Border = ybf->border; plane_stride = ybf->y_stride; src_ptr1 = ybf->y_buffer - Border; dest_ptr1 = src_ptr1 - (Border * plane_stride); for (i = 0; i < (int)Border; ++i) { memcpy(dest_ptr1, src_ptr1, plane_stride); dest_ptr1 += plane_stride; } /***********/ /* U Plane */ /***********/ plane_stride = ybf->uv_stride; Border /= 2; src_ptr1 = ybf->u_buffer - Border; dest_ptr1 = src_ptr1 - (Border * plane_stride); for (i = 0; i < (int)(Border); ++i) { memcpy(dest_ptr1, src_ptr1, plane_stride); dest_ptr1 += plane_stride; } /***********/ /* V Plane */ /***********/ src_ptr1 = ybf->v_buffer - Border; dest_ptr1 = src_ptr1 - (Border * plane_stride); for (i = 0; i < (int)(Border); ++i) { memcpy(dest_ptr1, src_ptr1, plane_stride); dest_ptr1 += plane_stride; } } static void yv12_extend_frame_bottom_c(YV12_BUFFER_CONFIG *ybf) { int i; unsigned char *src_ptr1, *src_ptr2; unsigned char *dest_ptr2; unsigned int Border; int plane_stride; int plane_height; /***********/ /* Y Plane */ /***********/ Border = ybf->border; plane_stride = ybf->y_stride; plane_height = ybf->y_height; src_ptr1 = ybf->y_buffer - Border; src_ptr2 = src_ptr1 + (plane_height * plane_stride) - plane_stride; dest_ptr2 = src_ptr2 + plane_stride; for (i = 0; i < (int)Border; ++i) { memcpy(dest_ptr2, src_ptr2, plane_stride); dest_ptr2 += plane_stride; } /***********/ /* U Plane */ /***********/ plane_stride = ybf->uv_stride; plane_height = ybf->uv_height; Border /= 2; src_ptr1 = ybf->u_buffer - Border; src_ptr2 = src_ptr1 + (plane_height * plane_stride) - plane_stride; dest_ptr2 = src_ptr2 + plane_stride; for (i = 0; i < (int)(Border); ++i) { memcpy(dest_ptr2, src_ptr2, plane_stride); dest_ptr2 += plane_stride; } /***********/ /* V Plane */ /***********/ src_ptr1 = ybf->v_buffer - Border; src_ptr2 = src_ptr1 + (plane_height * plane_stride) - plane_stride; dest_ptr2 = src_ptr2 + plane_stride; for (i = 0; i < (int)(Border); ++i) { memcpy(dest_ptr2, src_ptr2, plane_stride); dest_ptr2 += plane_stride; } } static void yv12_extend_frame_left_right_c(YV12_BUFFER_CONFIG *ybf, unsigned char *y_src, unsigned char *u_src, unsigned char *v_src) { int i; unsigned char *src_ptr1, *src_ptr2; unsigned char *dest_ptr1, *dest_ptr2; unsigned int Border; int plane_stride; int plane_height; int plane_width; /***********/ /* Y Plane */ /***********/ Border = ybf->border; plane_stride = ybf->y_stride; plane_height = 16; plane_width = ybf->y_width; /* copy the left and right most columns out */ src_ptr1 = y_src; src_ptr2 = src_ptr1 + plane_width - 1; dest_ptr1 = src_ptr1 - Border; dest_ptr2 = src_ptr2 + 1; for (i = 0; i < plane_height; ++i) { memset(dest_ptr1, src_ptr1[0], Border); memset(dest_ptr2, src_ptr2[0], Border); src_ptr1 += plane_stride; src_ptr2 += plane_stride; dest_ptr1 += plane_stride; dest_ptr2 += plane_stride; } /***********/ /* U Plane */ /***********/ plane_stride = ybf->uv_stride; plane_height = 8; plane_width = ybf->uv_width; Border /= 2; /* copy the left and right most columns out */ src_ptr1 = u_src; src_ptr2 = src_ptr1 + plane_width - 1; dest_ptr1 = src_ptr1 - Border; dest_ptr2 = src_ptr2 + 1; for (i = 0; i < plane_height; ++i) { memset(dest_ptr1, src_ptr1[0], Border); memset(dest_ptr2, src_ptr2[0], Border); src_ptr1 += plane_stride; src_ptr2 += plane_stride; dest_ptr1 += plane_stride; dest_ptr2 += plane_stride; } /***********/ /* V Plane */ /***********/ /* copy the left and right most columns out */ src_ptr1 = v_src; src_ptr2 = src_ptr1 + plane_width - 1; dest_ptr1 = src_ptr1 - Border; dest_ptr2 = src_ptr2 + 1; for (i = 0; i < plane_height; ++i) { memset(dest_ptr1, src_ptr1[0], Border); memset(dest_ptr2, src_ptr2[0], Border); src_ptr1 += plane_stride; src_ptr2 += plane_stride; dest_ptr1 += plane_stride; dest_ptr2 += plane_stride; } } static void decode_mb_rows(VP8D_COMP *pbi) { VP8_COMMON *const pc = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; MODE_INFO *lf_mic = xd->mode_info_context; int ibc = 0; int num_part = 1 << pc->multi_token_partition; int recon_yoffset, recon_uvoffset; int mb_row, mb_col; int mb_idx = 0; YV12_BUFFER_CONFIG *yv12_fb_new = pbi->dec_fb_ref[INTRA_FRAME]; int recon_y_stride = yv12_fb_new->y_stride; int recon_uv_stride = yv12_fb_new->uv_stride; unsigned char *ref_buffer[MAX_REF_FRAMES][3]; unsigned char *dst_buffer[3]; unsigned char *lf_dst[3]; unsigned char *eb_dst[3]; int i; int ref_fb_corrupted[MAX_REF_FRAMES]; ref_fb_corrupted[INTRA_FRAME] = 0; for (i = 1; i < MAX_REF_FRAMES; ++i) { YV12_BUFFER_CONFIG *this_fb = pbi->dec_fb_ref[i]; ref_buffer[i][0] = this_fb->y_buffer; ref_buffer[i][1] = this_fb->u_buffer; ref_buffer[i][2] = this_fb->v_buffer; ref_fb_corrupted[i] = this_fb->corrupted; } /* Set up the buffer pointers */ eb_dst[0] = lf_dst[0] = dst_buffer[0] = yv12_fb_new->y_buffer; eb_dst[1] = lf_dst[1] = dst_buffer[1] = yv12_fb_new->u_buffer; eb_dst[2] = lf_dst[2] = dst_buffer[2] = yv12_fb_new->v_buffer; xd->up_available = 0; /* Initialize the loop filter for this frame. */ if (pc->filter_level) vp8_loop_filter_frame_init(pc, xd, pc->filter_level); vp8_setup_intra_recon_top_line(yv12_fb_new); /* Decode the individual macro block */ for (mb_row = 0; mb_row < pc->mb_rows; ++mb_row) { if (num_part > 1) { xd->current_bc = &pbi->mbc[ibc]; ibc++; if (ibc == num_part) ibc = 0; } recon_yoffset = mb_row * recon_y_stride * 16; recon_uvoffset = mb_row * recon_uv_stride * 8; /* reset contexts */ xd->above_context = pc->above_context; memset(xd->left_context, 0, sizeof(ENTROPY_CONTEXT_PLANES)); xd->left_available = 0; xd->mb_to_top_edge = -((mb_row * 16) << 3); xd->mb_to_bottom_edge = ((pc->mb_rows - 1 - mb_row) * 16) << 3; xd->recon_above[0] = dst_buffer[0] + recon_yoffset; xd->recon_above[1] = dst_buffer[1] + recon_uvoffset; xd->recon_above[2] = dst_buffer[2] + recon_uvoffset; xd->recon_left[0] = xd->recon_above[0] - 1; xd->recon_left[1] = xd->recon_above[1] - 1; xd->recon_left[2] = xd->recon_above[2] - 1; xd->recon_above[0] -= xd->dst.y_stride; xd->recon_above[1] -= xd->dst.uv_stride; xd->recon_above[2] -= xd->dst.uv_stride; /* TODO: move to outside row loop */ xd->recon_left_stride[0] = xd->dst.y_stride; xd->recon_left_stride[1] = xd->dst.uv_stride; setup_intra_recon_left(xd->recon_left[0], xd->recon_left[1], xd->recon_left[2], xd->dst.y_stride, xd->dst.uv_stride); for (mb_col = 0; mb_col < pc->mb_cols; ++mb_col) { /* Distance of Mb to the various image edges. * These are specified to 8th pel as they are always compared to values * that are in 1/8th pel units */ xd->mb_to_left_edge = -((mb_col * 16) << 3); xd->mb_to_right_edge = ((pc->mb_cols - 1 - mb_col) * 16) << 3; #if CONFIG_ERROR_CONCEALMENT { int corrupt_residual = (!pbi->independent_partitions && pbi->frame_corrupt_residual) || vp8dx_bool_error(xd->current_bc); if (pbi->ec_active && xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME && corrupt_residual) { /* We have an intra block with corrupt coefficients, better to * conceal with an inter block. Interpolate MVs from neighboring * MBs. * * Note that for the first mb with corrupt residual in a frame, * we might not discover that before decoding the residual. That * happens after this check, and therefore no inter concealment * will be done. */ vp8_interpolate_motion(xd, mb_row, mb_col, pc->mb_rows, pc->mb_cols); } } #endif xd->dst.y_buffer = dst_buffer[0] + recon_yoffset; xd->dst.u_buffer = dst_buffer[1] + recon_uvoffset; xd->dst.v_buffer = dst_buffer[2] + recon_uvoffset; if (xd->mode_info_context->mbmi.ref_frame >= LAST_FRAME) { const MV_REFERENCE_FRAME ref = xd->mode_info_context->mbmi.ref_frame; xd->pre.y_buffer = ref_buffer[ref][0] + recon_yoffset; xd->pre.u_buffer = ref_buffer[ref][1] + recon_uvoffset; xd->pre.v_buffer = ref_buffer[ref][2] + recon_uvoffset; } else { // ref_frame is INTRA_FRAME, pre buffer should not be used. xd->pre.y_buffer = 0; xd->pre.u_buffer = 0; xd->pre.v_buffer = 0; } /* propagate errors from reference frames */ xd->corrupted |= ref_fb_corrupted[xd->mode_info_context->mbmi.ref_frame]; decode_macroblock(pbi, xd, mb_idx); mb_idx++; xd->left_available = 1; /* check if the boolean decoder has suffered an error */ xd->corrupted |= vp8dx_bool_error(xd->current_bc); xd->recon_above[0] += 16; xd->recon_above[1] += 8; xd->recon_above[2] += 8; xd->recon_left[0] += 16; xd->recon_left[1] += 8; xd->recon_left[2] += 8; recon_yoffset += 16; recon_uvoffset += 8; ++xd->mode_info_context; /* next mb */ xd->above_context++; } /* adjust to the next row of mbs */ vp8_extend_mb_row(yv12_fb_new, xd->dst.y_buffer + 16, xd->dst.u_buffer + 8, xd->dst.v_buffer + 8); ++xd->mode_info_context; /* skip prediction column */ xd->up_available = 1; if (pc->filter_level) { if (mb_row > 0) { if (pc->filter_type == NORMAL_LOOPFILTER) { vp8_loop_filter_row_normal(pc, lf_mic, mb_row - 1, recon_y_stride, recon_uv_stride, lf_dst[0], lf_dst[1], lf_dst[2]); } else { vp8_loop_filter_row_simple(pc, lf_mic, mb_row - 1, recon_y_stride, recon_uv_stride, lf_dst[0], lf_dst[1], lf_dst[2]); } if (mb_row > 1) { yv12_extend_frame_left_right_c(yv12_fb_new, eb_dst[0], eb_dst[1], eb_dst[2]); eb_dst[0] += recon_y_stride * 16; eb_dst[1] += recon_uv_stride * 8; eb_dst[2] += recon_uv_stride * 8; } lf_dst[0] += recon_y_stride * 16; lf_dst[1] += recon_uv_stride * 8; lf_dst[2] += recon_uv_stride * 8; lf_mic += pc->mb_cols; lf_mic++; /* Skip border mb */ } } else { if (mb_row > 0) { /**/ yv12_extend_frame_left_right_c(yv12_fb_new, eb_dst[0], eb_dst[1], eb_dst[2]); eb_dst[0] += recon_y_stride * 16; eb_dst[1] += recon_uv_stride * 8; eb_dst[2] += recon_uv_stride * 8; } } } if (pc->filter_level) { if (pc->filter_type == NORMAL_LOOPFILTER) { vp8_loop_filter_row_normal(pc, lf_mic, mb_row - 1, recon_y_stride, recon_uv_stride, lf_dst[0], lf_dst[1], lf_dst[2]); } else { vp8_loop_filter_row_simple(pc, lf_mic, mb_row - 1, recon_y_stride, recon_uv_stride, lf_dst[0], lf_dst[1], lf_dst[2]); } yv12_extend_frame_left_right_c(yv12_fb_new, eb_dst[0], eb_dst[1], eb_dst[2]); eb_dst[0] += recon_y_stride * 16; eb_dst[1] += recon_uv_stride * 8; eb_dst[2] += recon_uv_stride * 8; } yv12_extend_frame_left_right_c(yv12_fb_new, eb_dst[0], eb_dst[1], eb_dst[2]); yv12_extend_frame_top_c(yv12_fb_new); yv12_extend_frame_bottom_c(yv12_fb_new); } static unsigned int read_partition_size(VP8D_COMP *pbi, const unsigned char *cx_size) { unsigned char temp[3]; if (pbi->decrypt_cb) { pbi->decrypt_cb(pbi->decrypt_state, cx_size, temp, 3); cx_size = temp; } return cx_size[0] + (cx_size[1] << 8) + (cx_size[2] << 16); } static int read_is_valid(const unsigned char *start, size_t len, const unsigned char *end) { return len != 0 && end > start && len <= (size_t)(end - start); } static unsigned int read_available_partition_size( VP8D_COMP *pbi, const unsigned char *token_part_sizes, const unsigned char *fragment_start, const unsigned char *first_fragment_end, const unsigned char *fragment_end, int i, int num_part) { VP8_COMMON *pc = &pbi->common; const unsigned char *partition_size_ptr = token_part_sizes + i * 3; unsigned int partition_size = 0; ptrdiff_t bytes_left = fragment_end - fragment_start; if (bytes_left < 0) { vpx_internal_error( &pc->error, VPX_CODEC_CORRUPT_FRAME, "Truncated packet or corrupt partition. No bytes left %d.", (int)bytes_left); } /* Calculate the length of this partition. The last partition * size is implicit. If the partition size can't be read, then * either use the remaining data in the buffer (for EC mode) * or throw an error. */ if (i < num_part - 1) { if (read_is_valid(partition_size_ptr, 3, first_fragment_end)) { partition_size = read_partition_size(pbi, partition_size_ptr); } else if (pbi->ec_active) { partition_size = (unsigned int)bytes_left; } else { vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "Truncated partition size data"); } } else { partition_size = (unsigned int)bytes_left; } /* Validate the calculated partition length. If the buffer * described by the partition can't be fully read, then restrict * it to the portion that can be (for EC mode) or throw an error. */ if (!read_is_valid(fragment_start, partition_size, fragment_end)) { if (pbi->ec_active) { partition_size = (unsigned int)bytes_left; } else { vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "Truncated packet or corrupt partition " "%d length", i + 1); } } return partition_size; } static void setup_token_decoder(VP8D_COMP *pbi, const unsigned char *token_part_sizes) { vp8_reader *bool_decoder = &pbi->mbc[0]; unsigned int partition_idx; unsigned int fragment_idx; unsigned int num_token_partitions; const unsigned char *first_fragment_end = pbi->fragments.ptrs[0] + pbi->fragments.sizes[0]; TOKEN_PARTITION multi_token_partition = (TOKEN_PARTITION)vp8_read_literal(&pbi->mbc[8], 2); if (!vp8dx_bool_error(&pbi->mbc[8])) { pbi->common.multi_token_partition = multi_token_partition; } num_token_partitions = 1 << pbi->common.multi_token_partition; /* Check for partitions within the fragments and unpack the fragments * so that each fragment pointer points to its corresponding partition. */ for (fragment_idx = 0; fragment_idx < pbi->fragments.count; ++fragment_idx) { unsigned int fragment_size = pbi->fragments.sizes[fragment_idx]; const unsigned char *fragment_end = pbi->fragments.ptrs[fragment_idx] + fragment_size; /* Special case for handling the first partition since we have already * read its size. */ if (fragment_idx == 0) { /* Size of first partition + token partition sizes element */ ptrdiff_t ext_first_part_size = token_part_sizes - pbi->fragments.ptrs[0] + 3 * (num_token_partitions - 1); if (fragment_size < (unsigned int)ext_first_part_size) vpx_internal_error(&pbi->common.error, VPX_CODEC_CORRUPT_FRAME, "Corrupted fragment size %d", fragment_size); fragment_size -= (unsigned int)ext_first_part_size; if (fragment_size > 0) { pbi->fragments.sizes[0] = (unsigned int)ext_first_part_size; /* The fragment contains an additional partition. Move to * next. */ fragment_idx++; pbi->fragments.ptrs[fragment_idx] = pbi->fragments.ptrs[0] + pbi->fragments.sizes[0]; } } /* Split the chunk into partitions read from the bitstream */ while (fragment_size > 0) { ptrdiff_t partition_size = read_available_partition_size( pbi, token_part_sizes, pbi->fragments.ptrs[fragment_idx], first_fragment_end, fragment_end, fragment_idx - 1, num_token_partitions); pbi->fragments.sizes[fragment_idx] = (unsigned int)partition_size; if (fragment_size < (unsigned int)partition_size) vpx_internal_error(&pbi->common.error, VPX_CODEC_CORRUPT_FRAME, "Corrupted fragment size %d", fragment_size); fragment_size -= (unsigned int)partition_size; assert(fragment_idx <= num_token_partitions); if (fragment_size > 0) { /* The fragment contains an additional partition. * Move to next. */ fragment_idx++; pbi->fragments.ptrs[fragment_idx] = pbi->fragments.ptrs[fragment_idx - 1] + partition_size; } } } pbi->fragments.count = num_token_partitions + 1; for (partition_idx = 1; partition_idx < pbi->fragments.count; ++partition_idx) { if (vp8dx_start_decode(bool_decoder, pbi->fragments.ptrs[partition_idx], pbi->fragments.sizes[partition_idx], pbi->decrypt_cb, pbi->decrypt_state)) { vpx_internal_error(&pbi->common.error, VPX_CODEC_MEM_ERROR, "Failed to allocate bool decoder %d", partition_idx); } bool_decoder++; } #if CONFIG_MULTITHREAD /* Clamp number of decoder threads */ if (pbi->decoding_thread_count > num_token_partitions - 1) { pbi->decoding_thread_count = num_token_partitions - 1; } if ((int)pbi->decoding_thread_count > pbi->common.mb_rows - 1) { assert(pbi->common.mb_rows > 0); pbi->decoding_thread_count = pbi->common.mb_rows - 1; } #endif } static void init_frame(VP8D_COMP *pbi) { VP8_COMMON *const pc = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; if (pc->frame_type == KEY_FRAME) { /* Various keyframe initializations */ memcpy(pc->fc.mvc, vp8_default_mv_context, sizeof(vp8_default_mv_context)); vp8_init_mbmode_probs(pc); vp8_default_coef_probs(pc); /* reset the segment feature data to 0 with delta coding (Default state). */ memset(xd->segment_feature_data, 0, sizeof(xd->segment_feature_data)); xd->mb_segement_abs_delta = SEGMENT_DELTADATA; /* reset the mode ref deltasa for loop filter */ memset(xd->ref_lf_deltas, 0, sizeof(xd->ref_lf_deltas)); memset(xd->mode_lf_deltas, 0, sizeof(xd->mode_lf_deltas)); /* All buffers are implicitly updated on key frames. */ pc->refresh_golden_frame = 1; pc->refresh_alt_ref_frame = 1; pc->copy_buffer_to_gf = 0; pc->copy_buffer_to_arf = 0; /* Note that Golden and Altref modes cannot be used on a key frame so * ref_frame_sign_bias[] is undefined and meaningless */ pc->ref_frame_sign_bias[GOLDEN_FRAME] = 0; pc->ref_frame_sign_bias[ALTREF_FRAME] = 0; } else { /* To enable choice of different interploation filters */ if (!pc->use_bilinear_mc_filter) { xd->subpixel_predict = vp8_sixtap_predict4x4; xd->subpixel_predict8x4 = vp8_sixtap_predict8x4; xd->subpixel_predict8x8 = vp8_sixtap_predict8x8; xd->subpixel_predict16x16 = vp8_sixtap_predict16x16; } else { xd->subpixel_predict = vp8_bilinear_predict4x4; xd->subpixel_predict8x4 = vp8_bilinear_predict8x4; xd->subpixel_predict8x8 = vp8_bilinear_predict8x8; xd->subpixel_predict16x16 = vp8_bilinear_predict16x16; } if (pbi->decoded_key_frame && pbi->ec_enabled && !pbi->ec_active) { pbi->ec_active = 1; } } xd->left_context = &pc->left_context; xd->mode_info_context = pc->mi; xd->frame_type = pc->frame_type; xd->mode_info_context->mbmi.mode = DC_PRED; xd->mode_info_stride = pc->mode_info_stride; xd->corrupted = 0; /* init without corruption */ xd->fullpixel_mask = 0xffffffff; if (pc->full_pixel) xd->fullpixel_mask = 0xfffffff8; } int vp8_decode_frame(VP8D_COMP *pbi) { vp8_reader *const bc = &pbi->mbc[8]; VP8_COMMON *const pc = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; const unsigned char *data = pbi->fragments.ptrs[0]; const unsigned int data_sz = pbi->fragments.sizes[0]; const unsigned char *data_end = data + data_sz; ptrdiff_t first_partition_length_in_bytes; int i, j, k, l; const int *const mb_feature_data_bits = vp8_mb_feature_data_bits; int corrupt_tokens = 0; int prev_independent_partitions = pbi->independent_partitions; YV12_BUFFER_CONFIG *yv12_fb_new = pbi->dec_fb_ref[INTRA_FRAME]; /* start with no corruption of current frame */ xd->corrupted = 0; yv12_fb_new->corrupted = 0; if (data_end - data < 3) { if (!pbi->ec_active) { vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "Truncated packet"); } /* Declare the missing frame as an inter frame since it will be handled as an inter frame when we have estimated its motion vectors. */ pc->frame_type = INTER_FRAME; pc->version = 0; pc->show_frame = 1; first_partition_length_in_bytes = 0; } else { unsigned char clear_buffer[10]; const unsigned char *clear = data; if (pbi->decrypt_cb) { int n = (int)VPXMIN(sizeof(clear_buffer), data_sz); pbi->decrypt_cb(pbi->decrypt_state, data, clear_buffer, n); clear = clear_buffer; } pc->frame_type = (FRAME_TYPE)(clear[0] & 1); pc->version = (clear[0] >> 1) & 7; pc->show_frame = (clear[0] >> 4) & 1; first_partition_length_in_bytes = (clear[0] | (clear[1] << 8) | (clear[2] << 16)) >> 5; if (!pbi->ec_active && (data + first_partition_length_in_bytes > data_end || data + first_partition_length_in_bytes < data)) { vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "Truncated packet or corrupt partition 0 length"); } data += 3; clear += 3; vp8_setup_version(pc); if (pc->frame_type == KEY_FRAME) { /* vet via sync code */ /* When error concealment is enabled we should only check the sync * code if we have enough bits available */ if (data + 3 < data_end) { if (clear[0] != 0x9d || clear[1] != 0x01 || clear[2] != 0x2a) { vpx_internal_error(&pc->error, VPX_CODEC_UNSUP_BITSTREAM, "Invalid frame sync code"); } } /* If error concealment is enabled we should only parse the new size * if we have enough data. Otherwise we will end up with the wrong * size. */ if (data + 6 < data_end) { pc->Width = (clear[3] | (clear[4] << 8)) & 0x3fff; pc->horiz_scale = clear[4] >> 6; pc->Height = (clear[5] | (clear[6] << 8)) & 0x3fff; pc->vert_scale = clear[6] >> 6; data += 7; } else if (!pbi->ec_active) { vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "Truncated key frame header"); } else { /* Error concealment is active, clear the frame. */ data = data_end; } } else { memcpy(&xd->pre, yv12_fb_new, sizeof(YV12_BUFFER_CONFIG)); memcpy(&xd->dst, yv12_fb_new, sizeof(YV12_BUFFER_CONFIG)); } } if ((!pbi->decoded_key_frame && pc->frame_type != KEY_FRAME)) { return -1; } init_frame(pbi); if (vp8dx_start_decode(bc, data, (unsigned int)(data_end - data), pbi->decrypt_cb, pbi->decrypt_state)) { vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR, "Failed to allocate bool decoder 0"); } if (pc->frame_type == KEY_FRAME) { (void)vp8_read_bit(bc); // colorspace pc->clamp_type = (CLAMP_TYPE)vp8_read_bit(bc); } /* Is segmentation enabled */ xd->segmentation_enabled = (unsigned char)vp8_read_bit(bc); if (xd->segmentation_enabled) { /* Signal whether or not the segmentation map is being explicitly updated * this frame. */ xd->update_mb_segmentation_map = (unsigned char)vp8_read_bit(bc); xd->update_mb_segmentation_data = (unsigned char)vp8_read_bit(bc); if (xd->update_mb_segmentation_data) { xd->mb_segement_abs_delta = (unsigned char)vp8_read_bit(bc); memset(xd->segment_feature_data, 0, sizeof(xd->segment_feature_data)); /* For each segmentation feature (Quant and loop filter level) */ for (i = 0; i < MB_LVL_MAX; ++i) { for (j = 0; j < MAX_MB_SEGMENTS; ++j) { /* Frame level data */ if (vp8_read_bit(bc)) { xd->segment_feature_data[i][j] = (signed char)vp8_read_literal(bc, mb_feature_data_bits[i]); if (vp8_read_bit(bc)) { xd->segment_feature_data[i][j] = -xd->segment_feature_data[i][j]; } } else { xd->segment_feature_data[i][j] = 0; } } } } if (xd->update_mb_segmentation_map) { /* Which macro block level features are enabled */ memset(xd->mb_segment_tree_probs, 255, sizeof(xd->mb_segment_tree_probs)); /* Read the probs used to decode the segment id for each macro block. */ for (i = 0; i < MB_FEATURE_TREE_PROBS; ++i) { /* If not explicitly set value is defaulted to 255 by memset above */ if (vp8_read_bit(bc)) { xd->mb_segment_tree_probs[i] = (vp8_prob)vp8_read_literal(bc, 8); } } } } else { /* No segmentation updates on this frame */ xd->update_mb_segmentation_map = 0; xd->update_mb_segmentation_data = 0; } /* Read the loop filter level and type */ pc->filter_type = (LOOPFILTERTYPE)vp8_read_bit(bc); pc->filter_level = vp8_read_literal(bc, 6); pc->sharpness_level = vp8_read_literal(bc, 3); /* Read in loop filter deltas applied at the MB level based on mode or ref * frame. */ xd->mode_ref_lf_delta_update = 0; xd->mode_ref_lf_delta_enabled = (unsigned char)vp8_read_bit(bc); if (xd->mode_ref_lf_delta_enabled) { /* Do the deltas need to be updated */ xd->mode_ref_lf_delta_update = (unsigned char)vp8_read_bit(bc); if (xd->mode_ref_lf_delta_update) { /* Send update */ for (i = 0; i < MAX_REF_LF_DELTAS; ++i) { if (vp8_read_bit(bc)) { /*sign = vp8_read_bit( bc );*/ xd->ref_lf_deltas[i] = (signed char)vp8_read_literal(bc, 6); if (vp8_read_bit(bc)) { /* Apply sign */ xd->ref_lf_deltas[i] = xd->ref_lf_deltas[i] * -1; } } } /* Send update */ for (i = 0; i < MAX_MODE_LF_DELTAS; ++i) { if (vp8_read_bit(bc)) { /*sign = vp8_read_bit( bc );*/ xd->mode_lf_deltas[i] = (signed char)vp8_read_literal(bc, 6); if (vp8_read_bit(bc)) { /* Apply sign */ xd->mode_lf_deltas[i] = xd->mode_lf_deltas[i] * -1; } } } } } setup_token_decoder(pbi, data + first_partition_length_in_bytes); xd->current_bc = &pbi->mbc[0]; /* Read the default quantizers. */ { int Q, q_update; Q = vp8_read_literal(bc, 7); /* AC 1st order Q = default */ pc->base_qindex = Q; q_update = 0; pc->y1dc_delta_q = get_delta_q(bc, pc->y1dc_delta_q, &q_update); pc->y2dc_delta_q = get_delta_q(bc, pc->y2dc_delta_q, &q_update); pc->y2ac_delta_q = get_delta_q(bc, pc->y2ac_delta_q, &q_update); pc->uvdc_delta_q = get_delta_q(bc, pc->uvdc_delta_q, &q_update); pc->uvac_delta_q = get_delta_q(bc, pc->uvac_delta_q, &q_update); if (q_update) vp8cx_init_de_quantizer(pbi); /* MB level dequantizer setup */ vp8_mb_init_dequantizer(pbi, &pbi->mb); } /* Determine if the golden frame or ARF buffer should be updated and how. * For all non key frames the GF and ARF refresh flags and sign bias * flags must be set explicitly. */ if (pc->frame_type != KEY_FRAME) { /* Should the GF or ARF be updated from the current frame */ pc->refresh_golden_frame = vp8_read_bit(bc); #if CONFIG_ERROR_CONCEALMENT /* Assume we shouldn't refresh golden if the bit is missing */ xd->corrupted |= vp8dx_bool_error(bc); if (pbi->ec_active && xd->corrupted) pc->refresh_golden_frame = 0; #endif pc->refresh_alt_ref_frame = vp8_read_bit(bc); #if CONFIG_ERROR_CONCEALMENT /* Assume we shouldn't refresh altref if the bit is missing */ xd->corrupted |= vp8dx_bool_error(bc); if (pbi->ec_active && xd->corrupted) pc->refresh_alt_ref_frame = 0; #endif /* Buffer to buffer copy flags. */ pc->copy_buffer_to_gf = 0; if (!pc->refresh_golden_frame) { pc->copy_buffer_to_gf = vp8_read_literal(bc, 2); } #if CONFIG_ERROR_CONCEALMENT /* Assume we shouldn't copy to the golden if the bit is missing */ xd->corrupted |= vp8dx_bool_error(bc); if (pbi->ec_active && xd->corrupted) pc->copy_buffer_to_gf = 0; #endif pc->copy_buffer_to_arf = 0; if (!pc->refresh_alt_ref_frame) { pc->copy_buffer_to_arf = vp8_read_literal(bc, 2); } #if CONFIG_ERROR_CONCEALMENT /* Assume we shouldn't copy to the alt-ref if the bit is missing */ xd->corrupted |= vp8dx_bool_error(bc); if (pbi->ec_active && xd->corrupted) pc->copy_buffer_to_arf = 0; #endif pc->ref_frame_sign_bias[GOLDEN_FRAME] = vp8_read_bit(bc); pc->ref_frame_sign_bias[ALTREF_FRAME] = vp8_read_bit(bc); } pc->refresh_entropy_probs = vp8_read_bit(bc); #if CONFIG_ERROR_CONCEALMENT /* Assume we shouldn't refresh the probabilities if the bit is * missing */ xd->corrupted |= vp8dx_bool_error(bc); if (pbi->ec_active && xd->corrupted) pc->refresh_entropy_probs = 0; #endif if (pc->refresh_entropy_probs == 0) { memcpy(&pc->lfc, &pc->fc, sizeof(pc->fc)); } pc->refresh_last_frame = pc->frame_type == KEY_FRAME || vp8_read_bit(bc); #if CONFIG_ERROR_CONCEALMENT /* Assume we should refresh the last frame if the bit is missing */ xd->corrupted |= vp8dx_bool_error(bc); if (pbi->ec_active && xd->corrupted) pc->refresh_last_frame = 1; #endif if (0) { FILE *z = fopen("decodestats.stt", "a"); fprintf(z, "%6d F:%d,G:%d,A:%d,L:%d,Q:%d\n", pc->current_video_frame, pc->frame_type, pc->refresh_golden_frame, pc->refresh_alt_ref_frame, pc->refresh_last_frame, pc->base_qindex); fclose(z); } { pbi->independent_partitions = 1; /* read coef probability tree */ for (i = 0; i < BLOCK_TYPES; ++i) { for (j = 0; j < COEF_BANDS; ++j) { for (k = 0; k < PREV_COEF_CONTEXTS; ++k) { for (l = 0; l < ENTROPY_NODES; ++l) { vp8_prob *const p = pc->fc.coef_probs[i][j][k] + l; if (vp8_read(bc, vp8_coef_update_probs[i][j][k][l])) { *p = (vp8_prob)vp8_read_literal(bc, 8); } if (k > 0 && *p != pc->fc.coef_probs[i][j][k - 1][l]) { pbi->independent_partitions = 0; } } } } } } /* clear out the coeff buffer */ memset(xd->qcoeff, 0, sizeof(xd->qcoeff)); vp8_decode_mode_mvs(pbi); #if CONFIG_ERROR_CONCEALMENT if (pbi->ec_active && pbi->mvs_corrupt_from_mb < (unsigned int)pc->mb_cols * pc->mb_rows) { /* Motion vectors are missing in this frame. We will try to estimate * them and then continue decoding the frame as usual */ vp8_estimate_missing_mvs(pbi); } #endif memset(pc->above_context, 0, sizeof(ENTROPY_CONTEXT_PLANES) * pc->mb_cols); pbi->frame_corrupt_residual = 0; #if CONFIG_MULTITHREAD if (vpx_atomic_load_acquire(&pbi->b_multithreaded_rd) && pc->multi_token_partition != ONE_PARTITION) { unsigned int thread; if (vp8mt_decode_mb_rows(pbi, xd)) { vp8_decoder_remove_threads(pbi); pbi->restart_threads = 1; vpx_internal_error(&pbi->common.error, VPX_CODEC_CORRUPT_FRAME, NULL); } vp8_yv12_extend_frame_borders(yv12_fb_new); for (thread = 0; thread < pbi->decoding_thread_count; ++thread) { corrupt_tokens |= pbi->mb_row_di[thread].mbd.corrupted; } } else #endif { decode_mb_rows(pbi); corrupt_tokens |= xd->corrupted; } /* Collect information about decoder corruption. */ /* 1. Check first boolean decoder for errors. */ yv12_fb_new->corrupted = vp8dx_bool_error(bc); /* 2. Check the macroblock information */ yv12_fb_new->corrupted |= corrupt_tokens; if (!pbi->decoded_key_frame) { if (pc->frame_type == KEY_FRAME && !yv12_fb_new->corrupted) { pbi->decoded_key_frame = 1; } else { vpx_internal_error(&pbi->common.error, VPX_CODEC_CORRUPT_FRAME, "A stream must start with a complete key frame"); } } /* vpx_log("Decoder: Frame Decoded, Size Roughly:%d bytes * \n",bc->pos+pbi->bc2.pos); */ if (pc->refresh_entropy_probs == 0) { memcpy(&pc->fc, &pc->lfc, sizeof(pc->fc)); pbi->independent_partitions = prev_independent_partitions; } #ifdef PACKET_TESTING { FILE *f = fopen("decompressor.VP8", "ab"); unsigned int size = pbi->bc2.pos + pbi->bc.pos + 8; fwrite((void *)&size, 4, 1, f); fwrite((void *)pbi->Source, size, 1, f); fclose(f); } #endif return 0; }