ref: 56d95b77f558c57ca3b04f727d51b2c70cce1503
dir: /vp9/encoder/vp9_encodeframe.c/
/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <limits.h> #include <math.h> #include <stdio.h> #include "./vp9_rtcd.h" #include "./vpx_dsp_rtcd.h" #include "./vpx_config.h" #include "vpx_dsp/vpx_dsp_common.h" #include "vpx_ports/mem.h" #include "vpx_ports/vpx_timer.h" #include "vpx_ports/system_state.h" #include "vp9/common/vp9_common.h" #include "vp9/common/vp9_entropy.h" #include "vp9/common/vp9_entropymode.h" #include "vp9/common/vp9_idct.h" #include "vp9/common/vp9_mvref_common.h" #include "vp9/common/vp9_pred_common.h" #include "vp9/common/vp9_quant_common.h" #include "vp9/common/vp9_reconintra.h" #include "vp9/common/vp9_reconinter.h" #include "vp9/common/vp9_seg_common.h" #include "vp9/common/vp9_tile_common.h" #include "vp9/encoder/vp9_aq_360.h" #include "vp9/encoder/vp9_aq_complexity.h" #include "vp9/encoder/vp9_aq_cyclicrefresh.h" #include "vp9/encoder/vp9_aq_variance.h" #include "vp9/encoder/vp9_encodeframe.h" #include "vp9/encoder/vp9_encodemb.h" #include "vp9/encoder/vp9_encodemv.h" #include "vp9/encoder/vp9_ethread.h" #include "vp9/encoder/vp9_extend.h" #include "vp9/encoder/vp9_pickmode.h" #include "vp9/encoder/vp9_rd.h" #include "vp9/encoder/vp9_rdopt.h" #include "vp9/encoder/vp9_segmentation.h" #include "vp9/encoder/vp9_tokenize.h" static void encode_superblock(VP9_COMP *cpi, ThreadData *td, TOKENEXTRA **t, int output_enabled, int mi_row, int mi_col, BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx); // Machine learning-based early termination parameters. static const double train_mean[24] = { 303501.697372, 3042630.372158, 24.694696, 1.392182, 689.413511, 162.027012, 1.478213, 0.0, 135382.260230, 912738.513263, 28.845217, 1.515230, 544.158492, 131.807995, 1.436863, 0.0, 43682.377587, 208131.711766, 28.084737, 1.356677, 138.254122, 119.522553, 1.252322, 0.0 }; static const double train_stdm[24] = { 673689.212982, 5996652.516628, 0.024449, 1.989792, 985.880847, 0.014638, 2.001898, 0.0, 208798.775332, 1812548.443284, 0.018693, 1.838009, 396.986910, 0.015657, 1.332541, 0.0, 55888.847031, 448587.962714, 0.017900, 1.904776, 98.652832, 0.016598, 1.320992, 0.0 }; // Error tolerance: 0.01%-0.0.05%-0.1% static const double classifiers[24] = { 0.111736, 0.289977, 0.042219, 0.204765, 0.120410, -0.143863, 0.282376, 0.847811, 0.637161, 0.131570, 0.018636, 0.202134, 0.112797, 0.028162, 0.182450, 1.124367, 0.386133, 0.083700, 0.050028, 0.150873, 0.061119, 0.109318, 0.127255, 0.625211 }; // This is used as a reference when computing the source variance for the // purpose of activity masking. // Eventually this should be replaced by custom no-reference routines, // which will be faster. static const uint8_t VP9_VAR_OFFS[64] = { 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128 }; #if CONFIG_VP9_HIGHBITDEPTH static const uint16_t VP9_HIGH_VAR_OFFS_8[64] = { 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128 }; static const uint16_t VP9_HIGH_VAR_OFFS_10[64] = { 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4 }; static const uint16_t VP9_HIGH_VAR_OFFS_12[64] = { 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16 }; #endif // CONFIG_VP9_HIGHBITDEPTH unsigned int vp9_get_sby_perpixel_variance(VP9_COMP *cpi, const struct buf_2d *ref, BLOCK_SIZE bs) { unsigned int sse; const unsigned int var = cpi->fn_ptr[bs].vf(ref->buf, ref->stride, VP9_VAR_OFFS, 0, &sse); return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]); } #if CONFIG_VP9_HIGHBITDEPTH unsigned int vp9_high_get_sby_perpixel_variance(VP9_COMP *cpi, const struct buf_2d *ref, BLOCK_SIZE bs, int bd) { unsigned int var, sse; switch (bd) { case 10: var = cpi->fn_ptr[bs].vf(ref->buf, ref->stride, CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_10), 0, &sse); break; case 12: var = cpi->fn_ptr[bs].vf(ref->buf, ref->stride, CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_12), 0, &sse); break; case 8: default: var = cpi->fn_ptr[bs].vf(ref->buf, ref->stride, CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_8), 0, &sse); break; } return (unsigned int)ROUND64_POWER_OF_TWO((int64_t)var, num_pels_log2_lookup[bs]); } #endif // CONFIG_VP9_HIGHBITDEPTH static unsigned int get_sby_perpixel_diff_variance(VP9_COMP *cpi, const struct buf_2d *ref, int mi_row, int mi_col, BLOCK_SIZE bs) { unsigned int sse, var; uint8_t *last_y; const YV12_BUFFER_CONFIG *last = get_ref_frame_buffer(cpi, LAST_FRAME); assert(last != NULL); last_y = &last->y_buffer[mi_row * MI_SIZE * last->y_stride + mi_col * MI_SIZE]; var = cpi->fn_ptr[bs].vf(ref->buf, ref->stride, last_y, last->y_stride, &sse); return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]); } static BLOCK_SIZE get_rd_var_based_fixed_partition(VP9_COMP *cpi, MACROBLOCK *x, int mi_row, int mi_col) { unsigned int var = get_sby_perpixel_diff_variance( cpi, &x->plane[0].src, mi_row, mi_col, BLOCK_64X64); if (var < 8) return BLOCK_64X64; else if (var < 128) return BLOCK_32X32; else if (var < 2048) return BLOCK_16X16; else return BLOCK_8X8; } // Lighter version of set_offsets that only sets the mode info // pointers. static INLINE void set_mode_info_offsets(VP9_COMMON *const cm, MACROBLOCK *const x, MACROBLOCKD *const xd, int mi_row, int mi_col) { const int idx_str = xd->mi_stride * mi_row + mi_col; xd->mi = cm->mi_grid_visible + idx_str; xd->mi[0] = cm->mi + idx_str; x->mbmi_ext = x->mbmi_ext_base + (mi_row * cm->mi_cols + mi_col); } static void set_offsets(VP9_COMP *cpi, const TileInfo *const tile, MACROBLOCK *const x, int mi_row, int mi_col, BLOCK_SIZE bsize) { VP9_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &x->e_mbd; MODE_INFO *mi; const int mi_width = num_8x8_blocks_wide_lookup[bsize]; const int mi_height = num_8x8_blocks_high_lookup[bsize]; const struct segmentation *const seg = &cm->seg; MvLimits *const mv_limits = &x->mv_limits; set_skip_context(xd, mi_row, mi_col); set_mode_info_offsets(cm, x, xd, mi_row, mi_col); mi = xd->mi[0]; // Set up destination pointers. vp9_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col); // Set up limit values for MV components. // Mv beyond the range do not produce new/different prediction block. mv_limits->row_min = -(((mi_row + mi_height) * MI_SIZE) + VP9_INTERP_EXTEND); mv_limits->col_min = -(((mi_col + mi_width) * MI_SIZE) + VP9_INTERP_EXTEND); mv_limits->row_max = (cm->mi_rows - mi_row) * MI_SIZE + VP9_INTERP_EXTEND; mv_limits->col_max = (cm->mi_cols - mi_col) * MI_SIZE + VP9_INTERP_EXTEND; // Set up distance of MB to edge of frame in 1/8th pel units. assert(!(mi_col & (mi_width - 1)) && !(mi_row & (mi_height - 1))); set_mi_row_col(xd, tile, mi_row, mi_height, mi_col, mi_width, cm->mi_rows, cm->mi_cols); // Set up source buffers. vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col); // R/D setup. x->rddiv = cpi->rd.RDDIV; x->rdmult = cpi->rd.RDMULT; // Setup segment ID. if (seg->enabled) { if (cpi->oxcf.aq_mode != VARIANCE_AQ && cpi->oxcf.aq_mode != LOOKAHEAD_AQ && cpi->oxcf.aq_mode != EQUATOR360_AQ) { const uint8_t *const map = seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map; mi->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col); } vp9_init_plane_quantizers(cpi, x); x->encode_breakout = cpi->segment_encode_breakout[mi->segment_id]; } else { mi->segment_id = 0; x->encode_breakout = cpi->encode_breakout; } // required by vp9_append_sub8x8_mvs_for_idx() and vp9_find_best_ref_mvs() xd->tile = *tile; } static void duplicate_mode_info_in_sb(VP9_COMMON *cm, MACROBLOCKD *xd, int mi_row, int mi_col, BLOCK_SIZE bsize) { const int block_width = VPXMIN(num_8x8_blocks_wide_lookup[bsize], cm->mi_cols - mi_col); const int block_height = VPXMIN(num_8x8_blocks_high_lookup[bsize], cm->mi_rows - mi_row); const int mi_stride = xd->mi_stride; MODE_INFO *const src_mi = xd->mi[0]; int i, j; for (j = 0; j < block_height; ++j) for (i = 0; i < block_width; ++i) xd->mi[j * mi_stride + i] = src_mi; } static void set_block_size(VP9_COMP *const cpi, MACROBLOCK *const x, MACROBLOCKD *const xd, int mi_row, int mi_col, BLOCK_SIZE bsize) { if (cpi->common.mi_cols > mi_col && cpi->common.mi_rows > mi_row) { set_mode_info_offsets(&cpi->common, x, xd, mi_row, mi_col); xd->mi[0]->sb_type = bsize; } } typedef struct { int64_t sum_square_error; int64_t sum_error; int log2_count; int variance; } var; typedef struct { var none; var horz[2]; var vert[2]; } partition_variance; typedef struct { partition_variance part_variances; var split[4]; } v4x4; typedef struct { partition_variance part_variances; v4x4 split[4]; } v8x8; typedef struct { partition_variance part_variances; v8x8 split[4]; } v16x16; typedef struct { partition_variance part_variances; v16x16 split[4]; } v32x32; typedef struct { partition_variance part_variances; v32x32 split[4]; } v64x64; typedef struct { partition_variance *part_variances; var *split[4]; } variance_node; typedef enum { V16X16, V32X32, V64X64, } TREE_LEVEL; static void tree_to_node(void *data, BLOCK_SIZE bsize, variance_node *node) { int i; node->part_variances = NULL; switch (bsize) { case BLOCK_64X64: { v64x64 *vt = (v64x64 *)data; node->part_variances = &vt->part_variances; for (i = 0; i < 4; i++) node->split[i] = &vt->split[i].part_variances.none; break; } case BLOCK_32X32: { v32x32 *vt = (v32x32 *)data; node->part_variances = &vt->part_variances; for (i = 0; i < 4; i++) node->split[i] = &vt->split[i].part_variances.none; break; } case BLOCK_16X16: { v16x16 *vt = (v16x16 *)data; node->part_variances = &vt->part_variances; for (i = 0; i < 4; i++) node->split[i] = &vt->split[i].part_variances.none; break; } case BLOCK_8X8: { v8x8 *vt = (v8x8 *)data; node->part_variances = &vt->part_variances; for (i = 0; i < 4; i++) node->split[i] = &vt->split[i].part_variances.none; break; } case BLOCK_4X4: { v4x4 *vt = (v4x4 *)data; node->part_variances = &vt->part_variances; for (i = 0; i < 4; i++) node->split[i] = &vt->split[i]; break; } default: { assert(0); break; } } } // Set variance values given sum square error, sum error, count. static void fill_variance(int64_t s2, int64_t s, int c, var *v) { v->sum_square_error = s2; v->sum_error = s; v->log2_count = c; } static void get_variance(var *v) { v->variance = (int)(256 * (v->sum_square_error - ((v->sum_error * v->sum_error) >> v->log2_count)) >> v->log2_count); } static void sum_2_variances(const var *a, const var *b, var *r) { assert(a->log2_count == b->log2_count); fill_variance(a->sum_square_error + b->sum_square_error, a->sum_error + b->sum_error, a->log2_count + 1, r); } static void fill_variance_tree(void *data, BLOCK_SIZE bsize) { variance_node node; memset(&node, 0, sizeof(node)); tree_to_node(data, bsize, &node); sum_2_variances(node.split[0], node.split[1], &node.part_variances->horz[0]); sum_2_variances(node.split[2], node.split[3], &node.part_variances->horz[1]); sum_2_variances(node.split[0], node.split[2], &node.part_variances->vert[0]); sum_2_variances(node.split[1], node.split[3], &node.part_variances->vert[1]); sum_2_variances(&node.part_variances->vert[0], &node.part_variances->vert[1], &node.part_variances->none); } static int set_vt_partitioning(VP9_COMP *cpi, MACROBLOCK *const x, MACROBLOCKD *const xd, void *data, BLOCK_SIZE bsize, int mi_row, int mi_col, int64_t threshold, BLOCK_SIZE bsize_min, int force_split) { VP9_COMMON *const cm = &cpi->common; variance_node vt; const int block_width = num_8x8_blocks_wide_lookup[bsize]; const int block_height = num_8x8_blocks_high_lookup[bsize]; assert(block_height == block_width); tree_to_node(data, bsize, &vt); if (force_split == 1) return 0; // For bsize=bsize_min (16x16/8x8 for 8x8/4x4 downsampling), select if // variance is below threshold, otherwise split will be selected. // No check for vert/horiz split as too few samples for variance. if (bsize == bsize_min) { // Variance already computed to set the force_split. if (cm->frame_type == KEY_FRAME) get_variance(&vt.part_variances->none); if (mi_col + block_width / 2 < cm->mi_cols && mi_row + block_height / 2 < cm->mi_rows && vt.part_variances->none.variance < threshold) { set_block_size(cpi, x, xd, mi_row, mi_col, bsize); return 1; } return 0; } else if (bsize > bsize_min) { // Variance already computed to set the force_split. if (cm->frame_type == KEY_FRAME) get_variance(&vt.part_variances->none); // For key frame: take split for bsize above 32X32 or very high variance. if (cm->frame_type == KEY_FRAME && (bsize > BLOCK_32X32 || vt.part_variances->none.variance > (threshold << 4))) { return 0; } // If variance is low, take the bsize (no split). if (mi_col + block_width / 2 < cm->mi_cols && mi_row + block_height / 2 < cm->mi_rows && vt.part_variances->none.variance < threshold) { set_block_size(cpi, x, xd, mi_row, mi_col, bsize); return 1; } // Check vertical split. if (mi_row + block_height / 2 < cm->mi_rows) { BLOCK_SIZE subsize = get_subsize(bsize, PARTITION_VERT); get_variance(&vt.part_variances->vert[0]); get_variance(&vt.part_variances->vert[1]); if (vt.part_variances->vert[0].variance < threshold && vt.part_variances->vert[1].variance < threshold && get_plane_block_size(subsize, &xd->plane[1]) < BLOCK_INVALID) { set_block_size(cpi, x, xd, mi_row, mi_col, subsize); set_block_size(cpi, x, xd, mi_row, mi_col + block_width / 2, subsize); return 1; } } // Check horizontal split. if (mi_col + block_width / 2 < cm->mi_cols) { BLOCK_SIZE subsize = get_subsize(bsize, PARTITION_HORZ); get_variance(&vt.part_variances->horz[0]); get_variance(&vt.part_variances->horz[1]); if (vt.part_variances->horz[0].variance < threshold && vt.part_variances->horz[1].variance < threshold && get_plane_block_size(subsize, &xd->plane[1]) < BLOCK_INVALID) { set_block_size(cpi, x, xd, mi_row, mi_col, subsize); set_block_size(cpi, x, xd, mi_row + block_height / 2, mi_col, subsize); return 1; } } return 0; } return 0; } static int64_t scale_part_thresh_sumdiff(int64_t threshold_base, int speed, int width, int height, int content_state) { if (speed >= 8) { if (width <= 640 && height <= 480) return (5 * threshold_base) >> 2; else if ((content_state == kLowSadLowSumdiff) || (content_state == kHighSadLowSumdiff) || (content_state == kLowVarHighSumdiff)) return (5 * threshold_base) >> 2; } else if (speed == 7) { if ((content_state == kLowSadLowSumdiff) || (content_state == kHighSadLowSumdiff) || (content_state == kLowVarHighSumdiff)) { return (5 * threshold_base) >> 2; } } return threshold_base; } // Set the variance split thresholds for following the block sizes: // 0 - threshold_64x64, 1 - threshold_32x32, 2 - threshold_16x16, // 3 - vbp_threshold_8x8. vbp_threshold_8x8 (to split to 4x4 partition) is // currently only used on key frame. static void set_vbp_thresholds(VP9_COMP *cpi, int64_t thresholds[], int q, int content_state) { VP9_COMMON *const cm = &cpi->common; const int is_key_frame = (cm->frame_type == KEY_FRAME); const int threshold_multiplier = is_key_frame ? 20 : 1; int64_t threshold_base = (int64_t)(threshold_multiplier * cpi->y_dequant[q][1]); if (is_key_frame) { thresholds[0] = threshold_base; thresholds[1] = threshold_base >> 2; thresholds[2] = threshold_base >> 2; thresholds[3] = threshold_base << 2; } else { // Increase base variance threshold based on estimated noise level. if (cpi->noise_estimate.enabled && cm->width >= 640 && cm->height >= 480) { NOISE_LEVEL noise_level = vp9_noise_estimate_extract_level(&cpi->noise_estimate); if (noise_level == kHigh) threshold_base = 3 * threshold_base; else if (noise_level == kMedium) threshold_base = threshold_base << 1; else if (noise_level < kLow) threshold_base = (7 * threshold_base) >> 3; } #if CONFIG_VP9_TEMPORAL_DENOISING if (cpi->oxcf.noise_sensitivity > 0 && denoise_svc(cpi) && cpi->oxcf.speed > 5 && cpi->denoiser.denoising_level >= kDenLow) threshold_base = vp9_scale_part_thresh(threshold_base, cpi->denoiser.denoising_level, content_state, cpi->svc.temporal_layer_id); else threshold_base = scale_part_thresh_sumdiff(threshold_base, cpi->oxcf.speed, cm->width, cm->height, content_state); #else // Increase base variance threshold based on content_state/sum_diff level. threshold_base = scale_part_thresh_sumdiff( threshold_base, cpi->oxcf.speed, cm->width, cm->height, content_state); #endif thresholds[0] = threshold_base; thresholds[2] = threshold_base << cpi->oxcf.speed; if (cm->width <= 352 && cm->height <= 288) { thresholds[0] = threshold_base >> 3; thresholds[1] = threshold_base >> 1; thresholds[2] = threshold_base << 3; } else if (cm->width < 1280 && cm->height < 720) { thresholds[1] = (5 * threshold_base) >> 2; } else if (cm->width < 1920 && cm->height < 1080) { thresholds[1] = threshold_base << 1; } else { thresholds[1] = (5 * threshold_base) >> 1; } } } void vp9_set_variance_partition_thresholds(VP9_COMP *cpi, int q, int content_state) { VP9_COMMON *const cm = &cpi->common; SPEED_FEATURES *const sf = &cpi->sf; const int is_key_frame = (cm->frame_type == KEY_FRAME); if (sf->partition_search_type != VAR_BASED_PARTITION && sf->partition_search_type != REFERENCE_PARTITION) { return; } else { set_vbp_thresholds(cpi, cpi->vbp_thresholds, q, content_state); // The thresholds below are not changed locally. if (is_key_frame) { cpi->vbp_threshold_sad = 0; cpi->vbp_threshold_copy = 0; cpi->vbp_bsize_min = BLOCK_8X8; } else { if (cm->width <= 352 && cm->height <= 288) cpi->vbp_threshold_sad = 10; else cpi->vbp_threshold_sad = (cpi->y_dequant[q][1] << 1) > 1000 ? (cpi->y_dequant[q][1] << 1) : 1000; cpi->vbp_bsize_min = BLOCK_16X16; if (cm->width <= 352 && cm->height <= 288) cpi->vbp_threshold_copy = 4000; else if (cm->width <= 640 && cm->height <= 360) cpi->vbp_threshold_copy = 8000; else cpi->vbp_threshold_copy = (cpi->y_dequant[q][1] << 3) > 8000 ? (cpi->y_dequant[q][1] << 3) : 8000; } cpi->vbp_threshold_minmax = 15 + (q >> 3); } } // Compute the minmax over the 8x8 subblocks. static int compute_minmax_8x8(const uint8_t *s, int sp, const uint8_t *d, int dp, int x16_idx, int y16_idx, #if CONFIG_VP9_HIGHBITDEPTH int highbd_flag, #endif int pixels_wide, int pixels_high) { int k; int minmax_max = 0; int minmax_min = 255; // Loop over the 4 8x8 subblocks. for (k = 0; k < 4; k++) { int x8_idx = x16_idx + ((k & 1) << 3); int y8_idx = y16_idx + ((k >> 1) << 3); int min = 0; int max = 0; if (x8_idx < pixels_wide && y8_idx < pixels_high) { #if CONFIG_VP9_HIGHBITDEPTH if (highbd_flag & YV12_FLAG_HIGHBITDEPTH) { vpx_highbd_minmax_8x8(s + y8_idx * sp + x8_idx, sp, d + y8_idx * dp + x8_idx, dp, &min, &max); } else { vpx_minmax_8x8(s + y8_idx * sp + x8_idx, sp, d + y8_idx * dp + x8_idx, dp, &min, &max); } #else vpx_minmax_8x8(s + y8_idx * sp + x8_idx, sp, d + y8_idx * dp + x8_idx, dp, &min, &max); #endif if ((max - min) > minmax_max) minmax_max = (max - min); if ((max - min) < minmax_min) minmax_min = (max - min); } } return (minmax_max - minmax_min); } static void fill_variance_4x4avg(const uint8_t *s, int sp, const uint8_t *d, int dp, int x8_idx, int y8_idx, v8x8 *vst, #if CONFIG_VP9_HIGHBITDEPTH int highbd_flag, #endif int pixels_wide, int pixels_high, int is_key_frame) { int k; for (k = 0; k < 4; k++) { int x4_idx = x8_idx + ((k & 1) << 2); int y4_idx = y8_idx + ((k >> 1) << 2); unsigned int sse = 0; int sum = 0; if (x4_idx < pixels_wide && y4_idx < pixels_high) { int s_avg; int d_avg = 128; #if CONFIG_VP9_HIGHBITDEPTH if (highbd_flag & YV12_FLAG_HIGHBITDEPTH) { s_avg = vpx_highbd_avg_4x4(s + y4_idx * sp + x4_idx, sp); if (!is_key_frame) d_avg = vpx_highbd_avg_4x4(d + y4_idx * dp + x4_idx, dp); } else { s_avg = vpx_avg_4x4(s + y4_idx * sp + x4_idx, sp); if (!is_key_frame) d_avg = vpx_avg_4x4(d + y4_idx * dp + x4_idx, dp); } #else s_avg = vpx_avg_4x4(s + y4_idx * sp + x4_idx, sp); if (!is_key_frame) d_avg = vpx_avg_4x4(d + y4_idx * dp + x4_idx, dp); #endif sum = s_avg - d_avg; sse = sum * sum; } fill_variance(sse, sum, 0, &vst->split[k].part_variances.none); } } static void fill_variance_8x8avg(const uint8_t *s, int sp, const uint8_t *d, int dp, int x16_idx, int y16_idx, v16x16 *vst, #if CONFIG_VP9_HIGHBITDEPTH int highbd_flag, #endif int pixels_wide, int pixels_high, int is_key_frame) { int k; for (k = 0; k < 4; k++) { int x8_idx = x16_idx + ((k & 1) << 3); int y8_idx = y16_idx + ((k >> 1) << 3); unsigned int sse = 0; int sum = 0; if (x8_idx < pixels_wide && y8_idx < pixels_high) { int s_avg; int d_avg = 128; #if CONFIG_VP9_HIGHBITDEPTH if (highbd_flag & YV12_FLAG_HIGHBITDEPTH) { s_avg = vpx_highbd_avg_8x8(s + y8_idx * sp + x8_idx, sp); if (!is_key_frame) d_avg = vpx_highbd_avg_8x8(d + y8_idx * dp + x8_idx, dp); } else { s_avg = vpx_avg_8x8(s + y8_idx * sp + x8_idx, sp); if (!is_key_frame) d_avg = vpx_avg_8x8(d + y8_idx * dp + x8_idx, dp); } #else s_avg = vpx_avg_8x8(s + y8_idx * sp + x8_idx, sp); if (!is_key_frame) d_avg = vpx_avg_8x8(d + y8_idx * dp + x8_idx, dp); #endif sum = s_avg - d_avg; sse = sum * sum; } fill_variance(sse, sum, 0, &vst->split[k].part_variances.none); } } // Check if most of the superblock is skin content, and if so, force split to // 32x32, and set x->sb_is_skin for use in mode selection. static int skin_sb_split(VP9_COMP *cpi, MACROBLOCK *x, const int low_res, int mi_row, int mi_col, int *force_split) { VP9_COMMON *const cm = &cpi->common; #if CONFIG_VP9_HIGHBITDEPTH if (cm->use_highbitdepth) return 0; #endif // Avoid checking superblocks on/near boundary and avoid low resolutions. // Note superblock may still pick 64X64 if y_sad is very small // (i.e., y_sad < cpi->vbp_threshold_sad) below. For now leave this as is. if (!low_res && (mi_col >= 8 && mi_col + 8 < cm->mi_cols && mi_row >= 8 && mi_row + 8 < cm->mi_rows)) { int num_16x16_skin = 0; int num_16x16_nonskin = 0; uint8_t *ysignal = x->plane[0].src.buf; uint8_t *usignal = x->plane[1].src.buf; uint8_t *vsignal = x->plane[2].src.buf; int sp = x->plane[0].src.stride; int spuv = x->plane[1].src.stride; const int block_index = mi_row * cm->mi_cols + mi_col; const int bw = num_8x8_blocks_wide_lookup[BLOCK_64X64]; const int bh = num_8x8_blocks_high_lookup[BLOCK_64X64]; const int xmis = VPXMIN(cm->mi_cols - mi_col, bw); const int ymis = VPXMIN(cm->mi_rows - mi_row, bh); // Loop through the 16x16 sub-blocks. int i, j; for (i = 0; i < ymis; i += 2) { for (j = 0; j < xmis; j += 2) { int bl_index = block_index + i * cm->mi_cols + j; int is_skin = cpi->skin_map[bl_index]; num_16x16_skin += is_skin; num_16x16_nonskin += (1 - is_skin); if (num_16x16_nonskin > 3) { // Exit loop if at least 4 of the 16x16 blocks are not skin. i = ymis; break; } ysignal += 16; usignal += 8; vsignal += 8; } ysignal += (sp << 4) - 64; usignal += (spuv << 3) - 32; vsignal += (spuv << 3) - 32; } if (num_16x16_skin > 12) { *force_split = 1; return 1; } } return 0; } static void set_low_temp_var_flag(VP9_COMP *cpi, MACROBLOCK *x, MACROBLOCKD *xd, v64x64 *vt, int64_t thresholds[], MV_REFERENCE_FRAME ref_frame_partition, int mi_col, int mi_row) { int i, j; VP9_COMMON *const cm = &cpi->common; const int mv_thr = cm->width > 640 ? 8 : 4; // Check temporal variance for bsize >= 16x16, if LAST_FRAME was selected and // int_pro mv is small. If the temporal variance is small set the flag // variance_low for the block. The variance threshold can be adjusted, the // higher the more aggressive. if (ref_frame_partition == LAST_FRAME && (cpi->sf.short_circuit_low_temp_var == 1 || (xd->mi[0]->mv[0].as_mv.col < mv_thr && xd->mi[0]->mv[0].as_mv.col > -mv_thr && xd->mi[0]->mv[0].as_mv.row < mv_thr && xd->mi[0]->mv[0].as_mv.row > -mv_thr))) { if (xd->mi[0]->sb_type == BLOCK_64X64) { if ((vt->part_variances).none.variance < (thresholds[0] >> 1)) x->variance_low[0] = 1; } else if (xd->mi[0]->sb_type == BLOCK_64X32) { for (i = 0; i < 2; i++) { if (vt->part_variances.horz[i].variance < (thresholds[0] >> 2)) x->variance_low[i + 1] = 1; } } else if (xd->mi[0]->sb_type == BLOCK_32X64) { for (i = 0; i < 2; i++) { if (vt->part_variances.vert[i].variance < (thresholds[0] >> 2)) x->variance_low[i + 3] = 1; } } else { for (i = 0; i < 4; i++) { const int idx[4][2] = { { 0, 0 }, { 0, 4 }, { 4, 0 }, { 4, 4 } }; const int idx_str = cm->mi_stride * (mi_row + idx[i][0]) + mi_col + idx[i][1]; MODE_INFO **this_mi = cm->mi_grid_visible + idx_str; if (cm->mi_cols <= mi_col + idx[i][1] || cm->mi_rows <= mi_row + idx[i][0]) continue; if ((*this_mi)->sb_type == BLOCK_32X32) { int64_t threshold_32x32 = (cpi->sf.short_circuit_low_temp_var == 1 || cpi->sf.short_circuit_low_temp_var == 3) ? ((5 * thresholds[1]) >> 3) : (thresholds[1] >> 1); if (vt->split[i].part_variances.none.variance < threshold_32x32) x->variance_low[i + 5] = 1; } else if (cpi->sf.short_circuit_low_temp_var >= 2) { // For 32x16 and 16x32 blocks, the flag is set on each 16x16 block // inside. if ((*this_mi)->sb_type == BLOCK_16X16 || (*this_mi)->sb_type == BLOCK_32X16 || (*this_mi)->sb_type == BLOCK_16X32) { for (j = 0; j < 4; j++) { if (vt->split[i].split[j].part_variances.none.variance < (thresholds[2] >> 8)) x->variance_low[(i << 2) + j + 9] = 1; } } } } } } } static void copy_partitioning_helper(VP9_COMP *cpi, MACROBLOCK *x, MACROBLOCKD *xd, BLOCK_SIZE bsize, int mi_row, int mi_col) { VP9_COMMON *const cm = &cpi->common; BLOCK_SIZE *prev_part = cpi->prev_partition; int start_pos = mi_row * cm->mi_stride + mi_col; const int bsl = b_width_log2_lookup[bsize]; const int bs = (1 << bsl) / 4; BLOCK_SIZE subsize; PARTITION_TYPE partition; if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; partition = partition_lookup[bsl][prev_part[start_pos]]; subsize = get_subsize(bsize, partition); if (subsize < BLOCK_8X8) { set_block_size(cpi, x, xd, mi_row, mi_col, bsize); } else { switch (partition) { case PARTITION_NONE: set_block_size(cpi, x, xd, mi_row, mi_col, bsize); break; case PARTITION_HORZ: set_block_size(cpi, x, xd, mi_row, mi_col, subsize); set_block_size(cpi, x, xd, mi_row + bs, mi_col, subsize); break; case PARTITION_VERT: set_block_size(cpi, x, xd, mi_row, mi_col, subsize); set_block_size(cpi, x, xd, mi_row, mi_col + bs, subsize); break; case PARTITION_SPLIT: copy_partitioning_helper(cpi, x, xd, subsize, mi_row, mi_col); copy_partitioning_helper(cpi, x, xd, subsize, mi_row + bs, mi_col); copy_partitioning_helper(cpi, x, xd, subsize, mi_row, mi_col + bs); copy_partitioning_helper(cpi, x, xd, subsize, mi_row + bs, mi_col + bs); break; default: assert(0); } } } static int copy_partitioning(VP9_COMP *cpi, MACROBLOCK *x, MACROBLOCKD *xd, int mi_row, int mi_col, int segment_id, int sb_offset) { int svc_copy_allowed = 1; int frames_since_key_thresh = 1; if (cpi->use_svc) { // For SVC, don't allow copy if base spatial layer is key frame, or if // frame is not a temporal enhancement layer frame. int layer = LAYER_IDS_TO_IDX(0, cpi->svc.temporal_layer_id, cpi->svc.number_temporal_layers); const LAYER_CONTEXT *lc = &cpi->svc.layer_context[layer]; if (lc->is_key_frame || (cpi->svc.temporal_layer_id != cpi->svc.number_temporal_layers - 1 && cpi->svc.number_temporal_layers > 1)) svc_copy_allowed = 0; frames_since_key_thresh = cpi->svc.number_spatial_layers << 1; } if (cpi->rc.frames_since_key > frames_since_key_thresh && svc_copy_allowed && !cpi->resize_pending && segment_id == CR_SEGMENT_ID_BASE && cpi->prev_segment_id[sb_offset] == CR_SEGMENT_ID_BASE && cpi->copied_frame_cnt[sb_offset] < cpi->max_copied_frame) { if (cpi->prev_partition != NULL) { copy_partitioning_helper(cpi, x, xd, BLOCK_64X64, mi_row, mi_col); cpi->copied_frame_cnt[sb_offset] += 1; memcpy(x->variance_low, &(cpi->prev_variance_low[sb_offset * 25]), sizeof(x->variance_low)); return 1; } } return 0; } static void update_prev_partition(VP9_COMP *cpi, BLOCK_SIZE bsize, int mi_row, int mi_col) { VP9_COMMON *const cm = &cpi->common; BLOCK_SIZE *prev_part = cpi->prev_partition; int start_pos = mi_row * cm->mi_stride + mi_col; const int bsl = b_width_log2_lookup[bsize]; const int bs = (1 << bsl) / 4; BLOCK_SIZE subsize; PARTITION_TYPE partition; const MODE_INFO *mi = NULL; if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; mi = cm->mi_grid_visible[start_pos]; partition = partition_lookup[bsl][mi->sb_type]; subsize = get_subsize(bsize, partition); if (subsize < BLOCK_8X8) { prev_part[start_pos] = bsize; } else { switch (partition) { case PARTITION_NONE: prev_part[start_pos] = bsize; break; case PARTITION_HORZ: prev_part[start_pos] = subsize; if (mi_row + bs < cm->mi_rows) prev_part[start_pos + bs * cm->mi_stride] = subsize; break; case PARTITION_VERT: prev_part[start_pos] = subsize; if (mi_col + bs < cm->mi_cols) prev_part[start_pos + bs] = subsize; break; case PARTITION_SPLIT: update_prev_partition(cpi, subsize, mi_row, mi_col); update_prev_partition(cpi, subsize, mi_row + bs, mi_col); update_prev_partition(cpi, subsize, mi_row, mi_col + bs); update_prev_partition(cpi, subsize, mi_row + bs, mi_col + bs); break; default: assert(0); } } } static void chroma_check(VP9_COMP *cpi, MACROBLOCK *x, int bsize, unsigned int y_sad, int is_key_frame) { int i; MACROBLOCKD *xd = &x->e_mbd; if (is_key_frame) return; // For speed >= 8, avoid the chroma check if y_sad is above threshold. if (cpi->oxcf.speed >= 8) { if (y_sad > cpi->vbp_thresholds[1] && (!cpi->noise_estimate.enabled || vp9_noise_estimate_extract_level(&cpi->noise_estimate) < kMedium)) return; } for (i = 1; i <= 2; ++i) { unsigned int uv_sad = UINT_MAX; struct macroblock_plane *p = &x->plane[i]; struct macroblockd_plane *pd = &xd->plane[i]; const BLOCK_SIZE bs = get_plane_block_size(bsize, pd); if (bs != BLOCK_INVALID) uv_sad = cpi->fn_ptr[bs].sdf(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride); // TODO(marpan): Investigate if we should lower this threshold if // superblock is detected as skin. x->color_sensitivity[i - 1] = uv_sad > (y_sad >> 2); } } static void avg_source_sad(VP9_COMP *cpi, MACROBLOCK *x, int shift, int sb_offset) { unsigned int tmp_sse; uint64_t tmp_sad; unsigned int tmp_variance; const BLOCK_SIZE bsize = BLOCK_64X64; uint8_t *src_y = cpi->Source->y_buffer; int src_ystride = cpi->Source->y_stride; uint8_t *last_src_y = cpi->Last_Source->y_buffer; int last_src_ystride = cpi->Last_Source->y_stride; uint64_t avg_source_sad_threshold = 10000; uint64_t avg_source_sad_threshold2 = 12000; #if CONFIG_VP9_HIGHBITDEPTH if (cpi->common.use_highbitdepth) return; #endif src_y += shift; last_src_y += shift; tmp_sad = cpi->fn_ptr[bsize].sdf(src_y, src_ystride, last_src_y, last_src_ystride); tmp_variance = vpx_variance64x64(src_y, src_ystride, last_src_y, last_src_ystride, &tmp_sse); // Note: tmp_sse - tmp_variance = ((sum * sum) >> 12) if (tmp_sad < avg_source_sad_threshold) x->content_state_sb = ((tmp_sse - tmp_variance) < 25) ? kLowSadLowSumdiff : kLowSadHighSumdiff; else x->content_state_sb = ((tmp_sse - tmp_variance) < 25) ? kHighSadLowSumdiff : kHighSadHighSumdiff; // Detect large lighting change. if (tmp_variance < (tmp_sse >> 3) && (tmp_sse - tmp_variance) > 10000) x->content_state_sb = kLowVarHighSumdiff; else if (tmp_sad > (avg_source_sad_threshold << 1)) x->content_state_sb = kVeryHighSad; if (cpi->content_state_sb_fd != NULL) { if (tmp_sad < avg_source_sad_threshold2) { // Cap the increment to 255. if (cpi->content_state_sb_fd[sb_offset] < 255) cpi->content_state_sb_fd[sb_offset]++; } else { cpi->content_state_sb_fd[sb_offset] = 0; } } return; } // This function chooses partitioning based on the variance between source and // reconstructed last, where variance is computed for down-sampled inputs. static int choose_partitioning(VP9_COMP *cpi, const TileInfo *const tile, MACROBLOCK *x, int mi_row, int mi_col) { VP9_COMMON *const cm = &cpi->common; MACROBLOCKD *xd = &x->e_mbd; int i, j, k, m; v64x64 vt; v16x16 vt2[16]; int force_split[21]; int avg_32x32; int max_var_32x32 = 0; int min_var_32x32 = INT_MAX; int var_32x32; int avg_16x16[4]; int maxvar_16x16[4]; int minvar_16x16[4]; int64_t threshold_4x4avg; NOISE_LEVEL noise_level = kLow; int content_state = 0; uint8_t *s; const uint8_t *d; int sp; int dp; unsigned int y_sad = UINT_MAX; BLOCK_SIZE bsize = BLOCK_64X64; // Ref frame used in partitioning. MV_REFERENCE_FRAME ref_frame_partition = LAST_FRAME; int pixels_wide = 64, pixels_high = 64; int64_t thresholds[4] = { cpi->vbp_thresholds[0], cpi->vbp_thresholds[1], cpi->vbp_thresholds[2], cpi->vbp_thresholds[3] }; // For the variance computation under SVC mode, we treat the frame as key if // the reference (base layer frame) is key frame (i.e., is_key_frame == 1). const int is_key_frame = (cm->frame_type == KEY_FRAME || (is_one_pass_cbr_svc(cpi) && cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame)); // Always use 4x4 partition for key frame. const int use_4x4_partition = cm->frame_type == KEY_FRAME; const int low_res = (cm->width <= 352 && cm->height <= 288); int variance4x4downsample[16]; int segment_id; int sb_offset = (cm->mi_stride >> 3) * (mi_row >> 3) + (mi_col >> 3); set_offsets(cpi, tile, x, mi_row, mi_col, BLOCK_64X64); segment_id = xd->mi[0]->segment_id; if (cpi->sf.use_source_sad && !is_key_frame) { int sb_offset2 = ((cm->mi_cols + 7) >> 3) * (mi_row >> 3) + (mi_col >> 3); content_state = x->content_state_sb; x->skip_low_source_sad = (content_state == kLowSadLowSumdiff || content_state == kLowSadHighSumdiff) ? 1 : 0; x->lowvar_highsumdiff = (content_state == kLowVarHighSumdiff) ? 1 : 0; if (cpi->content_state_sb_fd != NULL) x->last_sb_high_content = cpi->content_state_sb_fd[sb_offset2]; // If source_sad is low copy the partition without computing the y_sad. if (x->skip_low_source_sad && cpi->sf.copy_partition_flag && copy_partitioning(cpi, x, xd, mi_row, mi_col, segment_id, sb_offset)) { x->sb_use_mv_part = 1; return 0; } } if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled && cyclic_refresh_segment_id_boosted(segment_id)) { int q = vp9_get_qindex(&cm->seg, segment_id, cm->base_qindex); set_vbp_thresholds(cpi, thresholds, q, content_state); } else { set_vbp_thresholds(cpi, thresholds, cm->base_qindex, content_state); } // For non keyframes, disable 4x4 average for low resolution when speed = 8 threshold_4x4avg = (cpi->oxcf.speed < 8) ? thresholds[1] << 1 : INT64_MAX; memset(x->variance_low, 0, sizeof(x->variance_low)); if (xd->mb_to_right_edge < 0) pixels_wide += (xd->mb_to_right_edge >> 3); if (xd->mb_to_bottom_edge < 0) pixels_high += (xd->mb_to_bottom_edge >> 3); s = x->plane[0].src.buf; sp = x->plane[0].src.stride; // Index for force_split: 0 for 64x64, 1-4 for 32x32 blocks, // 5-20 for the 16x16 blocks. force_split[0] = 0; if (!is_key_frame) { // In the case of spatial/temporal scalable coding, the assumption here is // that the temporal reference frame will always be of type LAST_FRAME. // TODO(marpan): If that assumption is broken, we need to revisit this code. MODE_INFO *mi = xd->mi[0]; YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, LAST_FRAME); const YV12_BUFFER_CONFIG *yv12_g = NULL; unsigned int y_sad_g, y_sad_thr, y_sad_last; bsize = BLOCK_32X32 + (mi_col + 4 < cm->mi_cols) * 2 + (mi_row + 4 < cm->mi_rows); assert(yv12 != NULL); if (!(is_one_pass_cbr_svc(cpi) && cpi->svc.spatial_layer_id)) { // For now, GOLDEN will not be used for non-zero spatial layers, since // it may not be a temporal reference. yv12_g = get_ref_frame_buffer(cpi, GOLDEN_FRAME); } // Only compute y_sad_g (sad for golden reference) for speed < 8. if (cpi->oxcf.speed < 8 && yv12_g && yv12_g != yv12 && (cpi->ref_frame_flags & VP9_GOLD_FLAG)) { vp9_setup_pre_planes(xd, 0, yv12_g, mi_row, mi_col, &cm->frame_refs[GOLDEN_FRAME - 1].sf); y_sad_g = cpi->fn_ptr[bsize].sdf( x->plane[0].src.buf, x->plane[0].src.stride, xd->plane[0].pre[0].buf, xd->plane[0].pre[0].stride); } else { y_sad_g = UINT_MAX; } if (cpi->oxcf.lag_in_frames > 0 && cpi->oxcf.rc_mode == VPX_VBR && cpi->rc.is_src_frame_alt_ref) { yv12 = get_ref_frame_buffer(cpi, ALTREF_FRAME); vp9_setup_pre_planes(xd, 0, yv12, mi_row, mi_col, &cm->frame_refs[ALTREF_FRAME - 1].sf); mi->ref_frame[0] = ALTREF_FRAME; y_sad_g = UINT_MAX; } else { vp9_setup_pre_planes(xd, 0, yv12, mi_row, mi_col, &cm->frame_refs[LAST_FRAME - 1].sf); mi->ref_frame[0] = LAST_FRAME; } mi->ref_frame[1] = NONE; mi->sb_type = BLOCK_64X64; mi->mv[0].as_int = 0; mi->interp_filter = BILINEAR; if (cpi->oxcf.speed >= 8 && !low_res && x->content_state_sb != kVeryHighSad) { y_sad = cpi->fn_ptr[bsize].sdf( x->plane[0].src.buf, x->plane[0].src.stride, xd->plane[0].pre[0].buf, xd->plane[0].pre[0].stride); } else { y_sad = vp9_int_pro_motion_estimation(cpi, x, bsize, mi_row, mi_col); x->sb_use_mv_part = 1; x->sb_mvcol_part = mi->mv[0].as_mv.col; x->sb_mvrow_part = mi->mv[0].as_mv.row; } y_sad_last = y_sad; // Pick ref frame for partitioning, bias last frame when y_sad_g and y_sad // are close if short_circuit_low_temp_var is on. y_sad_thr = cpi->sf.short_circuit_low_temp_var ? (y_sad * 7) >> 3 : y_sad; if (y_sad_g < y_sad_thr) { vp9_setup_pre_planes(xd, 0, yv12_g, mi_row, mi_col, &cm->frame_refs[GOLDEN_FRAME - 1].sf); mi->ref_frame[0] = GOLDEN_FRAME; mi->mv[0].as_int = 0; y_sad = y_sad_g; ref_frame_partition = GOLDEN_FRAME; } else { x->pred_mv[LAST_FRAME] = mi->mv[0].as_mv; ref_frame_partition = LAST_FRAME; } set_ref_ptrs(cm, xd, mi->ref_frame[0], mi->ref_frame[1]); vp9_build_inter_predictors_sb(xd, mi_row, mi_col, BLOCK_64X64); if (cpi->use_skin_detection) x->sb_is_skin = skin_sb_split(cpi, x, low_res, mi_row, mi_col, force_split); d = xd->plane[0].dst.buf; dp = xd->plane[0].dst.stride; // If the y_sad is very small, take 64x64 as partition and exit. // Don't check on boosted segment for now, as 64x64 is suppressed there. if (segment_id == CR_SEGMENT_ID_BASE && y_sad < cpi->vbp_threshold_sad) { const int block_width = num_8x8_blocks_wide_lookup[BLOCK_64X64]; const int block_height = num_8x8_blocks_high_lookup[BLOCK_64X64]; if (mi_col + block_width / 2 < cm->mi_cols && mi_row + block_height / 2 < cm->mi_rows) { set_block_size(cpi, x, xd, mi_row, mi_col, BLOCK_64X64); x->variance_low[0] = 1; chroma_check(cpi, x, bsize, y_sad, is_key_frame); return 0; } } // If the y_sad is small enough, copy the partition of the superblock in the // last frame to current frame only if the last frame is not a keyframe. // Stop the copy every cpi->max_copied_frame to refresh the partition. // TODO(jianj) : tune the threshold. if (cpi->sf.copy_partition_flag && y_sad_last < cpi->vbp_threshold_copy && copy_partitioning(cpi, x, xd, mi_row, mi_col, segment_id, sb_offset)) { chroma_check(cpi, x, bsize, y_sad, is_key_frame); return 0; } } else { d = VP9_VAR_OFFS; dp = 0; #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { switch (xd->bd) { case 10: d = CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_10); break; case 12: d = CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_12); break; case 8: default: d = CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_8); break; } } #endif // CONFIG_VP9_HIGHBITDEPTH } // Fill in the entire tree of 8x8 (or 4x4 under some conditions) variances // for splits. for (i = 0; i < 4; i++) { const int x32_idx = ((i & 1) << 5); const int y32_idx = ((i >> 1) << 5); const int i2 = i << 2; force_split[i + 1] = 0; avg_16x16[i] = 0; maxvar_16x16[i] = 0; minvar_16x16[i] = INT_MAX; for (j = 0; j < 4; j++) { const int x16_idx = x32_idx + ((j & 1) << 4); const int y16_idx = y32_idx + ((j >> 1) << 4); const int split_index = 5 + i2 + j; v16x16 *vst = &vt.split[i].split[j]; force_split[split_index] = 0; variance4x4downsample[i2 + j] = 0; if (!is_key_frame) { fill_variance_8x8avg(s, sp, d, dp, x16_idx, y16_idx, vst, #if CONFIG_VP9_HIGHBITDEPTH xd->cur_buf->flags, #endif pixels_wide, pixels_high, is_key_frame); fill_variance_tree(&vt.split[i].split[j], BLOCK_16X16); get_variance(&vt.split[i].split[j].part_variances.none); avg_16x16[i] += vt.split[i].split[j].part_variances.none.variance; if (vt.split[i].split[j].part_variances.none.variance < minvar_16x16[i]) minvar_16x16[i] = vt.split[i].split[j].part_variances.none.variance; if (vt.split[i].split[j].part_variances.none.variance > maxvar_16x16[i]) maxvar_16x16[i] = vt.split[i].split[j].part_variances.none.variance; if (vt.split[i].split[j].part_variances.none.variance > thresholds[2]) { // 16X16 variance is above threshold for split, so force split to 8x8 // for this 16x16 block (this also forces splits for upper levels). force_split[split_index] = 1; force_split[i + 1] = 1; force_split[0] = 1; } else if (cpi->oxcf.speed < 8 && vt.split[i].split[j].part_variances.none.variance > thresholds[1] && !cyclic_refresh_segment_id_boosted(segment_id)) { // We have some nominal amount of 16x16 variance (based on average), // compute the minmax over the 8x8 sub-blocks, and if above threshold, // force split to 8x8 block for this 16x16 block. int minmax = compute_minmax_8x8(s, sp, d, dp, x16_idx, y16_idx, #if CONFIG_VP9_HIGHBITDEPTH xd->cur_buf->flags, #endif pixels_wide, pixels_high); int thresh_minmax = (int)cpi->vbp_threshold_minmax; if (x->content_state_sb == kVeryHighSad) thresh_minmax = thresh_minmax << 1; if (minmax > thresh_minmax) { force_split[split_index] = 1; force_split[i + 1] = 1; force_split[0] = 1; } } } if (is_key_frame || (low_res && vt.split[i].split[j].part_variances.none.variance > threshold_4x4avg)) { force_split[split_index] = 0; // Go down to 4x4 down-sampling for variance. variance4x4downsample[i2 + j] = 1; for (k = 0; k < 4; k++) { int x8_idx = x16_idx + ((k & 1) << 3); int y8_idx = y16_idx + ((k >> 1) << 3); v8x8 *vst2 = is_key_frame ? &vst->split[k] : &vt2[i2 + j].split[k]; fill_variance_4x4avg(s, sp, d, dp, x8_idx, y8_idx, vst2, #if CONFIG_VP9_HIGHBITDEPTH xd->cur_buf->flags, #endif pixels_wide, pixels_high, is_key_frame); } } } } if (cpi->noise_estimate.enabled) noise_level = vp9_noise_estimate_extract_level(&cpi->noise_estimate); // Fill the rest of the variance tree by summing split partition values. avg_32x32 = 0; for (i = 0; i < 4; i++) { const int i2 = i << 2; for (j = 0; j < 4; j++) { if (variance4x4downsample[i2 + j] == 1) { v16x16 *vtemp = (!is_key_frame) ? &vt2[i2 + j] : &vt.split[i].split[j]; for (m = 0; m < 4; m++) fill_variance_tree(&vtemp->split[m], BLOCK_8X8); fill_variance_tree(vtemp, BLOCK_16X16); // If variance of this 16x16 block is above the threshold, force block // to split. This also forces a split on the upper levels. get_variance(&vtemp->part_variances.none); if (vtemp->part_variances.none.variance > thresholds[2]) { force_split[5 + i2 + j] = 1; force_split[i + 1] = 1; force_split[0] = 1; } } } fill_variance_tree(&vt.split[i], BLOCK_32X32); // If variance of this 32x32 block is above the threshold, or if its above // (some threshold of) the average variance over the sub-16x16 blocks, then // force this block to split. This also forces a split on the upper // (64x64) level. if (!force_split[i + 1]) { get_variance(&vt.split[i].part_variances.none); var_32x32 = vt.split[i].part_variances.none.variance; max_var_32x32 = VPXMAX(var_32x32, max_var_32x32); min_var_32x32 = VPXMIN(var_32x32, min_var_32x32); if (vt.split[i].part_variances.none.variance > thresholds[1] || (!is_key_frame && vt.split[i].part_variances.none.variance > (thresholds[1] >> 1) && vt.split[i].part_variances.none.variance > (avg_16x16[i] >> 1))) { force_split[i + 1] = 1; force_split[0] = 1; } else if (!is_key_frame && noise_level < kLow && cm->height <= 360 && (maxvar_16x16[i] - minvar_16x16[i]) > (thresholds[1] >> 1) && maxvar_16x16[i] > thresholds[1]) { force_split[i + 1] = 1; force_split[0] = 1; } avg_32x32 += var_32x32; } } if (!force_split[0]) { fill_variance_tree(&vt, BLOCK_64X64); get_variance(&vt.part_variances.none); // If variance of this 64x64 block is above (some threshold of) the average // variance over the sub-32x32 blocks, then force this block to split. // Only checking this for noise level >= medium for now. if (!is_key_frame && noise_level >= kMedium && vt.part_variances.none.variance > (9 * avg_32x32) >> 5) force_split[0] = 1; // Else if the maximum 32x32 variance minus the miniumum 32x32 variance in // a 64x64 block is greater than threshold and the maximum 32x32 variance is // above a miniumum threshold, then force the split of a 64x64 block // Only check this for low noise. else if (!is_key_frame && noise_level < kMedium && (max_var_32x32 - min_var_32x32) > 3 * (thresholds[0] >> 3) && max_var_32x32 > thresholds[0] >> 1) force_split[0] = 1; } // Now go through the entire structure, splitting every block size until // we get to one that's got a variance lower than our threshold. if (mi_col + 8 > cm->mi_cols || mi_row + 8 > cm->mi_rows || !set_vt_partitioning(cpi, x, xd, &vt, BLOCK_64X64, mi_row, mi_col, thresholds[0], BLOCK_16X16, force_split[0])) { for (i = 0; i < 4; ++i) { const int x32_idx = ((i & 1) << 2); const int y32_idx = ((i >> 1) << 2); const int i2 = i << 2; if (!set_vt_partitioning(cpi, x, xd, &vt.split[i], BLOCK_32X32, (mi_row + y32_idx), (mi_col + x32_idx), thresholds[1], BLOCK_16X16, force_split[i + 1])) { for (j = 0; j < 4; ++j) { const int x16_idx = ((j & 1) << 1); const int y16_idx = ((j >> 1) << 1); // For inter frames: if variance4x4downsample[] == 1 for this 16x16 // block, then the variance is based on 4x4 down-sampling, so use vt2 // in set_vt_partioning(), otherwise use vt. v16x16 *vtemp = (!is_key_frame && variance4x4downsample[i2 + j] == 1) ? &vt2[i2 + j] : &vt.split[i].split[j]; if (!set_vt_partitioning( cpi, x, xd, vtemp, BLOCK_16X16, mi_row + y32_idx + y16_idx, mi_col + x32_idx + x16_idx, thresholds[2], cpi->vbp_bsize_min, force_split[5 + i2 + j])) { for (k = 0; k < 4; ++k) { const int x8_idx = (k & 1); const int y8_idx = (k >> 1); if (use_4x4_partition) { if (!set_vt_partitioning(cpi, x, xd, &vtemp->split[k], BLOCK_8X8, mi_row + y32_idx + y16_idx + y8_idx, mi_col + x32_idx + x16_idx + x8_idx, thresholds[3], BLOCK_8X8, 0)) { set_block_size( cpi, x, xd, (mi_row + y32_idx + y16_idx + y8_idx), (mi_col + x32_idx + x16_idx + x8_idx), BLOCK_4X4); } } else { set_block_size( cpi, x, xd, (mi_row + y32_idx + y16_idx + y8_idx), (mi_col + x32_idx + x16_idx + x8_idx), BLOCK_8X8); } } } } } } } if (cm->frame_type != KEY_FRAME && cpi->sf.copy_partition_flag) { update_prev_partition(cpi, BLOCK_64X64, mi_row, mi_col); cpi->prev_segment_id[sb_offset] = segment_id; memcpy(&(cpi->prev_variance_low[sb_offset * 25]), x->variance_low, sizeof(x->variance_low)); // Reset the counter for copy partitioning if (cpi->copied_frame_cnt[sb_offset] == cpi->max_copied_frame) cpi->copied_frame_cnt[sb_offset] = 0; } if (cpi->sf.short_circuit_low_temp_var) { set_low_temp_var_flag(cpi, x, xd, &vt, thresholds, ref_frame_partition, mi_col, mi_row); } chroma_check(cpi, x, bsize, y_sad, is_key_frame); return 0; } static void update_state(VP9_COMP *cpi, ThreadData *td, PICK_MODE_CONTEXT *ctx, int mi_row, int mi_col, BLOCK_SIZE bsize, int output_enabled) { int i, x_idx, y; VP9_COMMON *const cm = &cpi->common; RD_COUNTS *const rdc = &td->rd_counts; MACROBLOCK *const x = &td->mb; MACROBLOCKD *const xd = &x->e_mbd; struct macroblock_plane *const p = x->plane; struct macroblockd_plane *const pd = xd->plane; MODE_INFO *mi = &ctx->mic; MODE_INFO *const xdmi = xd->mi[0]; MODE_INFO *mi_addr = xd->mi[0]; const struct segmentation *const seg = &cm->seg; const int bw = num_8x8_blocks_wide_lookup[mi->sb_type]; const int bh = num_8x8_blocks_high_lookup[mi->sb_type]; const int x_mis = VPXMIN(bw, cm->mi_cols - mi_col); const int y_mis = VPXMIN(bh, cm->mi_rows - mi_row); MV_REF *const frame_mvs = cm->cur_frame->mvs + mi_row * cm->mi_cols + mi_col; int w, h; const int mis = cm->mi_stride; const int mi_width = num_8x8_blocks_wide_lookup[bsize]; const int mi_height = num_8x8_blocks_high_lookup[bsize]; int max_plane; assert(mi->sb_type == bsize); *mi_addr = *mi; *x->mbmi_ext = ctx->mbmi_ext; // If segmentation in use if (seg->enabled) { // For in frame complexity AQ copy the segment id from the segment map. if (cpi->oxcf.aq_mode == COMPLEXITY_AQ) { const uint8_t *const map = seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map; mi_addr->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col); } // Else for cyclic refresh mode update the segment map, set the segment id // and then update the quantizer. if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) { vp9_cyclic_refresh_update_segment(cpi, xd->mi[0], mi_row, mi_col, bsize, ctx->rate, ctx->dist, x->skip, p); } } max_plane = is_inter_block(xdmi) ? MAX_MB_PLANE : 1; for (i = 0; i < max_plane; ++i) { p[i].coeff = ctx->coeff_pbuf[i][1]; p[i].qcoeff = ctx->qcoeff_pbuf[i][1]; pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][1]; p[i].eobs = ctx->eobs_pbuf[i][1]; } for (i = max_plane; i < MAX_MB_PLANE; ++i) { p[i].coeff = ctx->coeff_pbuf[i][2]; p[i].qcoeff = ctx->qcoeff_pbuf[i][2]; pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][2]; p[i].eobs = ctx->eobs_pbuf[i][2]; } // Restore the coding context of the MB to that that was in place // when the mode was picked for it for (y = 0; y < mi_height; y++) for (x_idx = 0; x_idx < mi_width; x_idx++) if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width > x_idx && (xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height > y) { xd->mi[x_idx + y * mis] = mi_addr; } if (cpi->oxcf.aq_mode != NO_AQ) vp9_init_plane_quantizers(cpi, x); if (is_inter_block(xdmi) && xdmi->sb_type < BLOCK_8X8) { xdmi->mv[0].as_int = mi->bmi[3].as_mv[0].as_int; xdmi->mv[1].as_int = mi->bmi[3].as_mv[1].as_int; } x->skip = ctx->skip; memcpy(x->zcoeff_blk[xdmi->tx_size], ctx->zcoeff_blk, sizeof(ctx->zcoeff_blk[0]) * ctx->num_4x4_blk); if (!output_enabled) return; #if CONFIG_INTERNAL_STATS if (frame_is_intra_only(cm)) { static const int kf_mode_index[] = { THR_DC /*DC_PRED*/, THR_V_PRED /*V_PRED*/, THR_H_PRED /*H_PRED*/, THR_D45_PRED /*D45_PRED*/, THR_D135_PRED /*D135_PRED*/, THR_D117_PRED /*D117_PRED*/, THR_D153_PRED /*D153_PRED*/, THR_D207_PRED /*D207_PRED*/, THR_D63_PRED /*D63_PRED*/, THR_TM /*TM_PRED*/, }; ++cpi->mode_chosen_counts[kf_mode_index[xdmi->mode]]; } else { // Note how often each mode chosen as best ++cpi->mode_chosen_counts[ctx->best_mode_index]; } #endif if (!frame_is_intra_only(cm)) { if (is_inter_block(xdmi)) { vp9_update_mv_count(td); if (cm->interp_filter == SWITCHABLE) { const int ctx = get_pred_context_switchable_interp(xd); ++td->counts->switchable_interp[ctx][xdmi->interp_filter]; } } rdc->comp_pred_diff[SINGLE_REFERENCE] += ctx->single_pred_diff; rdc->comp_pred_diff[COMPOUND_REFERENCE] += ctx->comp_pred_diff; rdc->comp_pred_diff[REFERENCE_MODE_SELECT] += ctx->hybrid_pred_diff; for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i) rdc->filter_diff[i] += ctx->best_filter_diff[i]; } for (h = 0; h < y_mis; ++h) { MV_REF *const frame_mv = frame_mvs + h * cm->mi_cols; for (w = 0; w < x_mis; ++w) { MV_REF *const mv = frame_mv + w; mv->ref_frame[0] = mi->ref_frame[0]; mv->ref_frame[1] = mi->ref_frame[1]; mv->mv[0].as_int = mi->mv[0].as_int; mv->mv[1].as_int = mi->mv[1].as_int; } } } void vp9_setup_src_planes(MACROBLOCK *x, const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col) { uint8_t *const buffers[3] = { src->y_buffer, src->u_buffer, src->v_buffer }; const int strides[3] = { src->y_stride, src->uv_stride, src->uv_stride }; int i; // Set current frame pointer. x->e_mbd.cur_buf = src; for (i = 0; i < MAX_MB_PLANE; i++) setup_pred_plane(&x->plane[i].src, buffers[i], strides[i], mi_row, mi_col, NULL, x->e_mbd.plane[i].subsampling_x, x->e_mbd.plane[i].subsampling_y); } static void set_mode_info_seg_skip(MACROBLOCK *x, TX_MODE tx_mode, RD_COST *rd_cost, BLOCK_SIZE bsize) { MACROBLOCKD *const xd = &x->e_mbd; MODE_INFO *const mi = xd->mi[0]; INTERP_FILTER filter_ref; filter_ref = get_pred_context_switchable_interp(xd); if (filter_ref == SWITCHABLE_FILTERS) filter_ref = EIGHTTAP; mi->sb_type = bsize; mi->mode = ZEROMV; mi->tx_size = VPXMIN(max_txsize_lookup[bsize], tx_mode_to_biggest_tx_size[tx_mode]); mi->skip = 1; mi->uv_mode = DC_PRED; mi->ref_frame[0] = LAST_FRAME; mi->ref_frame[1] = NONE; mi->mv[0].as_int = 0; mi->interp_filter = filter_ref; xd->mi[0]->bmi[0].as_mv[0].as_int = 0; x->skip = 1; vp9_rd_cost_init(rd_cost); } static int set_segment_rdmult(VP9_COMP *const cpi, MACROBLOCK *const x, int8_t segment_id) { int segment_qindex; VP9_COMMON *const cm = &cpi->common; vp9_init_plane_quantizers(cpi, x); vpx_clear_system_state(); segment_qindex = vp9_get_qindex(&cm->seg, segment_id, cm->base_qindex); return vp9_compute_rd_mult(cpi, segment_qindex + cm->y_dc_delta_q); } static void rd_pick_sb_modes(VP9_COMP *cpi, TileDataEnc *tile_data, MACROBLOCK *const x, int mi_row, int mi_col, RD_COST *rd_cost, BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx, int64_t best_rd) { VP9_COMMON *const cm = &cpi->common; TileInfo *const tile_info = &tile_data->tile_info; MACROBLOCKD *const xd = &x->e_mbd; MODE_INFO *mi; struct macroblock_plane *const p = x->plane; struct macroblockd_plane *const pd = xd->plane; const AQ_MODE aq_mode = cpi->oxcf.aq_mode; int i, orig_rdmult; vpx_clear_system_state(); // Use the lower precision, but faster, 32x32 fdct for mode selection. x->use_lp32x32fdct = 1; set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize); mi = xd->mi[0]; mi->sb_type = bsize; for (i = 0; i < MAX_MB_PLANE; ++i) { p[i].coeff = ctx->coeff_pbuf[i][0]; p[i].qcoeff = ctx->qcoeff_pbuf[i][0]; pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][0]; p[i].eobs = ctx->eobs_pbuf[i][0]; } ctx->is_coded = 0; ctx->skippable = 0; ctx->pred_pixel_ready = 0; x->skip_recode = 0; // Set to zero to make sure we do not use the previous encoded frame stats mi->skip = 0; #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { x->source_variance = vp9_high_get_sby_perpixel_variance( cpi, &x->plane[0].src, bsize, xd->bd); } else { x->source_variance = vp9_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize); } #else x->source_variance = vp9_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize); #endif // CONFIG_VP9_HIGHBITDEPTH // Save rdmult before it might be changed, so it can be restored later. orig_rdmult = x->rdmult; if ((cpi->sf.tx_domain_thresh > 0.0) || (cpi->sf.quant_opt_thresh > 0.0)) { double logvar = vp9_log_block_var(cpi, x, bsize); // Check block complexity as part of descision on using pixel or transform // domain distortion in rd tests. x->block_tx_domain = cpi->sf.allow_txfm_domain_distortion && (logvar >= cpi->sf.tx_domain_thresh); // Check block complexity as part of descision on using quantized // coefficient optimisation inside the rd loop. x->block_qcoeff_opt = cpi->sf.allow_quant_coeff_opt && (logvar <= cpi->sf.quant_opt_thresh); } else { x->block_tx_domain = cpi->sf.allow_txfm_domain_distortion; x->block_qcoeff_opt = cpi->sf.allow_quant_coeff_opt; } if (aq_mode == VARIANCE_AQ) { const int energy = bsize <= BLOCK_16X16 ? x->mb_energy : vp9_block_energy(cpi, x, bsize); if (cm->frame_type == KEY_FRAME || cpi->refresh_alt_ref_frame || cpi->force_update_segmentation || (cpi->refresh_golden_frame && !cpi->rc.is_src_frame_alt_ref)) { mi->segment_id = vp9_vaq_segment_id(energy); } else { const uint8_t *const map = cm->seg.update_map ? cpi->segmentation_map : cm->last_frame_seg_map; mi->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col); } x->rdmult = set_segment_rdmult(cpi, x, mi->segment_id); } else if (aq_mode == LOOKAHEAD_AQ) { const uint8_t *const map = cpi->segmentation_map; // I do not change rdmult here consciously. mi->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col); } else if (aq_mode == EQUATOR360_AQ) { if (cm->frame_type == KEY_FRAME || cpi->force_update_segmentation) { mi->segment_id = vp9_360aq_segment_id(mi_row, cm->mi_rows); } else { const uint8_t *const map = cm->seg.update_map ? cpi->segmentation_map : cm->last_frame_seg_map; mi->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col); } x->rdmult = set_segment_rdmult(cpi, x, mi->segment_id); } else if (aq_mode == COMPLEXITY_AQ) { x->rdmult = set_segment_rdmult(cpi, x, mi->segment_id); } else if (aq_mode == CYCLIC_REFRESH_AQ) { const uint8_t *const map = cm->seg.update_map ? cpi->segmentation_map : cm->last_frame_seg_map; // If segment is boosted, use rdmult for that segment. if (cyclic_refresh_segment_id_boosted( get_segment_id(cm, map, bsize, mi_row, mi_col))) x->rdmult = vp9_cyclic_refresh_get_rdmult(cpi->cyclic_refresh); } // Find best coding mode & reconstruct the MB so it is available // as a predictor for MBs that follow in the SB if (frame_is_intra_only(cm)) { vp9_rd_pick_intra_mode_sb(cpi, x, rd_cost, bsize, ctx, best_rd); } else { if (bsize >= BLOCK_8X8) { if (segfeature_active(&cm->seg, mi->segment_id, SEG_LVL_SKIP)) vp9_rd_pick_inter_mode_sb_seg_skip(cpi, tile_data, x, rd_cost, bsize, ctx, best_rd); else vp9_rd_pick_inter_mode_sb(cpi, tile_data, x, mi_row, mi_col, rd_cost, bsize, ctx, best_rd); } else { vp9_rd_pick_inter_mode_sub8x8(cpi, tile_data, x, mi_row, mi_col, rd_cost, bsize, ctx, best_rd); } } // Examine the resulting rate and for AQ mode 2 make a segment choice. if ((rd_cost->rate != INT_MAX) && (aq_mode == COMPLEXITY_AQ) && (bsize >= BLOCK_16X16) && (cm->frame_type == KEY_FRAME || cpi->refresh_alt_ref_frame || (cpi->refresh_golden_frame && !cpi->rc.is_src_frame_alt_ref))) { vp9_caq_select_segment(cpi, x, bsize, mi_row, mi_col, rd_cost->rate); } x->rdmult = orig_rdmult; // TODO(jingning) The rate-distortion optimization flow needs to be // refactored to provide proper exit/return handle. if (rd_cost->rate == INT_MAX) rd_cost->rdcost = INT64_MAX; ctx->rate = rd_cost->rate; ctx->dist = rd_cost->dist; } static void update_stats(VP9_COMMON *cm, ThreadData *td) { const MACROBLOCK *x = &td->mb; const MACROBLOCKD *const xd = &x->e_mbd; const MODE_INFO *const mi = xd->mi[0]; const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; const BLOCK_SIZE bsize = mi->sb_type; if (!frame_is_intra_only(cm)) { FRAME_COUNTS *const counts = td->counts; const int inter_block = is_inter_block(mi); const int seg_ref_active = segfeature_active(&cm->seg, mi->segment_id, SEG_LVL_REF_FRAME); if (!seg_ref_active) { counts->intra_inter[get_intra_inter_context(xd)][inter_block]++; // If the segment reference feature is enabled we have only a single // reference frame allowed for the segment so exclude it from // the reference frame counts used to work out probabilities. if (inter_block) { const MV_REFERENCE_FRAME ref0 = mi->ref_frame[0]; if (cm->reference_mode == REFERENCE_MODE_SELECT) counts->comp_inter[vp9_get_reference_mode_context(cm, xd)] [has_second_ref(mi)]++; if (has_second_ref(mi)) { counts->comp_ref[vp9_get_pred_context_comp_ref_p(cm, xd)] [ref0 == GOLDEN_FRAME]++; } else { counts->single_ref[vp9_get_pred_context_single_ref_p1(xd)][0] [ref0 != LAST_FRAME]++; if (ref0 != LAST_FRAME) counts->single_ref[vp9_get_pred_context_single_ref_p2(xd)][1] [ref0 != GOLDEN_FRAME]++; } } } if (inter_block && !segfeature_active(&cm->seg, mi->segment_id, SEG_LVL_SKIP)) { const int mode_ctx = mbmi_ext->mode_context[mi->ref_frame[0]]; if (bsize >= BLOCK_8X8) { const PREDICTION_MODE mode = mi->mode; ++counts->inter_mode[mode_ctx][INTER_OFFSET(mode)]; } else { const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize]; const int num_4x4_h = num_4x4_blocks_high_lookup[bsize]; int idx, idy; for (idy = 0; idy < 2; idy += num_4x4_h) { for (idx = 0; idx < 2; idx += num_4x4_w) { const int j = idy * 2 + idx; const PREDICTION_MODE b_mode = mi->bmi[j].as_mode; ++counts->inter_mode[mode_ctx][INTER_OFFSET(b_mode)]; } } } } } } static void restore_context(MACROBLOCK *const x, int mi_row, int mi_col, ENTROPY_CONTEXT a[16 * MAX_MB_PLANE], ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], PARTITION_CONTEXT sa[8], PARTITION_CONTEXT sl[8], BLOCK_SIZE bsize) { MACROBLOCKD *const xd = &x->e_mbd; int p; const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize]; const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize]; int mi_width = num_8x8_blocks_wide_lookup[bsize]; int mi_height = num_8x8_blocks_high_lookup[bsize]; for (p = 0; p < MAX_MB_PLANE; p++) { memcpy(xd->above_context[p] + ((mi_col * 2) >> xd->plane[p].subsampling_x), a + num_4x4_blocks_wide * p, (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >> xd->plane[p].subsampling_x); memcpy(xd->left_context[p] + ((mi_row & MI_MASK) * 2 >> xd->plane[p].subsampling_y), l + num_4x4_blocks_high * p, (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >> xd->plane[p].subsampling_y); } memcpy(xd->above_seg_context + mi_col, sa, sizeof(*xd->above_seg_context) * mi_width); memcpy(xd->left_seg_context + (mi_row & MI_MASK), sl, sizeof(xd->left_seg_context[0]) * mi_height); } static void save_context(MACROBLOCK *const x, int mi_row, int mi_col, ENTROPY_CONTEXT a[16 * MAX_MB_PLANE], ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], PARTITION_CONTEXT sa[8], PARTITION_CONTEXT sl[8], BLOCK_SIZE bsize) { const MACROBLOCKD *const xd = &x->e_mbd; int p; const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize]; const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize]; int mi_width = num_8x8_blocks_wide_lookup[bsize]; int mi_height = num_8x8_blocks_high_lookup[bsize]; // buffer the above/left context information of the block in search. for (p = 0; p < MAX_MB_PLANE; ++p) { memcpy(a + num_4x4_blocks_wide * p, xd->above_context[p] + (mi_col * 2 >> xd->plane[p].subsampling_x), (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >> xd->plane[p].subsampling_x); memcpy(l + num_4x4_blocks_high * p, xd->left_context[p] + ((mi_row & MI_MASK) * 2 >> xd->plane[p].subsampling_y), (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >> xd->plane[p].subsampling_y); } memcpy(sa, xd->above_seg_context + mi_col, sizeof(*xd->above_seg_context) * mi_width); memcpy(sl, xd->left_seg_context + (mi_row & MI_MASK), sizeof(xd->left_seg_context[0]) * mi_height); } static void encode_b(VP9_COMP *cpi, const TileInfo *const tile, ThreadData *td, TOKENEXTRA **tp, int mi_row, int mi_col, int output_enabled, BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) { MACROBLOCK *const x = &td->mb; set_offsets(cpi, tile, x, mi_row, mi_col, bsize); update_state(cpi, td, ctx, mi_row, mi_col, bsize, output_enabled); encode_superblock(cpi, td, tp, output_enabled, mi_row, mi_col, bsize, ctx); if (output_enabled) { update_stats(&cpi->common, td); (*tp)->token = EOSB_TOKEN; (*tp)++; } } static void encode_sb(VP9_COMP *cpi, ThreadData *td, const TileInfo *const tile, TOKENEXTRA **tp, int mi_row, int mi_col, int output_enabled, BLOCK_SIZE bsize, PC_TREE *pc_tree) { VP9_COMMON *const cm = &cpi->common; MACROBLOCK *const x = &td->mb; MACROBLOCKD *const xd = &x->e_mbd; const int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4; int ctx; PARTITION_TYPE partition; BLOCK_SIZE subsize = bsize; if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; if (bsize >= BLOCK_8X8) { ctx = partition_plane_context(xd, mi_row, mi_col, bsize); subsize = get_subsize(bsize, pc_tree->partitioning); } else { ctx = 0; subsize = BLOCK_4X4; } partition = partition_lookup[bsl][subsize]; if (output_enabled && bsize != BLOCK_4X4) td->counts->partition[ctx][partition]++; switch (partition) { case PARTITION_NONE: encode_b(cpi, tile, td, tp, mi_row, mi_col, output_enabled, subsize, &pc_tree->none); break; case PARTITION_VERT: encode_b(cpi, tile, td, tp, mi_row, mi_col, output_enabled, subsize, &pc_tree->vertical[0]); if (mi_col + hbs < cm->mi_cols && bsize > BLOCK_8X8) { encode_b(cpi, tile, td, tp, mi_row, mi_col + hbs, output_enabled, subsize, &pc_tree->vertical[1]); } break; case PARTITION_HORZ: encode_b(cpi, tile, td, tp, mi_row, mi_col, output_enabled, subsize, &pc_tree->horizontal[0]); if (mi_row + hbs < cm->mi_rows && bsize > BLOCK_8X8) { encode_b(cpi, tile, td, tp, mi_row + hbs, mi_col, output_enabled, subsize, &pc_tree->horizontal[1]); } break; case PARTITION_SPLIT: if (bsize == BLOCK_8X8) { encode_b(cpi, tile, td, tp, mi_row, mi_col, output_enabled, subsize, pc_tree->leaf_split[0]); } else { encode_sb(cpi, td, tile, tp, mi_row, mi_col, output_enabled, subsize, pc_tree->split[0]); encode_sb(cpi, td, tile, tp, mi_row, mi_col + hbs, output_enabled, subsize, pc_tree->split[1]); encode_sb(cpi, td, tile, tp, mi_row + hbs, mi_col, output_enabled, subsize, pc_tree->split[2]); encode_sb(cpi, td, tile, tp, mi_row + hbs, mi_col + hbs, output_enabled, subsize, pc_tree->split[3]); } break; default: assert(0 && "Invalid partition type."); break; } if (partition != PARTITION_SPLIT || bsize == BLOCK_8X8) update_partition_context(xd, mi_row, mi_col, subsize, bsize); } // Check to see if the given partition size is allowed for a specified number // of 8x8 block rows and columns remaining in the image. // If not then return the largest allowed partition size static BLOCK_SIZE find_partition_size(BLOCK_SIZE bsize, int rows_left, int cols_left, int *bh, int *bw) { if (rows_left <= 0 || cols_left <= 0) { return VPXMIN(bsize, BLOCK_8X8); } else { for (; bsize > 0; bsize -= 3) { *bh = num_8x8_blocks_high_lookup[bsize]; *bw = num_8x8_blocks_wide_lookup[bsize]; if ((*bh <= rows_left) && (*bw <= cols_left)) { break; } } } return bsize; } static void set_partial_b64x64_partition(MODE_INFO *mi, int mis, int bh_in, int bw_in, int row8x8_remaining, int col8x8_remaining, BLOCK_SIZE bsize, MODE_INFO **mi_8x8) { int bh = bh_in; int r, c; for (r = 0; r < MI_BLOCK_SIZE; r += bh) { int bw = bw_in; for (c = 0; c < MI_BLOCK_SIZE; c += bw) { const int index = r * mis + c; mi_8x8[index] = mi + index; mi_8x8[index]->sb_type = find_partition_size( bsize, row8x8_remaining - r, col8x8_remaining - c, &bh, &bw); } } } // This function attempts to set all mode info entries in a given SB64 // to the same block partition size. // However, at the bottom and right borders of the image the requested size // may not be allowed in which case this code attempts to choose the largest // allowable partition. static void set_fixed_partitioning(VP9_COMP *cpi, const TileInfo *const tile, MODE_INFO **mi_8x8, int mi_row, int mi_col, BLOCK_SIZE bsize) { VP9_COMMON *const cm = &cpi->common; const int mis = cm->mi_stride; const int row8x8_remaining = tile->mi_row_end - mi_row; const int col8x8_remaining = tile->mi_col_end - mi_col; int block_row, block_col; MODE_INFO *mi_upper_left = cm->mi + mi_row * mis + mi_col; int bh = num_8x8_blocks_high_lookup[bsize]; int bw = num_8x8_blocks_wide_lookup[bsize]; assert((row8x8_remaining > 0) && (col8x8_remaining > 0)); // Apply the requested partition size to the SB64 if it is all "in image" if ((col8x8_remaining >= MI_BLOCK_SIZE) && (row8x8_remaining >= MI_BLOCK_SIZE)) { for (block_row = 0; block_row < MI_BLOCK_SIZE; block_row += bh) { for (block_col = 0; block_col < MI_BLOCK_SIZE; block_col += bw) { int index = block_row * mis + block_col; mi_8x8[index] = mi_upper_left + index; mi_8x8[index]->sb_type = bsize; } } } else { // Else this is a partial SB64. set_partial_b64x64_partition(mi_upper_left, mis, bh, bw, row8x8_remaining, col8x8_remaining, bsize, mi_8x8); } } static const struct { int row; int col; } coord_lookup[16] = { // 32x32 index = 0 { 0, 0 }, { 0, 2 }, { 2, 0 }, { 2, 2 }, // 32x32 index = 1 { 0, 4 }, { 0, 6 }, { 2, 4 }, { 2, 6 }, // 32x32 index = 2 { 4, 0 }, { 4, 2 }, { 6, 0 }, { 6, 2 }, // 32x32 index = 3 { 4, 4 }, { 4, 6 }, { 6, 4 }, { 6, 6 }, }; static void set_source_var_based_partition(VP9_COMP *cpi, const TileInfo *const tile, MACROBLOCK *const x, MODE_INFO **mi_8x8, int mi_row, int mi_col) { VP9_COMMON *const cm = &cpi->common; const int mis = cm->mi_stride; const int row8x8_remaining = tile->mi_row_end - mi_row; const int col8x8_remaining = tile->mi_col_end - mi_col; MODE_INFO *mi_upper_left = cm->mi + mi_row * mis + mi_col; vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col); assert((row8x8_remaining > 0) && (col8x8_remaining > 0)); // In-image SB64 if ((col8x8_remaining >= MI_BLOCK_SIZE) && (row8x8_remaining >= MI_BLOCK_SIZE)) { int i, j; int index; diff d32[4]; const int offset = (mi_row >> 1) * cm->mb_cols + (mi_col >> 1); int is_larger_better = 0; int use32x32 = 0; unsigned int thr = cpi->source_var_thresh; memset(d32, 0, 4 * sizeof(diff)); for (i = 0; i < 4; i++) { diff *d16[4]; for (j = 0; j < 4; j++) { int b_mi_row = coord_lookup[i * 4 + j].row; int b_mi_col = coord_lookup[i * 4 + j].col; int boffset = b_mi_row / 2 * cm->mb_cols + b_mi_col / 2; d16[j] = cpi->source_diff_var + offset + boffset; index = b_mi_row * mis + b_mi_col; mi_8x8[index] = mi_upper_left + index; mi_8x8[index]->sb_type = BLOCK_16X16; // TODO(yunqingwang): If d16[j].var is very large, use 8x8 partition // size to further improve quality. } is_larger_better = (d16[0]->var < thr) && (d16[1]->var < thr) && (d16[2]->var < thr) && (d16[3]->var < thr); // Use 32x32 partition if (is_larger_better) { use32x32 += 1; for (j = 0; j < 4; j++) { d32[i].sse += d16[j]->sse; d32[i].sum += d16[j]->sum; } d32[i].var = (unsigned int)(d32[i].sse - (unsigned int)(((int64_t)d32[i].sum * d32[i].sum) >> 10)); index = coord_lookup[i * 4].row * mis + coord_lookup[i * 4].col; mi_8x8[index] = mi_upper_left + index; mi_8x8[index]->sb_type = BLOCK_32X32; } } if (use32x32 == 4) { thr <<= 1; is_larger_better = (d32[0].var < thr) && (d32[1].var < thr) && (d32[2].var < thr) && (d32[3].var < thr); // Use 64x64 partition if (is_larger_better) { mi_8x8[0] = mi_upper_left; mi_8x8[0]->sb_type = BLOCK_64X64; } } } else { // partial in-image SB64 int bh = num_8x8_blocks_high_lookup[BLOCK_16X16]; int bw = num_8x8_blocks_wide_lookup[BLOCK_16X16]; set_partial_b64x64_partition(mi_upper_left, mis, bh, bw, row8x8_remaining, col8x8_remaining, BLOCK_16X16, mi_8x8); } } static void update_state_rt(VP9_COMP *cpi, ThreadData *td, PICK_MODE_CONTEXT *ctx, int mi_row, int mi_col, int bsize) { VP9_COMMON *const cm = &cpi->common; MACROBLOCK *const x = &td->mb; MACROBLOCKD *const xd = &x->e_mbd; MODE_INFO *const mi = xd->mi[0]; struct macroblock_plane *const p = x->plane; const struct segmentation *const seg = &cm->seg; const int bw = num_8x8_blocks_wide_lookup[mi->sb_type]; const int bh = num_8x8_blocks_high_lookup[mi->sb_type]; const int x_mis = VPXMIN(bw, cm->mi_cols - mi_col); const int y_mis = VPXMIN(bh, cm->mi_rows - mi_row); *(xd->mi[0]) = ctx->mic; *(x->mbmi_ext) = ctx->mbmi_ext; if (seg->enabled && cpi->oxcf.aq_mode != NO_AQ) { // For in frame complexity AQ or variance AQ, copy segment_id from // segmentation_map. if (cpi->oxcf.aq_mode != CYCLIC_REFRESH_AQ) { const uint8_t *const map = seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map; mi->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col); } else { // Setting segmentation map for cyclic_refresh. vp9_cyclic_refresh_update_segment(cpi, mi, mi_row, mi_col, bsize, ctx->rate, ctx->dist, x->skip, p); } vp9_init_plane_quantizers(cpi, x); } if (is_inter_block(mi)) { vp9_update_mv_count(td); if (cm->interp_filter == SWITCHABLE) { const int pred_ctx = get_pred_context_switchable_interp(xd); ++td->counts->switchable_interp[pred_ctx][mi->interp_filter]; } if (mi->sb_type < BLOCK_8X8) { mi->mv[0].as_int = mi->bmi[3].as_mv[0].as_int; mi->mv[1].as_int = mi->bmi[3].as_mv[1].as_int; } } if (cm->use_prev_frame_mvs || !cm->error_resilient_mode || (cpi->svc.use_base_mv && cpi->svc.number_spatial_layers > 1 && cpi->svc.spatial_layer_id != cpi->svc.number_spatial_layers - 1)) { MV_REF *const frame_mvs = cm->cur_frame->mvs + mi_row * cm->mi_cols + mi_col; int w, h; for (h = 0; h < y_mis; ++h) { MV_REF *const frame_mv = frame_mvs + h * cm->mi_cols; for (w = 0; w < x_mis; ++w) { MV_REF *const mv = frame_mv + w; mv->ref_frame[0] = mi->ref_frame[0]; mv->ref_frame[1] = mi->ref_frame[1]; mv->mv[0].as_int = mi->mv[0].as_int; mv->mv[1].as_int = mi->mv[1].as_int; } } } x->skip = ctx->skip; x->skip_txfm[0] = mi->segment_id ? 0 : ctx->skip_txfm[0]; } static void encode_b_rt(VP9_COMP *cpi, ThreadData *td, const TileInfo *const tile, TOKENEXTRA **tp, int mi_row, int mi_col, int output_enabled, BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) { MACROBLOCK *const x = &td->mb; set_offsets(cpi, tile, x, mi_row, mi_col, bsize); update_state_rt(cpi, td, ctx, mi_row, mi_col, bsize); encode_superblock(cpi, td, tp, output_enabled, mi_row, mi_col, bsize, ctx); update_stats(&cpi->common, td); (*tp)->token = EOSB_TOKEN; (*tp)++; } static void encode_sb_rt(VP9_COMP *cpi, ThreadData *td, const TileInfo *const tile, TOKENEXTRA **tp, int mi_row, int mi_col, int output_enabled, BLOCK_SIZE bsize, PC_TREE *pc_tree) { VP9_COMMON *const cm = &cpi->common; MACROBLOCK *const x = &td->mb; MACROBLOCKD *const xd = &x->e_mbd; const int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4; int ctx; PARTITION_TYPE partition; BLOCK_SIZE subsize; if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; if (bsize >= BLOCK_8X8) { const int idx_str = xd->mi_stride * mi_row + mi_col; MODE_INFO **mi_8x8 = cm->mi_grid_visible + idx_str; ctx = partition_plane_context(xd, mi_row, mi_col, bsize); subsize = mi_8x8[0]->sb_type; } else { ctx = 0; subsize = BLOCK_4X4; } partition = partition_lookup[bsl][subsize]; if (output_enabled && bsize != BLOCK_4X4) td->counts->partition[ctx][partition]++; switch (partition) { case PARTITION_NONE: encode_b_rt(cpi, td, tile, tp, mi_row, mi_col, output_enabled, subsize, &pc_tree->none); break; case PARTITION_VERT: encode_b_rt(cpi, td, tile, tp, mi_row, mi_col, output_enabled, subsize, &pc_tree->vertical[0]); if (mi_col + hbs < cm->mi_cols && bsize > BLOCK_8X8) { encode_b_rt(cpi, td, tile, tp, mi_row, mi_col + hbs, output_enabled, subsize, &pc_tree->vertical[1]); } break; case PARTITION_HORZ: encode_b_rt(cpi, td, tile, tp, mi_row, mi_col, output_enabled, subsize, &pc_tree->horizontal[0]); if (mi_row + hbs < cm->mi_rows && bsize > BLOCK_8X8) { encode_b_rt(cpi, td, tile, tp, mi_row + hbs, mi_col, output_enabled, subsize, &pc_tree->horizontal[1]); } break; case PARTITION_SPLIT: subsize = get_subsize(bsize, PARTITION_SPLIT); encode_sb_rt(cpi, td, tile, tp, mi_row, mi_col, output_enabled, subsize, pc_tree->split[0]); encode_sb_rt(cpi, td, tile, tp, mi_row, mi_col + hbs, output_enabled, subsize, pc_tree->split[1]); encode_sb_rt(cpi, td, tile, tp, mi_row + hbs, mi_col, output_enabled, subsize, pc_tree->split[2]); encode_sb_rt(cpi, td, tile, tp, mi_row + hbs, mi_col + hbs, output_enabled, subsize, pc_tree->split[3]); break; default: assert(0 && "Invalid partition type."); break; } if (partition != PARTITION_SPLIT || bsize == BLOCK_8X8) update_partition_context(xd, mi_row, mi_col, subsize, bsize); } static void rd_use_partition(VP9_COMP *cpi, ThreadData *td, TileDataEnc *tile_data, MODE_INFO **mi_8x8, TOKENEXTRA **tp, int mi_row, int mi_col, BLOCK_SIZE bsize, int *rate, int64_t *dist, int do_recon, PC_TREE *pc_tree) { VP9_COMMON *const cm = &cpi->common; TileInfo *const tile_info = &tile_data->tile_info; MACROBLOCK *const x = &td->mb; MACROBLOCKD *const xd = &x->e_mbd; const int mis = cm->mi_stride; const int bsl = b_width_log2_lookup[bsize]; const int mi_step = num_4x4_blocks_wide_lookup[bsize] / 2; const int bss = (1 << bsl) / 4; int i, pl; PARTITION_TYPE partition = PARTITION_NONE; BLOCK_SIZE subsize; ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE]; PARTITION_CONTEXT sl[8], sa[8]; RD_COST last_part_rdc, none_rdc, chosen_rdc; BLOCK_SIZE sub_subsize = BLOCK_4X4; int splits_below = 0; BLOCK_SIZE bs_type = mi_8x8[0]->sb_type; int do_partition_search = 1; PICK_MODE_CONTEXT *ctx = &pc_tree->none; if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; assert(num_4x4_blocks_wide_lookup[bsize] == num_4x4_blocks_high_lookup[bsize]); vp9_rd_cost_reset(&last_part_rdc); vp9_rd_cost_reset(&none_rdc); vp9_rd_cost_reset(&chosen_rdc); partition = partition_lookup[bsl][bs_type]; subsize = get_subsize(bsize, partition); pc_tree->partitioning = partition; save_context(x, mi_row, mi_col, a, l, sa, sl, bsize); if (bsize == BLOCK_16X16 && cpi->oxcf.aq_mode != NO_AQ) { set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize); x->mb_energy = vp9_block_energy(cpi, x, bsize); } if (do_partition_search && cpi->sf.partition_search_type == SEARCH_PARTITION && cpi->sf.adjust_partitioning_from_last_frame) { // Check if any of the sub blocks are further split. if (partition == PARTITION_SPLIT && subsize > BLOCK_8X8) { sub_subsize = get_subsize(subsize, PARTITION_SPLIT); splits_below = 1; for (i = 0; i < 4; i++) { int jj = i >> 1, ii = i & 0x01; MODE_INFO *this_mi = mi_8x8[jj * bss * mis + ii * bss]; if (this_mi && this_mi->sb_type >= sub_subsize) { splits_below = 0; } } } // If partition is not none try none unless each of the 4 splits are split // even further.. if (partition != PARTITION_NONE && !splits_below && mi_row + (mi_step >> 1) < cm->mi_rows && mi_col + (mi_step >> 1) < cm->mi_cols) { pc_tree->partitioning = PARTITION_NONE; rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &none_rdc, bsize, ctx, INT64_MAX); pl = partition_plane_context(xd, mi_row, mi_col, bsize); if (none_rdc.rate < INT_MAX) { none_rdc.rate += cpi->partition_cost[pl][PARTITION_NONE]; none_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, none_rdc.rate, none_rdc.dist); } restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize); mi_8x8[0]->sb_type = bs_type; pc_tree->partitioning = partition; } } switch (partition) { case PARTITION_NONE: rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc, bsize, ctx, INT64_MAX); break; case PARTITION_HORZ: rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc, subsize, &pc_tree->horizontal[0], INT64_MAX); if (last_part_rdc.rate != INT_MAX && bsize >= BLOCK_8X8 && mi_row + (mi_step >> 1) < cm->mi_rows) { RD_COST tmp_rdc; PICK_MODE_CONTEXT *ctx = &pc_tree->horizontal[0]; vp9_rd_cost_init(&tmp_rdc); update_state(cpi, td, ctx, mi_row, mi_col, subsize, 0); encode_superblock(cpi, td, tp, 0, mi_row, mi_col, subsize, ctx); rd_pick_sb_modes(cpi, tile_data, x, mi_row + (mi_step >> 1), mi_col, &tmp_rdc, subsize, &pc_tree->horizontal[1], INT64_MAX); if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) { vp9_rd_cost_reset(&last_part_rdc); break; } last_part_rdc.rate += tmp_rdc.rate; last_part_rdc.dist += tmp_rdc.dist; last_part_rdc.rdcost += tmp_rdc.rdcost; } break; case PARTITION_VERT: rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc, subsize, &pc_tree->vertical[0], INT64_MAX); if (last_part_rdc.rate != INT_MAX && bsize >= BLOCK_8X8 && mi_col + (mi_step >> 1) < cm->mi_cols) { RD_COST tmp_rdc; PICK_MODE_CONTEXT *ctx = &pc_tree->vertical[0]; vp9_rd_cost_init(&tmp_rdc); update_state(cpi, td, ctx, mi_row, mi_col, subsize, 0); encode_superblock(cpi, td, tp, 0, mi_row, mi_col, subsize, ctx); rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + (mi_step >> 1), &tmp_rdc, subsize, &pc_tree->vertical[bsize > BLOCK_8X8], INT64_MAX); if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) { vp9_rd_cost_reset(&last_part_rdc); break; } last_part_rdc.rate += tmp_rdc.rate; last_part_rdc.dist += tmp_rdc.dist; last_part_rdc.rdcost += tmp_rdc.rdcost; } break; case PARTITION_SPLIT: if (bsize == BLOCK_8X8) { rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc, subsize, pc_tree->leaf_split[0], INT64_MAX); break; } last_part_rdc.rate = 0; last_part_rdc.dist = 0; last_part_rdc.rdcost = 0; for (i = 0; i < 4; i++) { int x_idx = (i & 1) * (mi_step >> 1); int y_idx = (i >> 1) * (mi_step >> 1); int jj = i >> 1, ii = i & 0x01; RD_COST tmp_rdc; if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols)) continue; vp9_rd_cost_init(&tmp_rdc); rd_use_partition(cpi, td, tile_data, mi_8x8 + jj * bss * mis + ii * bss, tp, mi_row + y_idx, mi_col + x_idx, subsize, &tmp_rdc.rate, &tmp_rdc.dist, i != 3, pc_tree->split[i]); if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) { vp9_rd_cost_reset(&last_part_rdc); break; } last_part_rdc.rate += tmp_rdc.rate; last_part_rdc.dist += tmp_rdc.dist; } break; default: assert(0); break; } pl = partition_plane_context(xd, mi_row, mi_col, bsize); if (last_part_rdc.rate < INT_MAX) { last_part_rdc.rate += cpi->partition_cost[pl][partition]; last_part_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, last_part_rdc.rate, last_part_rdc.dist); } if (do_partition_search && cpi->sf.adjust_partitioning_from_last_frame && cpi->sf.partition_search_type == SEARCH_PARTITION && partition != PARTITION_SPLIT && bsize > BLOCK_8X8 && (mi_row + mi_step < cm->mi_rows || mi_row + (mi_step >> 1) == cm->mi_rows) && (mi_col + mi_step < cm->mi_cols || mi_col + (mi_step >> 1) == cm->mi_cols)) { BLOCK_SIZE split_subsize = get_subsize(bsize, PARTITION_SPLIT); chosen_rdc.rate = 0; chosen_rdc.dist = 0; restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize); pc_tree->partitioning = PARTITION_SPLIT; // Split partition. for (i = 0; i < 4; i++) { int x_idx = (i & 1) * (mi_step >> 1); int y_idx = (i >> 1) * (mi_step >> 1); RD_COST tmp_rdc; ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE]; PARTITION_CONTEXT sl[8], sa[8]; if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols)) continue; save_context(x, mi_row, mi_col, a, l, sa, sl, bsize); pc_tree->split[i]->partitioning = PARTITION_NONE; rd_pick_sb_modes(cpi, tile_data, x, mi_row + y_idx, mi_col + x_idx, &tmp_rdc, split_subsize, &pc_tree->split[i]->none, INT64_MAX); restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize); if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) { vp9_rd_cost_reset(&chosen_rdc); break; } chosen_rdc.rate += tmp_rdc.rate; chosen_rdc.dist += tmp_rdc.dist; if (i != 3) encode_sb(cpi, td, tile_info, tp, mi_row + y_idx, mi_col + x_idx, 0, split_subsize, pc_tree->split[i]); pl = partition_plane_context(xd, mi_row + y_idx, mi_col + x_idx, split_subsize); chosen_rdc.rate += cpi->partition_cost[pl][PARTITION_NONE]; } pl = partition_plane_context(xd, mi_row, mi_col, bsize); if (chosen_rdc.rate < INT_MAX) { chosen_rdc.rate += cpi->partition_cost[pl][PARTITION_SPLIT]; chosen_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, chosen_rdc.rate, chosen_rdc.dist); } } // If last_part is better set the partitioning to that. if (last_part_rdc.rdcost < chosen_rdc.rdcost) { mi_8x8[0]->sb_type = bsize; if (bsize >= BLOCK_8X8) pc_tree->partitioning = partition; chosen_rdc = last_part_rdc; } // If none was better set the partitioning to that. if (none_rdc.rdcost < chosen_rdc.rdcost) { if (bsize >= BLOCK_8X8) pc_tree->partitioning = PARTITION_NONE; chosen_rdc = none_rdc; } restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize); // We must have chosen a partitioning and encoding or we'll fail later on. // No other opportunities for success. if (bsize == BLOCK_64X64) assert(chosen_rdc.rate < INT_MAX && chosen_rdc.dist < INT64_MAX); if (do_recon) { int output_enabled = (bsize == BLOCK_64X64); encode_sb(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled, bsize, pc_tree); } *rate = chosen_rdc.rate; *dist = chosen_rdc.dist; } static const BLOCK_SIZE min_partition_size[BLOCK_SIZES] = { BLOCK_4X4, BLOCK_4X4, BLOCK_4X4, BLOCK_4X4, BLOCK_4X4, BLOCK_4X4, BLOCK_8X8, BLOCK_8X8, BLOCK_8X8, BLOCK_16X16, BLOCK_16X16, BLOCK_16X16, BLOCK_16X16 }; static const BLOCK_SIZE max_partition_size[BLOCK_SIZES] = { BLOCK_8X8, BLOCK_16X16, BLOCK_16X16, BLOCK_16X16, BLOCK_32X32, BLOCK_32X32, BLOCK_32X32, BLOCK_64X64, BLOCK_64X64, BLOCK_64X64, BLOCK_64X64, BLOCK_64X64, BLOCK_64X64 }; // Look at all the mode_info entries for blocks that are part of this // partition and find the min and max values for sb_type. // At the moment this is designed to work on a 64x64 SB but could be // adjusted to use a size parameter. // // The min and max are assumed to have been initialized prior to calling this // function so repeat calls can accumulate a min and max of more than one sb64. static void get_sb_partition_size_range(MACROBLOCKD *xd, MODE_INFO **mi_8x8, BLOCK_SIZE *min_block_size, BLOCK_SIZE *max_block_size, int bs_hist[BLOCK_SIZES]) { int sb_width_in_blocks = MI_BLOCK_SIZE; int sb_height_in_blocks = MI_BLOCK_SIZE; int i, j; int index = 0; // Check the sb_type for each block that belongs to this region. for (i = 0; i < sb_height_in_blocks; ++i) { for (j = 0; j < sb_width_in_blocks; ++j) { MODE_INFO *mi = mi_8x8[index + j]; BLOCK_SIZE sb_type = mi ? mi->sb_type : 0; bs_hist[sb_type]++; *min_block_size = VPXMIN(*min_block_size, sb_type); *max_block_size = VPXMAX(*max_block_size, sb_type); } index += xd->mi_stride; } } // Next square block size less or equal than current block size. static const BLOCK_SIZE next_square_size[BLOCK_SIZES] = { BLOCK_4X4, BLOCK_4X4, BLOCK_4X4, BLOCK_8X8, BLOCK_8X8, BLOCK_8X8, BLOCK_16X16, BLOCK_16X16, BLOCK_16X16, BLOCK_32X32, BLOCK_32X32, BLOCK_32X32, BLOCK_64X64 }; // Look at neighboring blocks and set a min and max partition size based on // what they chose. static void rd_auto_partition_range(VP9_COMP *cpi, const TileInfo *const tile, MACROBLOCKD *const xd, int mi_row, int mi_col, BLOCK_SIZE *min_block_size, BLOCK_SIZE *max_block_size) { VP9_COMMON *const cm = &cpi->common; MODE_INFO **mi = xd->mi; const int left_in_image = !!xd->left_mi; const int above_in_image = !!xd->above_mi; const int row8x8_remaining = tile->mi_row_end - mi_row; const int col8x8_remaining = tile->mi_col_end - mi_col; int bh, bw; BLOCK_SIZE min_size = BLOCK_4X4; BLOCK_SIZE max_size = BLOCK_64X64; int bs_hist[BLOCK_SIZES] = { 0 }; // Trap case where we do not have a prediction. if (left_in_image || above_in_image || cm->frame_type != KEY_FRAME) { // Default "min to max" and "max to min" min_size = BLOCK_64X64; max_size = BLOCK_4X4; // NOTE: each call to get_sb_partition_size_range() uses the previous // passed in values for min and max as a starting point. // Find the min and max partition used in previous frame at this location if (cm->frame_type != KEY_FRAME) { MODE_INFO **prev_mi = &cm->prev_mi_grid_visible[mi_row * xd->mi_stride + mi_col]; get_sb_partition_size_range(xd, prev_mi, &min_size, &max_size, bs_hist); } // Find the min and max partition sizes used in the left SB64 if (left_in_image) { MODE_INFO **left_sb64_mi = &mi[-MI_BLOCK_SIZE]; get_sb_partition_size_range(xd, left_sb64_mi, &min_size, &max_size, bs_hist); } // Find the min and max partition sizes used in the above SB64. if (above_in_image) { MODE_INFO **above_sb64_mi = &mi[-xd->mi_stride * MI_BLOCK_SIZE]; get_sb_partition_size_range(xd, above_sb64_mi, &min_size, &max_size, bs_hist); } // Adjust observed min and max for "relaxed" auto partition case. if (cpi->sf.auto_min_max_partition_size == RELAXED_NEIGHBORING_MIN_MAX) { min_size = min_partition_size[min_size]; max_size = max_partition_size[max_size]; } } // Check border cases where max and min from neighbors may not be legal. max_size = find_partition_size(max_size, row8x8_remaining, col8x8_remaining, &bh, &bw); // Test for blocks at the edge of the active image. // This may be the actual edge of the image or where there are formatting // bars. if (vp9_active_edge_sb(cpi, mi_row, mi_col)) { min_size = BLOCK_4X4; } else { min_size = VPXMIN(cpi->sf.rd_auto_partition_min_limit, VPXMIN(min_size, max_size)); } // When use_square_partition_only is true, make sure at least one square // partition is allowed by selecting the next smaller square size as // *min_block_size. if (cpi->sf.use_square_partition_only && next_square_size[max_size] < min_size) { min_size = next_square_size[max_size]; } *min_block_size = min_size; *max_block_size = max_size; } // TODO(jingning) refactor functions setting partition search range static void set_partition_range(VP9_COMMON *cm, MACROBLOCKD *xd, int mi_row, int mi_col, BLOCK_SIZE bsize, BLOCK_SIZE *min_bs, BLOCK_SIZE *max_bs) { int mi_width = num_8x8_blocks_wide_lookup[bsize]; int mi_height = num_8x8_blocks_high_lookup[bsize]; int idx, idy; MODE_INFO *mi; const int idx_str = cm->mi_stride * mi_row + mi_col; MODE_INFO **prev_mi = &cm->prev_mi_grid_visible[idx_str]; BLOCK_SIZE bs, min_size, max_size; min_size = BLOCK_64X64; max_size = BLOCK_4X4; if (prev_mi) { for (idy = 0; idy < mi_height; ++idy) { for (idx = 0; idx < mi_width; ++idx) { mi = prev_mi[idy * cm->mi_stride + idx]; bs = mi ? mi->sb_type : bsize; min_size = VPXMIN(min_size, bs); max_size = VPXMAX(max_size, bs); } } } if (xd->left_mi) { for (idy = 0; idy < mi_height; ++idy) { mi = xd->mi[idy * cm->mi_stride - 1]; bs = mi ? mi->sb_type : bsize; min_size = VPXMIN(min_size, bs); max_size = VPXMAX(max_size, bs); } } if (xd->above_mi) { for (idx = 0; idx < mi_width; ++idx) { mi = xd->mi[idx - cm->mi_stride]; bs = mi ? mi->sb_type : bsize; min_size = VPXMIN(min_size, bs); max_size = VPXMAX(max_size, bs); } } if (min_size == max_size) { min_size = min_partition_size[min_size]; max_size = max_partition_size[max_size]; } *min_bs = min_size; *max_bs = max_size; } static INLINE void store_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) { memcpy(ctx->pred_mv, x->pred_mv, sizeof(x->pred_mv)); } static INLINE void load_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) { memcpy(x->pred_mv, ctx->pred_mv, sizeof(x->pred_mv)); } #if CONFIG_FP_MB_STATS const int num_16x16_blocks_wide_lookup[BLOCK_SIZES] = { 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 4, 4 }; const int num_16x16_blocks_high_lookup[BLOCK_SIZES] = { 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 4, 2, 4 }; const int qindex_skip_threshold_lookup[BLOCK_SIZES] = { 0, 10, 10, 30, 40, 40, 60, 80, 80, 90, 100, 100, 120 }; const int qindex_split_threshold_lookup[BLOCK_SIZES] = { 0, 3, 3, 7, 15, 15, 30, 40, 40, 60, 80, 80, 120 }; const int complexity_16x16_blocks_threshold[BLOCK_SIZES] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 6 }; typedef enum { MV_ZERO = 0, MV_LEFT = 1, MV_UP = 2, MV_RIGHT = 3, MV_DOWN = 4, MV_INVALID } MOTION_DIRECTION; static INLINE MOTION_DIRECTION get_motion_direction_fp(uint8_t fp_byte) { if (fp_byte & FPMB_MOTION_ZERO_MASK) { return MV_ZERO; } else if (fp_byte & FPMB_MOTION_LEFT_MASK) { return MV_LEFT; } else if (fp_byte & FPMB_MOTION_RIGHT_MASK) { return MV_RIGHT; } else if (fp_byte & FPMB_MOTION_UP_MASK) { return MV_UP; } else { return MV_DOWN; } } static INLINE int get_motion_inconsistency(MOTION_DIRECTION this_mv, MOTION_DIRECTION that_mv) { if (this_mv == that_mv) { return 0; } else { return abs(this_mv - that_mv) == 2 ? 2 : 1; } } #endif // Calculate the score used in machine-learning based partition search early // termination. static double compute_score(VP9_COMMON *const cm, MACROBLOCKD *const xd, PICK_MODE_CONTEXT *ctx, int mi_row, int mi_col, BLOCK_SIZE bsize) { const double *clf; const double *mean; const double *sd; const int mag_mv = abs(ctx->mic.mv[0].as_mv.col) + abs(ctx->mic.mv[0].as_mv.row); const int left_in_image = !!xd->left_mi; const int above_in_image = !!xd->above_mi; MODE_INFO **prev_mi = &cm->prev_mi_grid_visible[mi_col + cm->mi_stride * mi_row]; int above_par = 0; // above_partitioning int left_par = 0; // left_partitioning int last_par = 0; // last_partitioning BLOCK_SIZE context_size; double score; int offset = 0; assert(b_width_log2_lookup[bsize] == b_height_log2_lookup[bsize]); if (above_in_image) { context_size = xd->above_mi->sb_type; if (context_size < bsize) above_par = 2; else if (context_size == bsize) above_par = 1; } if (left_in_image) { context_size = xd->left_mi->sb_type; if (context_size < bsize) left_par = 2; else if (context_size == bsize) left_par = 1; } if (prev_mi) { context_size = prev_mi[0]->sb_type; if (context_size < bsize) last_par = 2; else if (context_size == bsize) last_par = 1; } if (bsize == BLOCK_64X64) offset = 0; else if (bsize == BLOCK_32X32) offset = 8; else if (bsize == BLOCK_16X16) offset = 16; // early termination score calculation clf = &classifiers[offset]; mean = &train_mean[offset]; sd = &train_stdm[offset]; score = clf[0] * (((double)ctx->rate - mean[0]) / sd[0]) + clf[1] * (((double)ctx->dist - mean[1]) / sd[1]) + clf[2] * (((double)mag_mv / 2 - mean[2]) * sd[2]) + clf[3] * (((double)(left_par + above_par) / 2 - mean[3]) * sd[3]) + clf[4] * (((double)ctx->sum_y_eobs - mean[4]) / sd[4]) + clf[5] * (((double)cm->base_qindex - mean[5]) * sd[5]) + clf[6] * (((double)last_par - mean[6]) * sd[6]) + clf[7]; return score; } // TODO(jingning,jimbankoski,rbultje): properly skip partition types that are // unlikely to be selected depending on previous rate-distortion optimization // results, for encoding speed-up. static void rd_pick_partition(VP9_COMP *cpi, ThreadData *td, TileDataEnc *tile_data, TOKENEXTRA **tp, int mi_row, int mi_col, BLOCK_SIZE bsize, RD_COST *rd_cost, int64_t best_rd, PC_TREE *pc_tree) { VP9_COMMON *const cm = &cpi->common; TileInfo *const tile_info = &tile_data->tile_info; MACROBLOCK *const x = &td->mb; MACROBLOCKD *const xd = &x->e_mbd; const int mi_step = num_8x8_blocks_wide_lookup[bsize] / 2; ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE]; PARTITION_CONTEXT sl[8], sa[8]; TOKENEXTRA *tp_orig = *tp; PICK_MODE_CONTEXT *ctx = &pc_tree->none; int i; const int pl = partition_plane_context(xd, mi_row, mi_col, bsize); BLOCK_SIZE subsize; RD_COST this_rdc, sum_rdc, best_rdc; int do_split = bsize >= BLOCK_8X8; int do_rect = 1; INTERP_FILTER pred_interp_filter; // Override skipping rectangular partition operations for edge blocks const int force_horz_split = (mi_row + mi_step >= cm->mi_rows); const int force_vert_split = (mi_col + mi_step >= cm->mi_cols); const int xss = x->e_mbd.plane[1].subsampling_x; const int yss = x->e_mbd.plane[1].subsampling_y; BLOCK_SIZE min_size = x->min_partition_size; BLOCK_SIZE max_size = x->max_partition_size; #if CONFIG_FP_MB_STATS unsigned int src_diff_var = UINT_MAX; int none_complexity = 0; #endif int partition_none_allowed = !force_horz_split && !force_vert_split; int partition_horz_allowed = !force_vert_split && yss <= xss && bsize >= BLOCK_8X8; int partition_vert_allowed = !force_horz_split && xss <= yss && bsize >= BLOCK_8X8; int64_t dist_breakout_thr = cpi->sf.partition_search_breakout_thr.dist; int rate_breakout_thr = cpi->sf.partition_search_breakout_thr.rate; (void)*tp_orig; assert(num_8x8_blocks_wide_lookup[bsize] == num_8x8_blocks_high_lookup[bsize]); // Adjust dist breakout threshold according to the partition size. dist_breakout_thr >>= 8 - (b_width_log2_lookup[bsize] + b_height_log2_lookup[bsize]); rate_breakout_thr *= num_pels_log2_lookup[bsize]; vp9_rd_cost_init(&this_rdc); vp9_rd_cost_init(&sum_rdc); vp9_rd_cost_reset(&best_rdc); best_rdc.rdcost = best_rd; set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize); if (bsize == BLOCK_16X16 && cpi->oxcf.aq_mode != NO_AQ && cpi->oxcf.aq_mode != LOOKAHEAD_AQ) x->mb_energy = vp9_block_energy(cpi, x, bsize); if (cpi->sf.cb_partition_search && bsize == BLOCK_16X16) { int cb_partition_search_ctrl = ((pc_tree->index == 0 || pc_tree->index == 3) + get_chessboard_index(cm->current_video_frame)) & 0x1; if (cb_partition_search_ctrl && bsize > min_size && bsize < max_size) set_partition_range(cm, xd, mi_row, mi_col, bsize, &min_size, &max_size); } // Determine partition types in search according to the speed features. // The threshold set here has to be of square block size. if (cpi->sf.auto_min_max_partition_size) { partition_none_allowed &= (bsize <= max_size && bsize >= min_size); partition_horz_allowed &= ((bsize <= max_size && bsize > min_size) || force_horz_split); partition_vert_allowed &= ((bsize <= max_size && bsize > min_size) || force_vert_split); do_split &= bsize > min_size; } if (cpi->sf.use_square_partition_only && bsize > cpi->sf.use_square_only_threshold) { if (cpi->use_svc) { if (!vp9_active_h_edge(cpi, mi_row, mi_step) || x->e_mbd.lossless) partition_horz_allowed &= force_horz_split; if (!vp9_active_v_edge(cpi, mi_row, mi_step) || x->e_mbd.lossless) partition_vert_allowed &= force_vert_split; } else { partition_horz_allowed &= force_horz_split; partition_vert_allowed &= force_vert_split; } } save_context(x, mi_row, mi_col, a, l, sa, sl, bsize); #if CONFIG_FP_MB_STATS if (cpi->use_fp_mb_stats) { set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize); src_diff_var = get_sby_perpixel_diff_variance(cpi, &x->plane[0].src, mi_row, mi_col, bsize); } #endif #if CONFIG_FP_MB_STATS // Decide whether we shall split directly and skip searching NONE by using // the first pass block statistics if (cpi->use_fp_mb_stats && bsize >= BLOCK_32X32 && do_split && partition_none_allowed && src_diff_var > 4 && cm->base_qindex < qindex_split_threshold_lookup[bsize]) { int mb_row = mi_row >> 1; int mb_col = mi_col >> 1; int mb_row_end = VPXMIN(mb_row + num_16x16_blocks_high_lookup[bsize], cm->mb_rows); int mb_col_end = VPXMIN(mb_col + num_16x16_blocks_wide_lookup[bsize], cm->mb_cols); int r, c; // compute a complexity measure, basically measure inconsistency of motion // vectors obtained from the first pass in the current block for (r = mb_row; r < mb_row_end; r++) { for (c = mb_col; c < mb_col_end; c++) { const int mb_index = r * cm->mb_cols + c; MOTION_DIRECTION this_mv; MOTION_DIRECTION right_mv; MOTION_DIRECTION bottom_mv; this_mv = get_motion_direction_fp(cpi->twopass.this_frame_mb_stats[mb_index]); // to its right if (c != mb_col_end - 1) { right_mv = get_motion_direction_fp( cpi->twopass.this_frame_mb_stats[mb_index + 1]); none_complexity += get_motion_inconsistency(this_mv, right_mv); } // to its bottom if (r != mb_row_end - 1) { bottom_mv = get_motion_direction_fp( cpi->twopass.this_frame_mb_stats[mb_index + cm->mb_cols]); none_complexity += get_motion_inconsistency(this_mv, bottom_mv); } // do not count its left and top neighbors to avoid double counting } } if (none_complexity > complexity_16x16_blocks_threshold[bsize]) { partition_none_allowed = 0; } } #endif // PARTITION_NONE if (partition_none_allowed) { rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc, bsize, ctx, best_rdc.rdcost); if (this_rdc.rate != INT_MAX) { if (bsize >= BLOCK_8X8) { this_rdc.rate += cpi->partition_cost[pl][PARTITION_NONE]; this_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, this_rdc.rate, this_rdc.dist); } if (this_rdc.rdcost < best_rdc.rdcost) { MODE_INFO *mi = xd->mi[0]; best_rdc = this_rdc; if (bsize >= BLOCK_8X8) pc_tree->partitioning = PARTITION_NONE; if (!cpi->sf.ml_partition_search_early_termination) { // If all y, u, v transform blocks in this partition are skippable, // and the dist & rate are within the thresholds, the partition search // is terminated for current branch of the partition search tree. if (!x->e_mbd.lossless && ctx->skippable && ((best_rdc.dist < (dist_breakout_thr >> 2)) || (best_rdc.dist < dist_breakout_thr && best_rdc.rate < rate_breakout_thr))) { do_split = 0; do_rect = 0; } } else { // Currently, the machine-learning based partition search early // termination is only used while bsize is 16x16, 32x32 or 64x64, // VPXMIN(cm->width, cm->height) >= 480, and speed = 0. if (!x->e_mbd.lossless && !segfeature_active(&cm->seg, mi->segment_id, SEG_LVL_SKIP) && ctx->mic.mode >= INTRA_MODES && bsize >= BLOCK_16X16) { if (compute_score(cm, xd, ctx, mi_row, mi_col, bsize) < 0.0) { do_split = 0; do_rect = 0; } } } #if CONFIG_FP_MB_STATS // Check if every 16x16 first pass block statistics has zero // motion and the corresponding first pass residue is small enough. // If that is the case, check the difference variance between the // current frame and the last frame. If the variance is small enough, // stop further splitting in RD optimization if (cpi->use_fp_mb_stats && do_split != 0 && cm->base_qindex > qindex_skip_threshold_lookup[bsize]) { int mb_row = mi_row >> 1; int mb_col = mi_col >> 1; int mb_row_end = VPXMIN(mb_row + num_16x16_blocks_high_lookup[bsize], cm->mb_rows); int mb_col_end = VPXMIN(mb_col + num_16x16_blocks_wide_lookup[bsize], cm->mb_cols); int r, c; int skip = 1; for (r = mb_row; r < mb_row_end; r++) { for (c = mb_col; c < mb_col_end; c++) { const int mb_index = r * cm->mb_cols + c; if (!(cpi->twopass.this_frame_mb_stats[mb_index] & FPMB_MOTION_ZERO_MASK) || !(cpi->twopass.this_frame_mb_stats[mb_index] & FPMB_ERROR_SMALL_MASK)) { skip = 0; break; } } if (skip == 0) { break; } } if (skip) { if (src_diff_var == UINT_MAX) { set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize); src_diff_var = get_sby_perpixel_diff_variance( cpi, &x->plane[0].src, mi_row, mi_col, bsize); } if (src_diff_var < 8) { do_split = 0; do_rect = 0; } } } #endif } } restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize); } // store estimated motion vector if (cpi->sf.adaptive_motion_search) store_pred_mv(x, ctx); // If the interp_filter is marked as SWITCHABLE_FILTERS, it was for an // intra block and used for context purposes. if (ctx->mic.interp_filter == SWITCHABLE_FILTERS) { pred_interp_filter = EIGHTTAP; } else { pred_interp_filter = ctx->mic.interp_filter; } // PARTITION_SPLIT // TODO(jingning): use the motion vectors given by the above search as // the starting point of motion search in the following partition type check. if (do_split) { subsize = get_subsize(bsize, PARTITION_SPLIT); if (bsize == BLOCK_8X8) { i = 4; if (cpi->sf.adaptive_pred_interp_filter && partition_none_allowed) pc_tree->leaf_split[0]->pred_interp_filter = pred_interp_filter; rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, subsize, pc_tree->leaf_split[0], best_rdc.rdcost); if (sum_rdc.rate == INT_MAX) sum_rdc.rdcost = INT64_MAX; } else { for (i = 0; i < 4 && sum_rdc.rdcost < best_rdc.rdcost; ++i) { const int x_idx = (i & 1) * mi_step; const int y_idx = (i >> 1) * mi_step; if (mi_row + y_idx >= cm->mi_rows || mi_col + x_idx >= cm->mi_cols) continue; if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx); pc_tree->split[i]->index = i; rd_pick_partition(cpi, td, tile_data, tp, mi_row + y_idx, mi_col + x_idx, subsize, &this_rdc, best_rdc.rdcost - sum_rdc.rdcost, pc_tree->split[i]); if (this_rdc.rate == INT_MAX) { sum_rdc.rdcost = INT64_MAX; break; } else { sum_rdc.rate += this_rdc.rate; sum_rdc.dist += this_rdc.dist; sum_rdc.rdcost += this_rdc.rdcost; } } } if (sum_rdc.rdcost < best_rdc.rdcost && i == 4) { sum_rdc.rate += cpi->partition_cost[pl][PARTITION_SPLIT]; sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist); if (sum_rdc.rdcost < best_rdc.rdcost) { best_rdc = sum_rdc; pc_tree->partitioning = PARTITION_SPLIT; // Rate and distortion based partition search termination clause. if (!cpi->sf.ml_partition_search_early_termination && !x->e_mbd.lossless && ((best_rdc.dist < (dist_breakout_thr >> 2)) || (best_rdc.dist < dist_breakout_thr && best_rdc.rate < rate_breakout_thr))) { do_rect = 0; } } } else { // skip rectangular partition test when larger block size // gives better rd cost if ((cpi->sf.less_rectangular_check) && ((bsize > cpi->sf.use_square_only_threshold) || (best_rdc.dist < dist_breakout_thr))) do_rect &= !partition_none_allowed; } restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize); } // PARTITION_HORZ if (partition_horz_allowed && (do_rect || vp9_active_h_edge(cpi, mi_row, mi_step))) { subsize = get_subsize(bsize, PARTITION_HORZ); if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx); if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 && partition_none_allowed) pc_tree->horizontal[0].pred_interp_filter = pred_interp_filter; rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, subsize, &pc_tree->horizontal[0], best_rdc.rdcost); if (sum_rdc.rdcost < best_rdc.rdcost && mi_row + mi_step < cm->mi_rows && bsize > BLOCK_8X8) { PICK_MODE_CONTEXT *ctx = &pc_tree->horizontal[0]; update_state(cpi, td, ctx, mi_row, mi_col, subsize, 0); encode_superblock(cpi, td, tp, 0, mi_row, mi_col, subsize, ctx); if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx); if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 && partition_none_allowed) pc_tree->horizontal[1].pred_interp_filter = pred_interp_filter; rd_pick_sb_modes(cpi, tile_data, x, mi_row + mi_step, mi_col, &this_rdc, subsize, &pc_tree->horizontal[1], best_rdc.rdcost - sum_rdc.rdcost); if (this_rdc.rate == INT_MAX) { sum_rdc.rdcost = INT64_MAX; } else { sum_rdc.rate += this_rdc.rate; sum_rdc.dist += this_rdc.dist; sum_rdc.rdcost += this_rdc.rdcost; } } if (sum_rdc.rdcost < best_rdc.rdcost) { sum_rdc.rate += cpi->partition_cost[pl][PARTITION_HORZ]; sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist); if (sum_rdc.rdcost < best_rdc.rdcost) { best_rdc = sum_rdc; pc_tree->partitioning = PARTITION_HORZ; if ((cpi->sf.less_rectangular_check) && (bsize > cpi->sf.use_square_only_threshold)) do_rect = 0; } } restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize); } // PARTITION_VERT if (partition_vert_allowed && (do_rect || vp9_active_v_edge(cpi, mi_col, mi_step))) { subsize = get_subsize(bsize, PARTITION_VERT); if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx); if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 && partition_none_allowed) pc_tree->vertical[0].pred_interp_filter = pred_interp_filter; rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, subsize, &pc_tree->vertical[0], best_rdc.rdcost); if (sum_rdc.rdcost < best_rdc.rdcost && mi_col + mi_step < cm->mi_cols && bsize > BLOCK_8X8) { update_state(cpi, td, &pc_tree->vertical[0], mi_row, mi_col, subsize, 0); encode_superblock(cpi, td, tp, 0, mi_row, mi_col, subsize, &pc_tree->vertical[0]); if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx); if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 && partition_none_allowed) pc_tree->vertical[1].pred_interp_filter = pred_interp_filter; rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + mi_step, &this_rdc, subsize, &pc_tree->vertical[1], best_rdc.rdcost - sum_rdc.rdcost); if (this_rdc.rate == INT_MAX) { sum_rdc.rdcost = INT64_MAX; } else { sum_rdc.rate += this_rdc.rate; sum_rdc.dist += this_rdc.dist; sum_rdc.rdcost += this_rdc.rdcost; } } if (sum_rdc.rdcost < best_rdc.rdcost) { sum_rdc.rate += cpi->partition_cost[pl][PARTITION_VERT]; sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist); if (sum_rdc.rdcost < best_rdc.rdcost) { best_rdc = sum_rdc; pc_tree->partitioning = PARTITION_VERT; } } restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize); } // TODO(jbb): This code added so that we avoid static analysis // warning related to the fact that best_rd isn't used after this // point. This code should be refactored so that the duplicate // checks occur in some sub function and thus are used... (void)best_rd; *rd_cost = best_rdc; if (best_rdc.rate < INT_MAX && best_rdc.dist < INT64_MAX && pc_tree->index != 3) { int output_enabled = (bsize == BLOCK_64X64); encode_sb(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled, bsize, pc_tree); } if (bsize == BLOCK_64X64) { assert(tp_orig < *tp); assert(best_rdc.rate < INT_MAX); assert(best_rdc.dist < INT64_MAX); } else { assert(tp_orig == *tp); } } static void encode_rd_sb_row(VP9_COMP *cpi, ThreadData *td, TileDataEnc *tile_data, int mi_row, TOKENEXTRA **tp) { VP9_COMMON *const cm = &cpi->common; TileInfo *const tile_info = &tile_data->tile_info; MACROBLOCK *const x = &td->mb; MACROBLOCKD *const xd = &x->e_mbd; SPEED_FEATURES *const sf = &cpi->sf; const int mi_col_start = tile_info->mi_col_start; const int mi_col_end = tile_info->mi_col_end; int mi_col; const int sb_row = mi_row >> MI_BLOCK_SIZE_LOG2; const int num_sb_cols = get_num_cols(tile_data->tile_info, MI_BLOCK_SIZE_LOG2); int sb_col_in_tile; // Initialize the left context for the new SB row memset(&xd->left_context, 0, sizeof(xd->left_context)); memset(xd->left_seg_context, 0, sizeof(xd->left_seg_context)); // Code each SB in the row for (mi_col = mi_col_start, sb_col_in_tile = 0; mi_col < mi_col_end; mi_col += MI_BLOCK_SIZE, sb_col_in_tile++) { const struct segmentation *const seg = &cm->seg; int dummy_rate; int64_t dummy_dist; RD_COST dummy_rdc; int i; int seg_skip = 0; const int idx_str = cm->mi_stride * mi_row + mi_col; MODE_INFO **mi = cm->mi_grid_visible + idx_str; (*(cpi->row_mt_sync_read_ptr))(&tile_data->row_mt_sync, sb_row, sb_col_in_tile); if (sf->adaptive_pred_interp_filter) { for (i = 0; i < 64; ++i) td->leaf_tree[i].pred_interp_filter = SWITCHABLE; for (i = 0; i < 64; ++i) { td->pc_tree[i].vertical[0].pred_interp_filter = SWITCHABLE; td->pc_tree[i].vertical[1].pred_interp_filter = SWITCHABLE; td->pc_tree[i].horizontal[0].pred_interp_filter = SWITCHABLE; td->pc_tree[i].horizontal[1].pred_interp_filter = SWITCHABLE; } } vp9_zero(x->pred_mv); td->pc_root->index = 0; if (seg->enabled) { const uint8_t *const map = seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map; int segment_id = get_segment_id(cm, map, BLOCK_64X64, mi_row, mi_col); seg_skip = segfeature_active(seg, segment_id, SEG_LVL_SKIP); } x->source_variance = UINT_MAX; if (sf->partition_search_type == FIXED_PARTITION || seg_skip) { const BLOCK_SIZE bsize = seg_skip ? BLOCK_64X64 : sf->always_this_block_size; set_offsets(cpi, tile_info, x, mi_row, mi_col, BLOCK_64X64); set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize); rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, BLOCK_64X64, &dummy_rate, &dummy_dist, 1, td->pc_root); } else if (cpi->partition_search_skippable_frame) { BLOCK_SIZE bsize; set_offsets(cpi, tile_info, x, mi_row, mi_col, BLOCK_64X64); bsize = get_rd_var_based_fixed_partition(cpi, x, mi_row, mi_col); set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize); rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, BLOCK_64X64, &dummy_rate, &dummy_dist, 1, td->pc_root); } else if (sf->partition_search_type == VAR_BASED_PARTITION && cm->frame_type != KEY_FRAME) { choose_partitioning(cpi, tile_info, x, mi_row, mi_col); rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, BLOCK_64X64, &dummy_rate, &dummy_dist, 1, td->pc_root); } else { // If required set upper and lower partition size limits if (sf->auto_min_max_partition_size) { set_offsets(cpi, tile_info, x, mi_row, mi_col, BLOCK_64X64); rd_auto_partition_range(cpi, tile_info, xd, mi_row, mi_col, &x->min_partition_size, &x->max_partition_size); } rd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, BLOCK_64X64, &dummy_rdc, INT64_MAX, td->pc_root); } (*(cpi->row_mt_sync_write_ptr))(&tile_data->row_mt_sync, sb_row, sb_col_in_tile, num_sb_cols); } } static void init_encode_frame_mb_context(VP9_COMP *cpi) { MACROBLOCK *const x = &cpi->td.mb; VP9_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &x->e_mbd; const int aligned_mi_cols = mi_cols_aligned_to_sb(cm->mi_cols); // Copy data over into macro block data structures. vp9_setup_src_planes(x, cpi->Source, 0, 0); vp9_setup_block_planes(&x->e_mbd, cm->subsampling_x, cm->subsampling_y); // Note: this memset assumes above_context[0], [1] and [2] // are allocated as part of the same buffer. memset(xd->above_context[0], 0, sizeof(*xd->above_context[0]) * 2 * aligned_mi_cols * MAX_MB_PLANE); memset(xd->above_seg_context, 0, sizeof(*xd->above_seg_context) * aligned_mi_cols); } static int check_dual_ref_flags(VP9_COMP *cpi) { const int ref_flags = cpi->ref_frame_flags; if (segfeature_active(&cpi->common.seg, 1, SEG_LVL_REF_FRAME)) { return 0; } else { return (!!(ref_flags & VP9_GOLD_FLAG) + !!(ref_flags & VP9_LAST_FLAG) + !!(ref_flags & VP9_ALT_FLAG)) >= 2; } } static void reset_skip_tx_size(VP9_COMMON *cm, TX_SIZE max_tx_size) { int mi_row, mi_col; const int mis = cm->mi_stride; MODE_INFO **mi_ptr = cm->mi_grid_visible; for (mi_row = 0; mi_row < cm->mi_rows; ++mi_row, mi_ptr += mis) { for (mi_col = 0; mi_col < cm->mi_cols; ++mi_col) { if (mi_ptr[mi_col]->tx_size > max_tx_size) mi_ptr[mi_col]->tx_size = max_tx_size; } } } static MV_REFERENCE_FRAME get_frame_type(const VP9_COMP *cpi) { if (frame_is_intra_only(&cpi->common)) return INTRA_FRAME; else if (cpi->rc.is_src_frame_alt_ref && cpi->refresh_golden_frame) return ALTREF_FRAME; else if (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame) return GOLDEN_FRAME; else return LAST_FRAME; } static TX_MODE select_tx_mode(const VP9_COMP *cpi, MACROBLOCKD *const xd) { if (xd->lossless) return ONLY_4X4; if (cpi->common.frame_type == KEY_FRAME && cpi->sf.use_nonrd_pick_mode) return ALLOW_16X16; if (cpi->sf.tx_size_search_method == USE_LARGESTALL) return ALLOW_32X32; else if (cpi->sf.tx_size_search_method == USE_FULL_RD || cpi->sf.tx_size_search_method == USE_TX_8X8) return TX_MODE_SELECT; else return cpi->common.tx_mode; } static void hybrid_intra_mode_search(VP9_COMP *cpi, MACROBLOCK *const x, RD_COST *rd_cost, BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) { if (bsize < BLOCK_16X16) vp9_rd_pick_intra_mode_sb(cpi, x, rd_cost, bsize, ctx, INT64_MAX); else vp9_pick_intra_mode(cpi, x, rd_cost, bsize, ctx); } static void nonrd_pick_sb_modes(VP9_COMP *cpi, TileDataEnc *tile_data, MACROBLOCK *const x, int mi_row, int mi_col, RD_COST *rd_cost, BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) { VP9_COMMON *const cm = &cpi->common; TileInfo *const tile_info = &tile_data->tile_info; MACROBLOCKD *const xd = &x->e_mbd; MODE_INFO *mi; ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE]; BLOCK_SIZE bs = VPXMAX(bsize, BLOCK_8X8); // processing unit block size const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bs]; const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bs]; int plane; set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize); mi = xd->mi[0]; mi->sb_type = bsize; for (plane = 0; plane < MAX_MB_PLANE; ++plane) { struct macroblockd_plane *pd = &xd->plane[plane]; memcpy(a + num_4x4_blocks_wide * plane, pd->above_context, (sizeof(a[0]) * num_4x4_blocks_wide) >> pd->subsampling_x); memcpy(l + num_4x4_blocks_high * plane, pd->left_context, (sizeof(l[0]) * num_4x4_blocks_high) >> pd->subsampling_y); } if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled) if (cyclic_refresh_segment_id_boosted(mi->segment_id)) x->rdmult = vp9_cyclic_refresh_get_rdmult(cpi->cyclic_refresh); if (cm->frame_type == KEY_FRAME) hybrid_intra_mode_search(cpi, x, rd_cost, bsize, ctx); else if (segfeature_active(&cm->seg, mi->segment_id, SEG_LVL_SKIP)) set_mode_info_seg_skip(x, cm->tx_mode, rd_cost, bsize); else if (bsize >= BLOCK_8X8) vp9_pick_inter_mode(cpi, x, tile_data, mi_row, mi_col, rd_cost, bsize, ctx); else vp9_pick_inter_mode_sub8x8(cpi, x, mi_row, mi_col, rd_cost, bsize, ctx); duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, bsize); for (plane = 0; plane < MAX_MB_PLANE; ++plane) { struct macroblockd_plane *pd = &xd->plane[plane]; memcpy(pd->above_context, a + num_4x4_blocks_wide * plane, (sizeof(a[0]) * num_4x4_blocks_wide) >> pd->subsampling_x); memcpy(pd->left_context, l + num_4x4_blocks_high * plane, (sizeof(l[0]) * num_4x4_blocks_high) >> pd->subsampling_y); } if (rd_cost->rate == INT_MAX) vp9_rd_cost_reset(rd_cost); ctx->rate = rd_cost->rate; ctx->dist = rd_cost->dist; } static void fill_mode_info_sb(VP9_COMMON *cm, MACROBLOCK *x, int mi_row, int mi_col, BLOCK_SIZE bsize, PC_TREE *pc_tree) { MACROBLOCKD *xd = &x->e_mbd; int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4; PARTITION_TYPE partition = pc_tree->partitioning; BLOCK_SIZE subsize = get_subsize(bsize, partition); assert(bsize >= BLOCK_8X8); if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; switch (partition) { case PARTITION_NONE: set_mode_info_offsets(cm, x, xd, mi_row, mi_col); *(xd->mi[0]) = pc_tree->none.mic; *(x->mbmi_ext) = pc_tree->none.mbmi_ext; duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, bsize); break; case PARTITION_VERT: set_mode_info_offsets(cm, x, xd, mi_row, mi_col); *(xd->mi[0]) = pc_tree->vertical[0].mic; *(x->mbmi_ext) = pc_tree->vertical[0].mbmi_ext; duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, subsize); if (mi_col + hbs < cm->mi_cols) { set_mode_info_offsets(cm, x, xd, mi_row, mi_col + hbs); *(xd->mi[0]) = pc_tree->vertical[1].mic; *(x->mbmi_ext) = pc_tree->vertical[1].mbmi_ext; duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col + hbs, subsize); } break; case PARTITION_HORZ: set_mode_info_offsets(cm, x, xd, mi_row, mi_col); *(xd->mi[0]) = pc_tree->horizontal[0].mic; *(x->mbmi_ext) = pc_tree->horizontal[0].mbmi_ext; duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, subsize); if (mi_row + hbs < cm->mi_rows) { set_mode_info_offsets(cm, x, xd, mi_row + hbs, mi_col); *(xd->mi[0]) = pc_tree->horizontal[1].mic; *(x->mbmi_ext) = pc_tree->horizontal[1].mbmi_ext; duplicate_mode_info_in_sb(cm, xd, mi_row + hbs, mi_col, subsize); } break; case PARTITION_SPLIT: { fill_mode_info_sb(cm, x, mi_row, mi_col, subsize, pc_tree->split[0]); fill_mode_info_sb(cm, x, mi_row, mi_col + hbs, subsize, pc_tree->split[1]); fill_mode_info_sb(cm, x, mi_row + hbs, mi_col, subsize, pc_tree->split[2]); fill_mode_info_sb(cm, x, mi_row + hbs, mi_col + hbs, subsize, pc_tree->split[3]); break; } default: break; } } // Reset the prediction pixel ready flag recursively. static void pred_pixel_ready_reset(PC_TREE *pc_tree, BLOCK_SIZE bsize) { pc_tree->none.pred_pixel_ready = 0; pc_tree->horizontal[0].pred_pixel_ready = 0; pc_tree->horizontal[1].pred_pixel_ready = 0; pc_tree->vertical[0].pred_pixel_ready = 0; pc_tree->vertical[1].pred_pixel_ready = 0; if (bsize > BLOCK_8X8) { BLOCK_SIZE subsize = get_subsize(bsize, PARTITION_SPLIT); int i; for (i = 0; i < 4; ++i) pred_pixel_ready_reset(pc_tree->split[i], subsize); } } static void nonrd_pick_partition(VP9_COMP *cpi, ThreadData *td, TileDataEnc *tile_data, TOKENEXTRA **tp, int mi_row, int mi_col, BLOCK_SIZE bsize, RD_COST *rd_cost, int do_recon, int64_t best_rd, PC_TREE *pc_tree) { const SPEED_FEATURES *const sf = &cpi->sf; VP9_COMMON *const cm = &cpi->common; TileInfo *const tile_info = &tile_data->tile_info; MACROBLOCK *const x = &td->mb; MACROBLOCKD *const xd = &x->e_mbd; const int ms = num_8x8_blocks_wide_lookup[bsize] / 2; TOKENEXTRA *tp_orig = *tp; PICK_MODE_CONTEXT *ctx = &pc_tree->none; int i; BLOCK_SIZE subsize = bsize; RD_COST this_rdc, sum_rdc, best_rdc; int do_split = bsize >= BLOCK_8X8; int do_rect = 1; // Override skipping rectangular partition operations for edge blocks const int force_horz_split = (mi_row + ms >= cm->mi_rows); const int force_vert_split = (mi_col + ms >= cm->mi_cols); const int xss = x->e_mbd.plane[1].subsampling_x; const int yss = x->e_mbd.plane[1].subsampling_y; int partition_none_allowed = !force_horz_split && !force_vert_split; int partition_horz_allowed = !force_vert_split && yss <= xss && bsize >= BLOCK_8X8; int partition_vert_allowed = !force_horz_split && xss <= yss && bsize >= BLOCK_8X8; (void)*tp_orig; assert(num_8x8_blocks_wide_lookup[bsize] == num_8x8_blocks_high_lookup[bsize]); vp9_rd_cost_init(&sum_rdc); vp9_rd_cost_reset(&best_rdc); best_rdc.rdcost = best_rd; // Determine partition types in search according to the speed features. // The threshold set here has to be of square block size. if (sf->auto_min_max_partition_size) { partition_none_allowed &= (bsize <= x->max_partition_size && bsize >= x->min_partition_size); partition_horz_allowed &= ((bsize <= x->max_partition_size && bsize > x->min_partition_size) || force_horz_split); partition_vert_allowed &= ((bsize <= x->max_partition_size && bsize > x->min_partition_size) || force_vert_split); do_split &= bsize > x->min_partition_size; } if (sf->use_square_partition_only) { partition_horz_allowed &= force_horz_split; partition_vert_allowed &= force_vert_split; } ctx->pred_pixel_ready = !(partition_vert_allowed || partition_horz_allowed || do_split); // PARTITION_NONE if (partition_none_allowed) { nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc, bsize, ctx); ctx->mic = *xd->mi[0]; ctx->mbmi_ext = *x->mbmi_ext; ctx->skip_txfm[0] = x->skip_txfm[0]; ctx->skip = x->skip; if (this_rdc.rate != INT_MAX) { int pl = partition_plane_context(xd, mi_row, mi_col, bsize); this_rdc.rate += cpi->partition_cost[pl][PARTITION_NONE]; this_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, this_rdc.rate, this_rdc.dist); if (this_rdc.rdcost < best_rdc.rdcost) { int64_t dist_breakout_thr = sf->partition_search_breakout_thr.dist; int64_t rate_breakout_thr = sf->partition_search_breakout_thr.rate; dist_breakout_thr >>= 8 - (b_width_log2_lookup[bsize] + b_height_log2_lookup[bsize]); rate_breakout_thr *= num_pels_log2_lookup[bsize]; best_rdc = this_rdc; if (bsize >= BLOCK_8X8) pc_tree->partitioning = PARTITION_NONE; if (!x->e_mbd.lossless && this_rdc.rate < rate_breakout_thr && this_rdc.dist < dist_breakout_thr) { do_split = 0; do_rect = 0; } } } } // store estimated motion vector store_pred_mv(x, ctx); // PARTITION_SPLIT if (do_split) { int pl = partition_plane_context(xd, mi_row, mi_col, bsize); sum_rdc.rate += cpi->partition_cost[pl][PARTITION_SPLIT]; sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist); subsize = get_subsize(bsize, PARTITION_SPLIT); for (i = 0; i < 4 && sum_rdc.rdcost < best_rdc.rdcost; ++i) { const int x_idx = (i & 1) * ms; const int y_idx = (i >> 1) * ms; if (mi_row + y_idx >= cm->mi_rows || mi_col + x_idx >= cm->mi_cols) continue; load_pred_mv(x, ctx); nonrd_pick_partition(cpi, td, tile_data, tp, mi_row + y_idx, mi_col + x_idx, subsize, &this_rdc, 0, best_rdc.rdcost - sum_rdc.rdcost, pc_tree->split[i]); if (this_rdc.rate == INT_MAX) { vp9_rd_cost_reset(&sum_rdc); } else { sum_rdc.rate += this_rdc.rate; sum_rdc.dist += this_rdc.dist; sum_rdc.rdcost += this_rdc.rdcost; } } if (sum_rdc.rdcost < best_rdc.rdcost) { best_rdc = sum_rdc; pc_tree->partitioning = PARTITION_SPLIT; } else { // skip rectangular partition test when larger block size // gives better rd cost if (sf->less_rectangular_check) do_rect &= !partition_none_allowed; } } // PARTITION_HORZ if (partition_horz_allowed && do_rect) { subsize = get_subsize(bsize, PARTITION_HORZ); if (sf->adaptive_motion_search) load_pred_mv(x, ctx); pc_tree->horizontal[0].pred_pixel_ready = 1; nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, subsize, &pc_tree->horizontal[0]); pc_tree->horizontal[0].mic = *xd->mi[0]; pc_tree->horizontal[0].mbmi_ext = *x->mbmi_ext; pc_tree->horizontal[0].skip_txfm[0] = x->skip_txfm[0]; pc_tree->horizontal[0].skip = x->skip; if (sum_rdc.rdcost < best_rdc.rdcost && mi_row + ms < cm->mi_rows) { load_pred_mv(x, ctx); pc_tree->horizontal[1].pred_pixel_ready = 1; nonrd_pick_sb_modes(cpi, tile_data, x, mi_row + ms, mi_col, &this_rdc, subsize, &pc_tree->horizontal[1]); pc_tree->horizontal[1].mic = *xd->mi[0]; pc_tree->horizontal[1].mbmi_ext = *x->mbmi_ext; pc_tree->horizontal[1].skip_txfm[0] = x->skip_txfm[0]; pc_tree->horizontal[1].skip = x->skip; if (this_rdc.rate == INT_MAX) { vp9_rd_cost_reset(&sum_rdc); } else { int pl = partition_plane_context(xd, mi_row, mi_col, bsize); this_rdc.rate += cpi->partition_cost[pl][PARTITION_HORZ]; sum_rdc.rate += this_rdc.rate; sum_rdc.dist += this_rdc.dist; sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist); } } if (sum_rdc.rdcost < best_rdc.rdcost) { best_rdc = sum_rdc; pc_tree->partitioning = PARTITION_HORZ; } else { pred_pixel_ready_reset(pc_tree, bsize); } } // PARTITION_VERT if (partition_vert_allowed && do_rect) { subsize = get_subsize(bsize, PARTITION_VERT); if (sf->adaptive_motion_search) load_pred_mv(x, ctx); pc_tree->vertical[0].pred_pixel_ready = 1; nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, subsize, &pc_tree->vertical[0]); pc_tree->vertical[0].mic = *xd->mi[0]; pc_tree->vertical[0].mbmi_ext = *x->mbmi_ext; pc_tree->vertical[0].skip_txfm[0] = x->skip_txfm[0]; pc_tree->vertical[0].skip = x->skip; if (sum_rdc.rdcost < best_rdc.rdcost && mi_col + ms < cm->mi_cols) { load_pred_mv(x, ctx); pc_tree->vertical[1].pred_pixel_ready = 1; nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + ms, &this_rdc, subsize, &pc_tree->vertical[1]); pc_tree->vertical[1].mic = *xd->mi[0]; pc_tree->vertical[1].mbmi_ext = *x->mbmi_ext; pc_tree->vertical[1].skip_txfm[0] = x->skip_txfm[0]; pc_tree->vertical[1].skip = x->skip; if (this_rdc.rate == INT_MAX) { vp9_rd_cost_reset(&sum_rdc); } else { int pl = partition_plane_context(xd, mi_row, mi_col, bsize); sum_rdc.rate += cpi->partition_cost[pl][PARTITION_VERT]; sum_rdc.rate += this_rdc.rate; sum_rdc.dist += this_rdc.dist; sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist); } } if (sum_rdc.rdcost < best_rdc.rdcost) { best_rdc = sum_rdc; pc_tree->partitioning = PARTITION_VERT; } else { pred_pixel_ready_reset(pc_tree, bsize); } } *rd_cost = best_rdc; if (best_rdc.rate == INT_MAX) { vp9_rd_cost_reset(rd_cost); return; } // update mode info array fill_mode_info_sb(cm, x, mi_row, mi_col, bsize, pc_tree); if (best_rdc.rate < INT_MAX && best_rdc.dist < INT64_MAX && do_recon) { int output_enabled = (bsize == BLOCK_64X64); encode_sb_rt(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled, bsize, pc_tree); } if (bsize == BLOCK_64X64 && do_recon) { assert(tp_orig < *tp); assert(best_rdc.rate < INT_MAX); assert(best_rdc.dist < INT64_MAX); } else { assert(tp_orig == *tp); } } static void nonrd_select_partition(VP9_COMP *cpi, ThreadData *td, TileDataEnc *tile_data, MODE_INFO **mi, TOKENEXTRA **tp, int mi_row, int mi_col, BLOCK_SIZE bsize, int output_enabled, RD_COST *rd_cost, PC_TREE *pc_tree) { VP9_COMMON *const cm = &cpi->common; TileInfo *const tile_info = &tile_data->tile_info; MACROBLOCK *const x = &td->mb; MACROBLOCKD *const xd = &x->e_mbd; const int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4; const int mis = cm->mi_stride; PARTITION_TYPE partition; BLOCK_SIZE subsize; RD_COST this_rdc; vp9_rd_cost_reset(&this_rdc); if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; subsize = (bsize >= BLOCK_8X8) ? mi[0]->sb_type : BLOCK_4X4; partition = partition_lookup[bsl][subsize]; if (bsize == BLOCK_32X32 && subsize == BLOCK_32X32) { x->max_partition_size = BLOCK_32X32; x->min_partition_size = BLOCK_16X16; nonrd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, bsize, rd_cost, 0, INT64_MAX, pc_tree); } else if (bsize == BLOCK_32X32 && partition != PARTITION_NONE && subsize >= BLOCK_16X16) { x->max_partition_size = BLOCK_32X32; x->min_partition_size = BLOCK_8X8; nonrd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, bsize, rd_cost, 0, INT64_MAX, pc_tree); } else if (bsize == BLOCK_16X16 && partition != PARTITION_NONE) { x->max_partition_size = BLOCK_16X16; x->min_partition_size = BLOCK_8X8; nonrd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, bsize, rd_cost, 0, INT64_MAX, pc_tree); } else { switch (partition) { case PARTITION_NONE: pc_tree->none.pred_pixel_ready = 1; nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, rd_cost, subsize, &pc_tree->none); pc_tree->none.mic = *xd->mi[0]; pc_tree->none.mbmi_ext = *x->mbmi_ext; pc_tree->none.skip_txfm[0] = x->skip_txfm[0]; pc_tree->none.skip = x->skip; break; case PARTITION_VERT: pc_tree->vertical[0].pred_pixel_ready = 1; nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, rd_cost, subsize, &pc_tree->vertical[0]); pc_tree->vertical[0].mic = *xd->mi[0]; pc_tree->vertical[0].mbmi_ext = *x->mbmi_ext; pc_tree->vertical[0].skip_txfm[0] = x->skip_txfm[0]; pc_tree->vertical[0].skip = x->skip; if (mi_col + hbs < cm->mi_cols) { pc_tree->vertical[1].pred_pixel_ready = 1; nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + hbs, &this_rdc, subsize, &pc_tree->vertical[1]); pc_tree->vertical[1].mic = *xd->mi[0]; pc_tree->vertical[1].mbmi_ext = *x->mbmi_ext; pc_tree->vertical[1].skip_txfm[0] = x->skip_txfm[0]; pc_tree->vertical[1].skip = x->skip; if (this_rdc.rate != INT_MAX && this_rdc.dist != INT64_MAX && rd_cost->rate != INT_MAX && rd_cost->dist != INT64_MAX) { rd_cost->rate += this_rdc.rate; rd_cost->dist += this_rdc.dist; } } break; case PARTITION_HORZ: pc_tree->horizontal[0].pred_pixel_ready = 1; nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, rd_cost, subsize, &pc_tree->horizontal[0]); pc_tree->horizontal[0].mic = *xd->mi[0]; pc_tree->horizontal[0].mbmi_ext = *x->mbmi_ext; pc_tree->horizontal[0].skip_txfm[0] = x->skip_txfm[0]; pc_tree->horizontal[0].skip = x->skip; if (mi_row + hbs < cm->mi_rows) { pc_tree->horizontal[1].pred_pixel_ready = 1; nonrd_pick_sb_modes(cpi, tile_data, x, mi_row + hbs, mi_col, &this_rdc, subsize, &pc_tree->horizontal[1]); pc_tree->horizontal[1].mic = *xd->mi[0]; pc_tree->horizontal[1].mbmi_ext = *x->mbmi_ext; pc_tree->horizontal[1].skip_txfm[0] = x->skip_txfm[0]; pc_tree->horizontal[1].skip = x->skip; if (this_rdc.rate != INT_MAX && this_rdc.dist != INT64_MAX && rd_cost->rate != INT_MAX && rd_cost->dist != INT64_MAX) { rd_cost->rate += this_rdc.rate; rd_cost->dist += this_rdc.dist; } } break; case PARTITION_SPLIT: subsize = get_subsize(bsize, PARTITION_SPLIT); nonrd_select_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, subsize, output_enabled, rd_cost, pc_tree->split[0]); nonrd_select_partition(cpi, td, tile_data, mi + hbs, tp, mi_row, mi_col + hbs, subsize, output_enabled, &this_rdc, pc_tree->split[1]); if (this_rdc.rate != INT_MAX && this_rdc.dist != INT64_MAX && rd_cost->rate != INT_MAX && rd_cost->dist != INT64_MAX) { rd_cost->rate += this_rdc.rate; rd_cost->dist += this_rdc.dist; } nonrd_select_partition(cpi, td, tile_data, mi + hbs * mis, tp, mi_row + hbs, mi_col, subsize, output_enabled, &this_rdc, pc_tree->split[2]); if (this_rdc.rate != INT_MAX && this_rdc.dist != INT64_MAX && rd_cost->rate != INT_MAX && rd_cost->dist != INT64_MAX) { rd_cost->rate += this_rdc.rate; rd_cost->dist += this_rdc.dist; } nonrd_select_partition(cpi, td, tile_data, mi + hbs * mis + hbs, tp, mi_row + hbs, mi_col + hbs, subsize, output_enabled, &this_rdc, pc_tree->split[3]); if (this_rdc.rate != INT_MAX && this_rdc.dist != INT64_MAX && rd_cost->rate != INT_MAX && rd_cost->dist != INT64_MAX) { rd_cost->rate += this_rdc.rate; rd_cost->dist += this_rdc.dist; } break; default: assert(0 && "Invalid partition type."); break; } } if (bsize == BLOCK_64X64 && output_enabled) encode_sb_rt(cpi, td, tile_info, tp, mi_row, mi_col, 1, bsize, pc_tree); } static void nonrd_use_partition(VP9_COMP *cpi, ThreadData *td, TileDataEnc *tile_data, MODE_INFO **mi, TOKENEXTRA **tp, int mi_row, int mi_col, BLOCK_SIZE bsize, int output_enabled, RD_COST *dummy_cost, PC_TREE *pc_tree) { VP9_COMMON *const cm = &cpi->common; TileInfo *tile_info = &tile_data->tile_info; MACROBLOCK *const x = &td->mb; MACROBLOCKD *const xd = &x->e_mbd; const int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4; const int mis = cm->mi_stride; PARTITION_TYPE partition; BLOCK_SIZE subsize; if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; subsize = (bsize >= BLOCK_8X8) ? mi[0]->sb_type : BLOCK_4X4; partition = partition_lookup[bsl][subsize]; if (output_enabled && bsize != BLOCK_4X4) { int ctx = partition_plane_context(xd, mi_row, mi_col, bsize); td->counts->partition[ctx][partition]++; } switch (partition) { case PARTITION_NONE: pc_tree->none.pred_pixel_ready = 1; nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, dummy_cost, subsize, &pc_tree->none); pc_tree->none.mic = *xd->mi[0]; pc_tree->none.mbmi_ext = *x->mbmi_ext; pc_tree->none.skip_txfm[0] = x->skip_txfm[0]; pc_tree->none.skip = x->skip; encode_b_rt(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled, subsize, &pc_tree->none); break; case PARTITION_VERT: pc_tree->vertical[0].pred_pixel_ready = 1; nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, dummy_cost, subsize, &pc_tree->vertical[0]); pc_tree->vertical[0].mic = *xd->mi[0]; pc_tree->vertical[0].mbmi_ext = *x->mbmi_ext; pc_tree->vertical[0].skip_txfm[0] = x->skip_txfm[0]; pc_tree->vertical[0].skip = x->skip; encode_b_rt(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled, subsize, &pc_tree->vertical[0]); if (mi_col + hbs < cm->mi_cols && bsize > BLOCK_8X8) { pc_tree->vertical[1].pred_pixel_ready = 1; nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + hbs, dummy_cost, subsize, &pc_tree->vertical[1]); pc_tree->vertical[1].mic = *xd->mi[0]; pc_tree->vertical[1].mbmi_ext = *x->mbmi_ext; pc_tree->vertical[1].skip_txfm[0] = x->skip_txfm[0]; pc_tree->vertical[1].skip = x->skip; encode_b_rt(cpi, td, tile_info, tp, mi_row, mi_col + hbs, output_enabled, subsize, &pc_tree->vertical[1]); } break; case PARTITION_HORZ: pc_tree->horizontal[0].pred_pixel_ready = 1; nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, dummy_cost, subsize, &pc_tree->horizontal[0]); pc_tree->horizontal[0].mic = *xd->mi[0]; pc_tree->horizontal[0].mbmi_ext = *x->mbmi_ext; pc_tree->horizontal[0].skip_txfm[0] = x->skip_txfm[0]; pc_tree->horizontal[0].skip = x->skip; encode_b_rt(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled, subsize, &pc_tree->horizontal[0]); if (mi_row + hbs < cm->mi_rows && bsize > BLOCK_8X8) { pc_tree->horizontal[1].pred_pixel_ready = 1; nonrd_pick_sb_modes(cpi, tile_data, x, mi_row + hbs, mi_col, dummy_cost, subsize, &pc_tree->horizontal[1]); pc_tree->horizontal[1].mic = *xd->mi[0]; pc_tree->horizontal[1].mbmi_ext = *x->mbmi_ext; pc_tree->horizontal[1].skip_txfm[0] = x->skip_txfm[0]; pc_tree->horizontal[1].skip = x->skip; encode_b_rt(cpi, td, tile_info, tp, mi_row + hbs, mi_col, output_enabled, subsize, &pc_tree->horizontal[1]); } break; case PARTITION_SPLIT: subsize = get_subsize(bsize, PARTITION_SPLIT); if (bsize == BLOCK_8X8) { nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, dummy_cost, subsize, pc_tree->leaf_split[0]); encode_b_rt(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled, subsize, pc_tree->leaf_split[0]); } else { nonrd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, subsize, output_enabled, dummy_cost, pc_tree->split[0]); nonrd_use_partition(cpi, td, tile_data, mi + hbs, tp, mi_row, mi_col + hbs, subsize, output_enabled, dummy_cost, pc_tree->split[1]); nonrd_use_partition(cpi, td, tile_data, mi + hbs * mis, tp, mi_row + hbs, mi_col, subsize, output_enabled, dummy_cost, pc_tree->split[2]); nonrd_use_partition(cpi, td, tile_data, mi + hbs * mis + hbs, tp, mi_row + hbs, mi_col + hbs, subsize, output_enabled, dummy_cost, pc_tree->split[3]); } break; default: assert(0 && "Invalid partition type."); break; } if (partition != PARTITION_SPLIT || bsize == BLOCK_8X8) update_partition_context(xd, mi_row, mi_col, subsize, bsize); } static void encode_nonrd_sb_row(VP9_COMP *cpi, ThreadData *td, TileDataEnc *tile_data, int mi_row, TOKENEXTRA **tp) { SPEED_FEATURES *const sf = &cpi->sf; VP9_COMMON *const cm = &cpi->common; TileInfo *const tile_info = &tile_data->tile_info; MACROBLOCK *const x = &td->mb; MACROBLOCKD *const xd = &x->e_mbd; const int mi_col_start = tile_info->mi_col_start; const int mi_col_end = tile_info->mi_col_end; int mi_col; const int sb_row = mi_row >> MI_BLOCK_SIZE_LOG2; const int num_sb_cols = get_num_cols(tile_data->tile_info, MI_BLOCK_SIZE_LOG2); int sb_col_in_tile; // Initialize the left context for the new SB row memset(&xd->left_context, 0, sizeof(xd->left_context)); memset(xd->left_seg_context, 0, sizeof(xd->left_seg_context)); // Code each SB in the row for (mi_col = mi_col_start, sb_col_in_tile = 0; mi_col < mi_col_end; mi_col += MI_BLOCK_SIZE, ++sb_col_in_tile) { const struct segmentation *const seg = &cm->seg; RD_COST dummy_rdc; const int idx_str = cm->mi_stride * mi_row + mi_col; MODE_INFO **mi = cm->mi_grid_visible + idx_str; PARTITION_SEARCH_TYPE partition_search_type = sf->partition_search_type; BLOCK_SIZE bsize = BLOCK_64X64; int seg_skip = 0; (*(cpi->row_mt_sync_read_ptr))(&tile_data->row_mt_sync, sb_row, sb_col_in_tile); if (cpi->use_skin_detection) { vp9_compute_skin_sb(cpi, BLOCK_16X16, mi_row, mi_col); } x->source_variance = UINT_MAX; vp9_zero(x->pred_mv); vp9_rd_cost_init(&dummy_rdc); x->color_sensitivity[0] = 0; x->color_sensitivity[1] = 0; x->sb_is_skin = 0; x->skip_low_source_sad = 0; x->lowvar_highsumdiff = 0; x->content_state_sb = 0; x->sb_use_mv_part = 0; x->sb_mvcol_part = 0; x->sb_mvrow_part = 0; if (seg->enabled) { const uint8_t *const map = seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map; int segment_id = get_segment_id(cm, map, BLOCK_64X64, mi_row, mi_col); seg_skip = segfeature_active(seg, segment_id, SEG_LVL_SKIP); if (seg_skip) { partition_search_type = FIXED_PARTITION; } } if (cpi->compute_source_sad_onepass && cpi->sf.use_source_sad) { int shift = cpi->Source->y_stride * (mi_row << 3) + (mi_col << 3); int sb_offset2 = ((cm->mi_cols + 7) >> 3) * (mi_row >> 3) + (mi_col >> 3); avg_source_sad(cpi, x, shift, sb_offset2); } // Set the partition type of the 64X64 block switch (partition_search_type) { case VAR_BASED_PARTITION: // TODO(jingning, marpan): The mode decision and encoding process // support both intra and inter sub8x8 block coding for RTC mode. // Tune the thresholds accordingly to use sub8x8 block coding for // coding performance improvement. choose_partitioning(cpi, tile_info, x, mi_row, mi_col); nonrd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, BLOCK_64X64, 1, &dummy_rdc, td->pc_root); break; case SOURCE_VAR_BASED_PARTITION: set_source_var_based_partition(cpi, tile_info, x, mi, mi_row, mi_col); nonrd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, BLOCK_64X64, 1, &dummy_rdc, td->pc_root); break; case FIXED_PARTITION: if (!seg_skip) bsize = sf->always_this_block_size; set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize); nonrd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, BLOCK_64X64, 1, &dummy_rdc, td->pc_root); break; case REFERENCE_PARTITION: set_offsets(cpi, tile_info, x, mi_row, mi_col, BLOCK_64X64); // Use nonrd_pick_partition on scene-cut for VBR mode. // nonrd_pick_partition does not support 4x4 partition, so avoid it // on key frame for now. if ((cpi->oxcf.rc_mode == VPX_VBR && cpi->rc.high_source_sad && cm->frame_type != KEY_FRAME)) { // Use lower max_partition_size for low resoultions. if (cm->width <= 352 && cm->height <= 288) x->max_partition_size = BLOCK_32X32; else x->max_partition_size = BLOCK_64X64; x->min_partition_size = BLOCK_8X8; nonrd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, BLOCK_64X64, &dummy_rdc, 1, INT64_MAX, td->pc_root); } else { choose_partitioning(cpi, tile_info, x, mi_row, mi_col); // TODO(marpan): Seems like nonrd_select_partition does not support // 4x4 partition. Since 4x4 is used on key frame, use this switch // for now. if (cm->frame_type == KEY_FRAME) nonrd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, BLOCK_64X64, 1, &dummy_rdc, td->pc_root); else nonrd_select_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, BLOCK_64X64, 1, &dummy_rdc, td->pc_root); } break; default: assert(0); break; } (*(cpi->row_mt_sync_write_ptr))(&tile_data->row_mt_sync, sb_row, sb_col_in_tile, num_sb_cols); } } // end RTC play code static int set_var_thresh_from_histogram(VP9_COMP *cpi) { const SPEED_FEATURES *const sf = &cpi->sf; const VP9_COMMON *const cm = &cpi->common; const uint8_t *src = cpi->Source->y_buffer; const uint8_t *last_src = cpi->Last_Source->y_buffer; const int src_stride = cpi->Source->y_stride; const int last_stride = cpi->Last_Source->y_stride; // Pick cutoff threshold const int cutoff = (VPXMIN(cm->width, cm->height) >= 720) ? (cm->MBs * VAR_HIST_LARGE_CUT_OFF / 100) : (cm->MBs * VAR_HIST_SMALL_CUT_OFF / 100); DECLARE_ALIGNED(16, int, hist[VAR_HIST_BINS]); diff *var16 = cpi->source_diff_var; int sum = 0; int i, j; memset(hist, 0, VAR_HIST_BINS * sizeof(hist[0])); for (i = 0; i < cm->mb_rows; i++) { for (j = 0; j < cm->mb_cols; j++) { #if CONFIG_VP9_HIGHBITDEPTH if (cm->use_highbitdepth) { switch (cm->bit_depth) { case VPX_BITS_8: vpx_highbd_8_get16x16var(src, src_stride, last_src, last_stride, &var16->sse, &var16->sum); break; case VPX_BITS_10: vpx_highbd_10_get16x16var(src, src_stride, last_src, last_stride, &var16->sse, &var16->sum); break; case VPX_BITS_12: vpx_highbd_12_get16x16var(src, src_stride, last_src, last_stride, &var16->sse, &var16->sum); break; default: assert(0 && "cm->bit_depth should be VPX_BITS_8, VPX_BITS_10" " or VPX_BITS_12"); return -1; } } else { vpx_get16x16var(src, src_stride, last_src, last_stride, &var16->sse, &var16->sum); } #else vpx_get16x16var(src, src_stride, last_src, last_stride, &var16->sse, &var16->sum); #endif // CONFIG_VP9_HIGHBITDEPTH var16->var = var16->sse - (((uint32_t)var16->sum * var16->sum) >> 8); if (var16->var >= VAR_HIST_MAX_BG_VAR) hist[VAR_HIST_BINS - 1]++; else hist[var16->var / VAR_HIST_FACTOR]++; src += 16; last_src += 16; var16++; } src = src - cm->mb_cols * 16 + 16 * src_stride; last_src = last_src - cm->mb_cols * 16 + 16 * last_stride; } cpi->source_var_thresh = 0; if (hist[VAR_HIST_BINS - 1] < cutoff) { for (i = 0; i < VAR_HIST_BINS - 1; i++) { sum += hist[i]; if (sum > cutoff) { cpi->source_var_thresh = (i + 1) * VAR_HIST_FACTOR; return 0; } } } return sf->search_type_check_frequency; } static void source_var_based_partition_search_method(VP9_COMP *cpi) { VP9_COMMON *const cm = &cpi->common; SPEED_FEATURES *const sf = &cpi->sf; if (cm->frame_type == KEY_FRAME) { // For key frame, use SEARCH_PARTITION. sf->partition_search_type = SEARCH_PARTITION; } else if (cm->intra_only) { sf->partition_search_type = FIXED_PARTITION; } else { if (cm->last_width != cm->width || cm->last_height != cm->height) { if (cpi->source_diff_var) vpx_free(cpi->source_diff_var); CHECK_MEM_ERROR(cm, cpi->source_diff_var, vpx_calloc(cm->MBs, sizeof(diff))); } if (!cpi->frames_till_next_var_check) cpi->frames_till_next_var_check = set_var_thresh_from_histogram(cpi); if (cpi->frames_till_next_var_check > 0) { sf->partition_search_type = FIXED_PARTITION; cpi->frames_till_next_var_check--; } } } static int get_skip_encode_frame(const VP9_COMMON *cm, ThreadData *const td) { unsigned int intra_count = 0, inter_count = 0; int j; for (j = 0; j < INTRA_INTER_CONTEXTS; ++j) { intra_count += td->counts->intra_inter[j][0]; inter_count += td->counts->intra_inter[j][1]; } return (intra_count << 2) < inter_count && cm->frame_type != KEY_FRAME && cm->show_frame; } void vp9_init_tile_data(VP9_COMP *cpi) { VP9_COMMON *const cm = &cpi->common; const int tile_cols = 1 << cm->log2_tile_cols; const int tile_rows = 1 << cm->log2_tile_rows; int tile_col, tile_row; TOKENEXTRA *pre_tok = cpi->tile_tok[0][0]; TOKENLIST *tplist = cpi->tplist[0][0]; int tile_tok = 0; int tplist_count = 0; if (cpi->tile_data == NULL || cpi->allocated_tiles < tile_cols * tile_rows) { if (cpi->tile_data != NULL) vpx_free(cpi->tile_data); CHECK_MEM_ERROR(cm, cpi->tile_data, vpx_malloc(tile_cols * tile_rows * sizeof(*cpi->tile_data))); cpi->allocated_tiles = tile_cols * tile_rows; for (tile_row = 0; tile_row < tile_rows; ++tile_row) for (tile_col = 0; tile_col < tile_cols; ++tile_col) { TileDataEnc *tile_data = &cpi->tile_data[tile_row * tile_cols + tile_col]; int i, j; for (i = 0; i < BLOCK_SIZES; ++i) { for (j = 0; j < MAX_MODES; ++j) { tile_data->thresh_freq_fact[i][j] = RD_THRESH_INIT_FACT; tile_data->mode_map[i][j] = j; } } #if CONFIG_MULTITHREAD tile_data->row_base_thresh_freq_fact = NULL; #endif } } for (tile_row = 0; tile_row < tile_rows; ++tile_row) { for (tile_col = 0; tile_col < tile_cols; ++tile_col) { TileDataEnc *this_tile = &cpi->tile_data[tile_row * tile_cols + tile_col]; TileInfo *tile_info = &this_tile->tile_info; vp9_tile_init(tile_info, cm, tile_row, tile_col); cpi->tile_tok[tile_row][tile_col] = pre_tok + tile_tok; pre_tok = cpi->tile_tok[tile_row][tile_col]; tile_tok = allocated_tokens(*tile_info); cpi->tplist[tile_row][tile_col] = tplist + tplist_count; tplist = cpi->tplist[tile_row][tile_col]; tplist_count = get_num_vert_units(*tile_info, MI_BLOCK_SIZE_LOG2); } } } void vp9_encode_sb_row(VP9_COMP *cpi, ThreadData *td, int tile_row, int tile_col, int mi_row) { VP9_COMMON *const cm = &cpi->common; const int tile_cols = 1 << cm->log2_tile_cols; TileDataEnc *this_tile = &cpi->tile_data[tile_row * tile_cols + tile_col]; const TileInfo *const tile_info = &this_tile->tile_info; TOKENEXTRA *tok = NULL; int tile_sb_row; int tile_mb_cols = (tile_info->mi_col_end - tile_info->mi_col_start + 1) >> 1; tile_sb_row = mi_cols_aligned_to_sb(mi_row - tile_info->mi_row_start) >> MI_BLOCK_SIZE_LOG2; get_start_tok(cpi, tile_row, tile_col, mi_row, &tok); cpi->tplist[tile_row][tile_col][tile_sb_row].start = tok; if (cpi->sf.use_nonrd_pick_mode) encode_nonrd_sb_row(cpi, td, this_tile, mi_row, &tok); else encode_rd_sb_row(cpi, td, this_tile, mi_row, &tok); cpi->tplist[tile_row][tile_col][tile_sb_row].stop = tok; cpi->tplist[tile_row][tile_col][tile_sb_row].count = (unsigned int)(cpi->tplist[tile_row][tile_col][tile_sb_row].stop - cpi->tplist[tile_row][tile_col][tile_sb_row].start); assert(tok - cpi->tplist[tile_row][tile_col][tile_sb_row].start <= get_token_alloc(MI_BLOCK_SIZE >> 1, tile_mb_cols)); (void)tile_mb_cols; } void vp9_encode_tile(VP9_COMP *cpi, ThreadData *td, int tile_row, int tile_col) { VP9_COMMON *const cm = &cpi->common; const int tile_cols = 1 << cm->log2_tile_cols; TileDataEnc *this_tile = &cpi->tile_data[tile_row * tile_cols + tile_col]; const TileInfo *const tile_info = &this_tile->tile_info; const int mi_row_start = tile_info->mi_row_start; const int mi_row_end = tile_info->mi_row_end; int mi_row; for (mi_row = mi_row_start; mi_row < mi_row_end; mi_row += MI_BLOCK_SIZE) vp9_encode_sb_row(cpi, td, tile_row, tile_col, mi_row); } static void encode_tiles(VP9_COMP *cpi) { VP9_COMMON *const cm = &cpi->common; const int tile_cols = 1 << cm->log2_tile_cols; const int tile_rows = 1 << cm->log2_tile_rows; int tile_col, tile_row; vp9_init_tile_data(cpi); for (tile_row = 0; tile_row < tile_rows; ++tile_row) for (tile_col = 0; tile_col < tile_cols; ++tile_col) vp9_encode_tile(cpi, &cpi->td, tile_row, tile_col); } #if CONFIG_FP_MB_STATS static int input_fpmb_stats(FIRSTPASS_MB_STATS *firstpass_mb_stats, VP9_COMMON *cm, uint8_t **this_frame_mb_stats) { uint8_t *mb_stats_in = firstpass_mb_stats->mb_stats_start + cm->current_video_frame * cm->MBs * sizeof(uint8_t); if (mb_stats_in > firstpass_mb_stats->mb_stats_end) return EOF; *this_frame_mb_stats = mb_stats_in; return 1; } #endif static void encode_frame_internal(VP9_COMP *cpi) { SPEED_FEATURES *const sf = &cpi->sf; ThreadData *const td = &cpi->td; MACROBLOCK *const x = &td->mb; VP9_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &x->e_mbd; xd->mi = cm->mi_grid_visible; xd->mi[0] = cm->mi; vp9_zero(*td->counts); vp9_zero(cpi->td.rd_counts); xd->lossless = cm->base_qindex == 0 && cm->y_dc_delta_q == 0 && cm->uv_dc_delta_q == 0 && cm->uv_ac_delta_q == 0; #if CONFIG_VP9_HIGHBITDEPTH if (cm->use_highbitdepth) x->fwd_txfm4x4 = xd->lossless ? vp9_highbd_fwht4x4 : vpx_highbd_fdct4x4; else x->fwd_txfm4x4 = xd->lossless ? vp9_fwht4x4 : vpx_fdct4x4; x->highbd_inv_txfm_add = xd->lossless ? vp9_highbd_iwht4x4_add : vp9_highbd_idct4x4_add; #else x->fwd_txfm4x4 = xd->lossless ? vp9_fwht4x4 : vpx_fdct4x4; #endif // CONFIG_VP9_HIGHBITDEPTH x->inv_txfm_add = xd->lossless ? vp9_iwht4x4_add : vp9_idct4x4_add; if (xd->lossless) x->optimize = 0; cm->tx_mode = select_tx_mode(cpi, xd); vp9_frame_init_quantizer(cpi); vp9_initialize_rd_consts(cpi); vp9_initialize_me_consts(cpi, x, cm->base_qindex); init_encode_frame_mb_context(cpi); cm->use_prev_frame_mvs = !cm->error_resilient_mode && cm->width == cm->last_width && cm->height == cm->last_height && !cm->intra_only && cm->last_show_frame; // Special case: set prev_mi to NULL when the previous mode info // context cannot be used. cm->prev_mi = cm->use_prev_frame_mvs ? cm->prev_mip + cm->mi_stride + 1 : NULL; x->quant_fp = cpi->sf.use_quant_fp; vp9_zero(x->skip_txfm); if (sf->use_nonrd_pick_mode) { // Initialize internal buffer pointers for rtc coding, where non-RD // mode decision is used and hence no buffer pointer swap needed. int i; struct macroblock_plane *const p = x->plane; struct macroblockd_plane *const pd = xd->plane; PICK_MODE_CONTEXT *ctx = &cpi->td.pc_root->none; for (i = 0; i < MAX_MB_PLANE; ++i) { p[i].coeff = ctx->coeff_pbuf[i][0]; p[i].qcoeff = ctx->qcoeff_pbuf[i][0]; pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][0]; p[i].eobs = ctx->eobs_pbuf[i][0]; } vp9_zero(x->zcoeff_blk); if (cm->frame_type != KEY_FRAME && cpi->rc.frames_since_golden == 0 && !(cpi->oxcf.lag_in_frames > 0 && cpi->oxcf.rc_mode == VPX_VBR) && !cpi->use_svc) cpi->ref_frame_flags &= (~VP9_GOLD_FLAG); if (sf->partition_search_type == SOURCE_VAR_BASED_PARTITION) source_var_based_partition_search_method(cpi); } { struct vpx_usec_timer emr_timer; vpx_usec_timer_start(&emr_timer); #if CONFIG_FP_MB_STATS if (cpi->use_fp_mb_stats) { input_fpmb_stats(&cpi->twopass.firstpass_mb_stats, cm, &cpi->twopass.this_frame_mb_stats); } #endif if (!cpi->row_mt) { cpi->row_mt_sync_read_ptr = vp9_row_mt_sync_read_dummy; cpi->row_mt_sync_write_ptr = vp9_row_mt_sync_write_dummy; // If allowed, encoding tiles in parallel with one thread handling one // tile when row based multi-threading is disabled. if (VPXMIN(cpi->oxcf.max_threads, 1 << cm->log2_tile_cols) > 1) vp9_encode_tiles_mt(cpi); else encode_tiles(cpi); } else { cpi->row_mt_sync_read_ptr = vp9_row_mt_sync_read; cpi->row_mt_sync_write_ptr = vp9_row_mt_sync_write; vp9_encode_tiles_row_mt(cpi); } vpx_usec_timer_mark(&emr_timer); cpi->time_encode_sb_row += vpx_usec_timer_elapsed(&emr_timer); } sf->skip_encode_frame = sf->skip_encode_sb ? get_skip_encode_frame(cm, td) : 0; #if 0 // Keep record of the total distortion this time around for future use cpi->last_frame_distortion = cpi->frame_distortion; #endif } static INTERP_FILTER get_interp_filter( const int64_t threshes[SWITCHABLE_FILTER_CONTEXTS], int is_alt_ref) { if (!is_alt_ref && threshes[EIGHTTAP_SMOOTH] > threshes[EIGHTTAP] && threshes[EIGHTTAP_SMOOTH] > threshes[EIGHTTAP_SHARP] && threshes[EIGHTTAP_SMOOTH] > threshes[SWITCHABLE - 1]) { return EIGHTTAP_SMOOTH; } else if (threshes[EIGHTTAP_SHARP] > threshes[EIGHTTAP] && threshes[EIGHTTAP_SHARP] > threshes[SWITCHABLE - 1]) { return EIGHTTAP_SHARP; } else if (threshes[EIGHTTAP] > threshes[SWITCHABLE - 1]) { return EIGHTTAP; } else { return SWITCHABLE; } } static int compute_frame_aq_offset(struct VP9_COMP *cpi) { VP9_COMMON *const cm = &cpi->common; MODE_INFO **mi_8x8_ptr = cm->mi_grid_visible; struct segmentation *const seg = &cm->seg; int mi_row, mi_col; int sum_delta = 0; int map_index = 0; int qdelta_index; int segment_id; for (mi_row = 0; mi_row < cm->mi_rows; mi_row++) { MODE_INFO **mi_8x8 = mi_8x8_ptr; for (mi_col = 0; mi_col < cm->mi_cols; mi_col++, mi_8x8++) { segment_id = mi_8x8[0]->segment_id; qdelta_index = get_segdata(seg, segment_id, SEG_LVL_ALT_Q); sum_delta += qdelta_index; map_index++; } mi_8x8_ptr += cm->mi_stride; } return sum_delta / (cm->mi_rows * cm->mi_cols); } void vp9_encode_frame(VP9_COMP *cpi) { VP9_COMMON *const cm = &cpi->common; // In the longer term the encoder should be generalized to match the // decoder such that we allow compound where one of the 3 buffers has a // different sign bias and that buffer is then the fixed ref. However, this // requires further work in the rd loop. For now the only supported encoder // side behavior is where the ALT ref buffer has opposite sign bias to // the other two. if (!frame_is_intra_only(cm)) { if ((cm->ref_frame_sign_bias[ALTREF_FRAME] == cm->ref_frame_sign_bias[GOLDEN_FRAME]) || (cm->ref_frame_sign_bias[ALTREF_FRAME] == cm->ref_frame_sign_bias[LAST_FRAME])) { cpi->allow_comp_inter_inter = 0; } else { cpi->allow_comp_inter_inter = 1; cm->comp_fixed_ref = ALTREF_FRAME; cm->comp_var_ref[0] = LAST_FRAME; cm->comp_var_ref[1] = GOLDEN_FRAME; } } if (cpi->sf.frame_parameter_update) { int i; RD_OPT *const rd_opt = &cpi->rd; FRAME_COUNTS *counts = cpi->td.counts; RD_COUNTS *const rdc = &cpi->td.rd_counts; // This code does a single RD pass over the whole frame assuming // either compound, single or hybrid prediction as per whatever has // worked best for that type of frame in the past. // It also predicts whether another coding mode would have worked // better than this coding mode. If that is the case, it remembers // that for subsequent frames. // It also does the same analysis for transform size selection. const MV_REFERENCE_FRAME frame_type = get_frame_type(cpi); int64_t *const mode_thrs = rd_opt->prediction_type_threshes[frame_type]; int64_t *const filter_thrs = rd_opt->filter_threshes[frame_type]; const int is_alt_ref = frame_type == ALTREF_FRAME; /* prediction (compound, single or hybrid) mode selection */ if (is_alt_ref || !cpi->allow_comp_inter_inter) cm->reference_mode = SINGLE_REFERENCE; else if (mode_thrs[COMPOUND_REFERENCE] > mode_thrs[SINGLE_REFERENCE] && mode_thrs[COMPOUND_REFERENCE] > mode_thrs[REFERENCE_MODE_SELECT] && check_dual_ref_flags(cpi) && cpi->static_mb_pct == 100) cm->reference_mode = COMPOUND_REFERENCE; else if (mode_thrs[SINGLE_REFERENCE] > mode_thrs[REFERENCE_MODE_SELECT]) cm->reference_mode = SINGLE_REFERENCE; else cm->reference_mode = REFERENCE_MODE_SELECT; if (cm->interp_filter == SWITCHABLE) cm->interp_filter = get_interp_filter(filter_thrs, is_alt_ref); encode_frame_internal(cpi); for (i = 0; i < REFERENCE_MODES; ++i) mode_thrs[i] = (mode_thrs[i] + rdc->comp_pred_diff[i] / cm->MBs) / 2; for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i) filter_thrs[i] = (filter_thrs[i] + rdc->filter_diff[i] / cm->MBs) / 2; if (cm->reference_mode == REFERENCE_MODE_SELECT) { int single_count_zero = 0; int comp_count_zero = 0; for (i = 0; i < COMP_INTER_CONTEXTS; i++) { single_count_zero += counts->comp_inter[i][0]; comp_count_zero += counts->comp_inter[i][1]; } if (comp_count_zero == 0) { cm->reference_mode = SINGLE_REFERENCE; vp9_zero(counts->comp_inter); } else if (single_count_zero == 0) { cm->reference_mode = COMPOUND_REFERENCE; vp9_zero(counts->comp_inter); } } if (cm->tx_mode == TX_MODE_SELECT) { int count4x4 = 0; int count8x8_lp = 0, count8x8_8x8p = 0; int count16x16_16x16p = 0, count16x16_lp = 0; int count32x32 = 0; for (i = 0; i < TX_SIZE_CONTEXTS; ++i) { count4x4 += counts->tx.p32x32[i][TX_4X4]; count4x4 += counts->tx.p16x16[i][TX_4X4]; count4x4 += counts->tx.p8x8[i][TX_4X4]; count8x8_lp += counts->tx.p32x32[i][TX_8X8]; count8x8_lp += counts->tx.p16x16[i][TX_8X8]; count8x8_8x8p += counts->tx.p8x8[i][TX_8X8]; count16x16_16x16p += counts->tx.p16x16[i][TX_16X16]; count16x16_lp += counts->tx.p32x32[i][TX_16X16]; count32x32 += counts->tx.p32x32[i][TX_32X32]; } if (count4x4 == 0 && count16x16_lp == 0 && count16x16_16x16p == 0 && count32x32 == 0) { cm->tx_mode = ALLOW_8X8; reset_skip_tx_size(cm, TX_8X8); } else if (count8x8_8x8p == 0 && count16x16_16x16p == 0 && count8x8_lp == 0 && count16x16_lp == 0 && count32x32 == 0) { cm->tx_mode = ONLY_4X4; reset_skip_tx_size(cm, TX_4X4); } else if (count8x8_lp == 0 && count16x16_lp == 0 && count4x4 == 0) { cm->tx_mode = ALLOW_32X32; } else if (count32x32 == 0 && count8x8_lp == 0 && count4x4 == 0) { cm->tx_mode = ALLOW_16X16; reset_skip_tx_size(cm, TX_16X16); } } } else { cm->reference_mode = SINGLE_REFERENCE; encode_frame_internal(cpi); } // If segmented AQ is enabled compute the average AQ weighting. if (cm->seg.enabled && (cpi->oxcf.aq_mode != NO_AQ) && (cm->seg.update_map || cm->seg.update_data)) { cm->seg.aq_av_offset = compute_frame_aq_offset(cpi); } } static void sum_intra_stats(FRAME_COUNTS *counts, const MODE_INFO *mi) { const PREDICTION_MODE y_mode = mi->mode; const PREDICTION_MODE uv_mode = mi->uv_mode; const BLOCK_SIZE bsize = mi->sb_type; if (bsize < BLOCK_8X8) { int idx, idy; const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize]; const int num_4x4_h = num_4x4_blocks_high_lookup[bsize]; for (idy = 0; idy < 2; idy += num_4x4_h) for (idx = 0; idx < 2; idx += num_4x4_w) ++counts->y_mode[0][mi->bmi[idy * 2 + idx].as_mode]; } else { ++counts->y_mode[size_group_lookup[bsize]][y_mode]; } ++counts->uv_mode[y_mode][uv_mode]; } static void update_zeromv_cnt(VP9_COMP *const cpi, const MODE_INFO *const mi, int mi_row, int mi_col, BLOCK_SIZE bsize) { const VP9_COMMON *const cm = &cpi->common; MV mv = mi->mv[0].as_mv; const int bw = num_8x8_blocks_wide_lookup[bsize]; const int bh = num_8x8_blocks_high_lookup[bsize]; const int xmis = VPXMIN(cm->mi_cols - mi_col, bw); const int ymis = VPXMIN(cm->mi_rows - mi_row, bh); const int block_index = mi_row * cm->mi_cols + mi_col; int x, y; for (y = 0; y < ymis; y++) for (x = 0; x < xmis; x++) { int map_offset = block_index + y * cm->mi_cols + x; if (is_inter_block(mi) && mi->segment_id <= CR_SEGMENT_ID_BOOST2) { if (abs(mv.row) < 8 && abs(mv.col) < 8) { if (cpi->consec_zero_mv[map_offset] < 255) cpi->consec_zero_mv[map_offset]++; } else { cpi->consec_zero_mv[map_offset] = 0; } } } } static void encode_superblock(VP9_COMP *cpi, ThreadData *td, TOKENEXTRA **t, int output_enabled, int mi_row, int mi_col, BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) { VP9_COMMON *const cm = &cpi->common; MACROBLOCK *const x = &td->mb; MACROBLOCKD *const xd = &x->e_mbd; MODE_INFO *mi = xd->mi[0]; const int seg_skip = segfeature_active(&cm->seg, mi->segment_id, SEG_LVL_SKIP); x->skip_recode = !x->select_tx_size && mi->sb_type >= BLOCK_8X8 && cpi->oxcf.aq_mode != COMPLEXITY_AQ && cpi->oxcf.aq_mode != CYCLIC_REFRESH_AQ && cpi->sf.allow_skip_recode; if (!x->skip_recode && !cpi->sf.use_nonrd_pick_mode) memset(x->skip_txfm, 0, sizeof(x->skip_txfm)); x->skip_optimize = ctx->is_coded; ctx->is_coded = 1; x->use_lp32x32fdct = cpi->sf.use_lp32x32fdct; x->skip_encode = (!output_enabled && cpi->sf.skip_encode_frame && x->q_index < QIDX_SKIP_THRESH); if (x->skip_encode) return; if (!is_inter_block(mi)) { int plane; #if CONFIG_BETTER_HW_COMPATIBILITY && CONFIG_VP9_HIGHBITDEPTH if ((xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) && (xd->above_mi == NULL || xd->left_mi == NULL) && need_top_left[mi->uv_mode]) assert(0); #endif // CONFIG_BETTER_HW_COMPATIBILITY && CONFIG_VP9_HIGHBITDEPTH mi->skip = 1; for (plane = 0; plane < MAX_MB_PLANE; ++plane) vp9_encode_intra_block_plane(x, VPXMAX(bsize, BLOCK_8X8), plane, 1); if (output_enabled) sum_intra_stats(td->counts, mi); vp9_tokenize_sb(cpi, td, t, !output_enabled, seg_skip, VPXMAX(bsize, BLOCK_8X8)); } else { int ref; const int is_compound = has_second_ref(mi); set_ref_ptrs(cm, xd, mi->ref_frame[0], mi->ref_frame[1]); for (ref = 0; ref < 1 + is_compound; ++ref) { YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi, mi->ref_frame[ref]); assert(cfg != NULL); vp9_setup_pre_planes(xd, ref, cfg, mi_row, mi_col, &xd->block_refs[ref]->sf); } if (!(cpi->sf.reuse_inter_pred_sby && ctx->pred_pixel_ready) || seg_skip) vp9_build_inter_predictors_sby(xd, mi_row, mi_col, VPXMAX(bsize, BLOCK_8X8)); vp9_build_inter_predictors_sbuv(xd, mi_row, mi_col, VPXMAX(bsize, BLOCK_8X8)); vp9_encode_sb(x, VPXMAX(bsize, BLOCK_8X8)); vp9_tokenize_sb(cpi, td, t, !output_enabled, seg_skip, VPXMAX(bsize, BLOCK_8X8)); } if (seg_skip) { assert(mi->skip); } if (output_enabled) { if (cm->tx_mode == TX_MODE_SELECT && mi->sb_type >= BLOCK_8X8 && !(is_inter_block(mi) && mi->skip)) { ++get_tx_counts(max_txsize_lookup[bsize], get_tx_size_context(xd), &td->counts->tx)[mi->tx_size]; } else { // The new intra coding scheme requires no change of transform size if (is_inter_block(mi)) { mi->tx_size = VPXMIN(tx_mode_to_biggest_tx_size[cm->tx_mode], max_txsize_lookup[bsize]); } else { mi->tx_size = (bsize >= BLOCK_8X8) ? mi->tx_size : TX_4X4; } } ++td->counts->tx.tx_totals[mi->tx_size]; ++td->counts->tx.tx_totals[get_uv_tx_size(mi, &xd->plane[1])]; if (cm->seg.enabled && cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) vp9_cyclic_refresh_update_sb_postencode(cpi, mi, mi_row, mi_col, bsize); if (cpi->oxcf.pass == 0 && cpi->svc.temporal_layer_id == 0) update_zeromv_cnt(cpi, mi, mi_row, mi_col, bsize); } }