ref: 5c95fd921e0d6204f132021e8d86bde8596f107d
dir: /vp9/encoder/arm/neon/vp9_frame_scale_neon.c/
/* * Copyright (c) 2017 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "./vp9_rtcd.h" #include "./vpx_dsp_rtcd.h" #include "./vpx_scale_rtcd.h" #include "vp9/common/vp9_blockd.h" #include "vpx_dsp/arm/transpose_neon.h" #include "vpx_dsp/arm/vpx_convolve8_neon.h" #include "vpx_dsp/vpx_filter.h" #include "vpx_scale/yv12config.h" // Note: The scaling functions could write extra rows and columns in dst, which // exceed the right and bottom boundaries of the destination frame. We rely on // the following frame extension function to fix these rows and columns. static INLINE void scale_plane_2_to_1_phase_0_neon(const uint8_t *src, const int src_stride, uint8_t *dst, const int dst_stride, const int w, const int h) { const int max_width = (w + 15) & ~15; int y = h; assert(w && h); do { int x = max_width; do { const uint8x16x2_t s = vld2q_u8(src); vst1q_u8(dst, s.val[0]); src += 32; dst += 16; x -= 16; } while (x); src += 2 * (src_stride - max_width); dst += dst_stride - max_width; } while (--y); } static INLINE void scale_plane_2_to_1_bilinear_phase_non_0_neon( const uint8_t *const src, const int src_stride, uint8_t *dst, const int dst_stride, const int w, const int h, const int16_t c0, const int16_t c1) { const int max_width = (w + 7) & ~7; const uint8_t *src0 = src; const uint8_t *src1 = src + src_stride; const uint8x8_t coef0 = vdup_n_u8(c0); const uint8x8_t coef1 = vdup_n_u8(c1); int y = h; assert(w && h); do { int x = max_width; do { // 00 02 04 06 08 0A 0C 0E 01 03 05 07 09 0B 0D 0F const uint8x8x2_t s0 = vld2_u8(src0); // 10 12 14 16 18 1A 1C 1E 11 13 15 17 19 1B 1D 1F const uint8x8x2_t s1 = vld2_u8(src1); const uint16x8_t h0 = vmull_u8(s0.val[0], coef0); const uint16x8_t h1 = vmull_u8(s1.val[0], coef0); const uint16x8_t h2 = vmlal_u8(h0, s0.val[1], coef1); const uint16x8_t h3 = vmlal_u8(h1, s1.val[1], coef1); const uint8x8_t hor0 = vrshrn_n_u16(h2, 7); // 00 01 02 03 04 05 06 07 const uint8x8_t hor1 = vrshrn_n_u16(h3, 7); // 10 11 12 13 14 15 16 17 const uint16x8_t v0 = vmull_u8(hor0, coef0); const uint16x8_t v1 = vmlal_u8(v0, hor1, coef1); const uint8x8_t d = vrshrn_n_u16(v1, 7); // 00 01 02 03 04 05 06 07 vst1_u8(dst, d); src0 += 16; src1 += 16; dst += 8; x -= 8; } while (x); src0 += 2 * (src_stride - max_width); src1 += 2 * (src_stride - max_width); dst += dst_stride - max_width; } while (--y); } static INLINE uint8x8_t scale_filter(const uint8x8_t *const s, const int16x8_t filters) { const int16x8_t filter3 = vdupq_lane_s16(vget_low_s16(filters), 3); const int16x8_t filter4 = vdupq_lane_s16(vget_high_s16(filters), 0); int16x8_t ss[8]; ss[0] = vreinterpretq_s16_u16(vmovl_u8(s[0])); ss[1] = vreinterpretq_s16_u16(vmovl_u8(s[1])); ss[2] = vreinterpretq_s16_u16(vmovl_u8(s[2])); ss[3] = vreinterpretq_s16_u16(vmovl_u8(s[3])); ss[4] = vreinterpretq_s16_u16(vmovl_u8(s[4])); ss[5] = vreinterpretq_s16_u16(vmovl_u8(s[5])); ss[6] = vreinterpretq_s16_u16(vmovl_u8(s[6])); ss[7] = vreinterpretq_s16_u16(vmovl_u8(s[7])); return convolve8_8(ss[0], ss[1], ss[2], ss[3], ss[4], ss[5], ss[6], ss[7], filters, filter3, filter4); } static void scale_plane_2_to_1_general_neon(const uint8_t *src, const int src_stride, uint8_t *dst, const int dst_stride, const int w, const int h, const int16_t *const coef, uint8_t *const temp_buffer) { const int max_width_hor = (w + 3) & ~3; const int max_width_ver = (w + 7) & ~7; const int max_height_hor = (2 * h + SUBPEL_TAPS - 2 + 7) & ~7; const int max_height_ver = (h + 3) & ~3; const int16x8_t filters = vld1q_s16(coef); int x, y = max_height_hor; uint8_t *t = temp_buffer; uint8x8_t s[14], d[4]; assert(w && h); src -= (SUBPEL_TAPS / 2 - 1) * src_stride + SUBPEL_TAPS / 2 + 1; // horizontal // Note: processing 8x8 is about 20% faster than processing row by row using // vld4_u8(). do { load_u8_8x8(src + 2, src_stride, &s[0], &s[1], &s[2], &s[3], &s[4], &s[5], &s[6], &s[7]); transpose_u8_8x8(&s[0], &s[1], &s[2], &s[3], &s[4], &s[5], &s[6], &s[7]); x = max_width_hor; do { src += 8; load_u8_8x8(src, src_stride, &s[6], &s[7], &s[8], &s[9], &s[10], &s[11], &s[12], &s[13]); transpose_u8_8x8(&s[6], &s[7], &s[8], &s[9], &s[10], &s[11], &s[12], &s[13]); d[0] = scale_filter(&s[0], filters); d[1] = scale_filter(&s[2], filters); d[2] = scale_filter(&s[4], filters); d[3] = scale_filter(&s[6], filters); transpose_u8_8x4(&d[0], &d[1], &d[2], &d[3]); vst1_lane_u32((uint32_t *)(t + 0 * max_width_hor), vreinterpret_u32_u8(d[0]), 0); vst1_lane_u32((uint32_t *)(t + 1 * max_width_hor), vreinterpret_u32_u8(d[1]), 0); vst1_lane_u32((uint32_t *)(t + 2 * max_width_hor), vreinterpret_u32_u8(d[2]), 0); vst1_lane_u32((uint32_t *)(t + 3 * max_width_hor), vreinterpret_u32_u8(d[3]), 0); vst1_lane_u32((uint32_t *)(t + 4 * max_width_hor), vreinterpret_u32_u8(d[0]), 1); vst1_lane_u32((uint32_t *)(t + 5 * max_width_hor), vreinterpret_u32_u8(d[1]), 1); vst1_lane_u32((uint32_t *)(t + 6 * max_width_hor), vreinterpret_u32_u8(d[2]), 1); vst1_lane_u32((uint32_t *)(t + 7 * max_width_hor), vreinterpret_u32_u8(d[3]), 1); s[0] = s[8]; s[1] = s[9]; s[2] = s[10]; s[3] = s[11]; s[4] = s[12]; s[5] = s[13]; t += 4; x -= 4; } while (x); src += 8 * src_stride - 2 * max_width_hor; t += 7 * max_width_hor; y -= 8; } while (y); // vertical x = max_width_ver; t = temp_buffer; do { load_u8_8x8(t, max_width_hor, &s[0], &s[1], &s[2], &s[3], &s[4], &s[5], &s[6], &s[7]); t += 6 * max_width_hor; y = max_height_ver; do { load_u8_8x8(t, max_width_hor, &s[6], &s[7], &s[8], &s[9], &s[10], &s[11], &s[12], &s[13]); t += 8 * max_width_hor; d[0] = scale_filter(&s[0], filters); d[1] = scale_filter(&s[2], filters); d[2] = scale_filter(&s[4], filters); d[3] = scale_filter(&s[6], filters); vst1_u8(dst + 0 * dst_stride, d[0]); vst1_u8(dst + 1 * dst_stride, d[1]); vst1_u8(dst + 2 * dst_stride, d[2]); vst1_u8(dst + 3 * dst_stride, d[3]); s[0] = s[8]; s[1] = s[9]; s[2] = s[10]; s[3] = s[11]; s[4] = s[12]; s[5] = s[13]; dst += 4 * dst_stride; y -= 4; } while (y); t -= max_width_hor * (2 * max_height_ver + 6); t += 8; dst -= max_height_ver * dst_stride; dst += 8; x -= 8; } while (x); } void vp9_scale_and_extend_frame_neon(const YV12_BUFFER_CONFIG *src, YV12_BUFFER_CONFIG *dst, INTERP_FILTER filter_type, int phase_scaler) { const int src_w = src->y_crop_width; const int src_h = src->y_crop_height; const int dst_w = dst->y_crop_width; const int dst_h = dst->y_crop_height; const int dst_uv_w = dst_w / 2; const int dst_uv_h = dst_h / 2; int scaled = 0; if (2 * dst_w == src_w && 2 * dst_h == src_h) { scaled = 1; if (phase_scaler == 0) { scale_plane_2_to_1_phase_0_neon(src->y_buffer, src->y_stride, dst->y_buffer, dst->y_stride, dst_w, dst_h); scale_plane_2_to_1_phase_0_neon(src->u_buffer, src->uv_stride, dst->u_buffer, dst->uv_stride, dst_uv_w, dst_uv_h); scale_plane_2_to_1_phase_0_neon(src->v_buffer, src->uv_stride, dst->v_buffer, dst->uv_stride, dst_uv_w, dst_uv_h); } else if (filter_type == BILINEAR) { const int16_t c0 = vp9_filter_kernels[BILINEAR][phase_scaler][3]; const int16_t c1 = vp9_filter_kernels[BILINEAR][phase_scaler][4]; scale_plane_2_to_1_bilinear_phase_non_0_neon(src->y_buffer, src->y_stride, dst->y_buffer, dst->y_stride, dst_w, dst_h, c0, c1); scale_plane_2_to_1_bilinear_phase_non_0_neon( src->u_buffer, src->uv_stride, dst->u_buffer, dst->uv_stride, dst_uv_w, dst_uv_h, c0, c1); scale_plane_2_to_1_bilinear_phase_non_0_neon( src->v_buffer, src->uv_stride, dst->v_buffer, dst->uv_stride, dst_uv_w, dst_uv_h, c0, c1); } else { const int buffer_max_width = (dst_w + 3) & ~3; const int buffer_max_height = (2 * dst_h + SUBPEL_TAPS - 2 + 7) & ~7; uint8_t *const temp_buffer = (uint8_t *)malloc(buffer_max_width * buffer_max_height); if (temp_buffer) { scale_plane_2_to_1_general_neon( src->y_buffer, src->y_stride, dst->y_buffer, dst->y_stride, dst_w, dst_h, vp9_filter_kernels[filter_type][phase_scaler], temp_buffer); scale_plane_2_to_1_general_neon( src->u_buffer, src->uv_stride, dst->u_buffer, dst->uv_stride, dst_uv_w, dst_uv_h, vp9_filter_kernels[filter_type][phase_scaler], temp_buffer); scale_plane_2_to_1_general_neon( src->v_buffer, src->uv_stride, dst->v_buffer, dst->uv_stride, dst_uv_w, dst_uv_h, vp9_filter_kernels[filter_type][phase_scaler], temp_buffer); free(temp_buffer); } else { scaled = 0; } } } if (scaled) { vpx_extend_frame_borders(dst); } else { vp9_scale_and_extend_frame_c(src, dst, filter_type, phase_scaler); } }