ref: 535b7b915ae5574db2f95632243cc5bee865f02e
dir: /vp9/encoder/arm/neon/vp9_frame_scale_neon.c/
/* * Copyright (c) 2017 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "./vp9_rtcd.h" #include "./vpx_dsp_rtcd.h" #include "./vpx_scale_rtcd.h" #include "vp9/common/vp9_blockd.h" #include "vpx_dsp/arm/transpose_neon.h" #include "vpx_dsp/arm/vpx_convolve8_neon.h" #include "vpx_dsp/vpx_filter.h" #include "vpx_scale/yv12config.h" // Note: The scaling functions could write extra rows and columns in dst, which // exceed the right and bottom boundaries of the destination frame. We rely on // the following frame extension function to fix these rows and columns. static INLINE void scale_plane_2_to_1_phase_0_neon(const uint8_t *src, const int src_stride, uint8_t *dst, const int dst_stride, const int w, const int h) { const int max_width = (w + 15) & ~15; int y = h; assert(w && h); do { int x = max_width; do { const uint8x16x2_t s = vld2q_u8(src); vst1q_u8(dst, s.val[0]); src += 32; dst += 16; x -= 16; } while (x); src += 2 * (src_stride - max_width); dst += dst_stride - max_width; } while (--y); } static INLINE void scale_plane_4_to_1_phase_0_neon(const uint8_t *src, const int src_stride, uint8_t *dst, const int dst_stride, const int w, const int h) { const int max_width = (w + 15) & ~15; int y = h; assert(w && h); do { int x = max_width; do { const uint8x16x4_t s = vld4q_u8(src); vst1q_u8(dst, s.val[0]); src += 64; dst += 16; x -= 16; } while (x); src += 4 * (src_stride - max_width); dst += dst_stride - max_width; } while (--y); } static INLINE void scale_plane_bilinear_phase_non_0_kernel( const uint8x16_t in0, const uint8x16_t in1, const uint8x16_t in2, const uint8x16_t in3, const uint8x8_t coef0, const uint8x8_t coef1, uint8_t *const dst) { const uint16x8_t h0 = vmull_u8(vget_low_u8(in0), coef0); const uint16x8_t h1 = vmull_u8(vget_high_u8(in0), coef0); const uint16x8_t h2 = vmull_u8(vget_low_u8(in2), coef0); const uint16x8_t h3 = vmull_u8(vget_high_u8(in2), coef0); const uint16x8_t h4 = vmlal_u8(h0, vget_low_u8(in1), coef1); const uint16x8_t h5 = vmlal_u8(h1, vget_high_u8(in1), coef1); const uint16x8_t h6 = vmlal_u8(h2, vget_low_u8(in3), coef1); const uint16x8_t h7 = vmlal_u8(h3, vget_high_u8(in3), coef1); const uint8x8_t hor0 = vrshrn_n_u16(h4, 7); // temp: 00 01 02 03 04 05 06 07 const uint8x8_t hor1 = vrshrn_n_u16(h5, 7); // temp: 08 09 0A 0B 0C 0D 0E 0F const uint8x8_t hor2 = vrshrn_n_u16(h6, 7); // temp: 10 11 12 13 14 15 16 17 const uint8x8_t hor3 = vrshrn_n_u16(h7, 7); // temp: 18 19 1A 1B 1C 1D 1E 1F const uint16x8_t v0 = vmull_u8(hor0, coef0); const uint16x8_t v1 = vmull_u8(hor1, coef0); const uint16x8_t v2 = vmlal_u8(v0, hor2, coef1); const uint16x8_t v3 = vmlal_u8(v1, hor3, coef1); // dst: 0 1 2 3 4 5 6 7 8 9 A B C D E F const uint8x16_t d = vcombine_u8(vrshrn_n_u16(v2, 7), vrshrn_n_u16(v3, 7)); vst1q_u8(dst, d); } static INLINE void scale_plane_2_to_1_bilinear_phase_non_0_neon( const uint8_t *const src, const int src_stride, uint8_t *dst, const int dst_stride, const int w, const int h, const int16_t c0, const int16_t c1) { const int max_width = (w + 15) & ~15; const uint8_t *src0 = src; const uint8_t *src1 = src + src_stride; const uint8x8_t coef0 = vdup_n_u8(c0); const uint8x8_t coef1 = vdup_n_u8(c1); int y = h; assert(w && h); do { int x = max_width; do { // 000 002 004 006 008 00A 00C 00E 010 012 014 016 018 01A 01C 01E // 001 003 005 007 009 00B 00D 00F 011 013 015 017 019 01B 01D 01F const uint8x16x2_t s0 = vld2q_u8(src0); // 100 102 104 106 108 10A 10C 10E 110 112 114 116 118 11A 11C 11E // 101 103 105 107 109 10B 10D 10F 111 113 115 117 119 11B 11D 11F const uint8x16x2_t s1 = vld2q_u8(src1); scale_plane_bilinear_phase_non_0_kernel(s0.val[0], s0.val[1], s1.val[0], s1.val[1], coef0, coef1, dst); src0 += 32; src1 += 32; dst += 16; x -= 16; } while (x); src0 += 2 * (src_stride - max_width); src1 += 2 * (src_stride - max_width); dst += dst_stride - max_width; } while (--y); } static INLINE void scale_plane_4_to_1_bilinear_phase_non_0_neon( const uint8_t *const src, const int src_stride, uint8_t *dst, const int dst_stride, const int w, const int h, const int16_t c0, const int16_t c1) { const int max_width = (w + 15) & ~15; const uint8_t *src0 = src; const uint8_t *src1 = src + src_stride; const uint8x8_t coef0 = vdup_n_u8(c0); const uint8x8_t coef1 = vdup_n_u8(c1); int y = h; assert(w && h); do { int x = max_width; do { // (*) -- useless // 000 004 008 00C 010 014 018 01C 020 024 028 02C 030 034 038 03C // 001 005 009 00D 011 015 019 01D 021 025 029 02D 031 035 039 03D // 002 006 00A 00E 012 016 01A 01E 022 026 02A 02E 032 036 03A 03E (*) // 003 007 00B 00F 013 017 01B 01F 023 027 02B 02F 033 037 03B 03F (*) const uint8x16x4_t s0 = vld4q_u8(src0); // 100 104 108 10C 110 114 118 11C 120 124 128 12C 130 134 138 13C // 101 105 109 10D 111 115 119 11D 121 125 129 12D 131 135 139 13D // 102 106 10A 10E 112 116 11A 11E 122 126 12A 12E 132 136 13A 13E (*) // 103 107 10B 10F 113 117 11B 11F 123 127 12B 12F 133 137 13B 13F (*) const uint8x16x4_t s1 = vld4q_u8(src1); scale_plane_bilinear_phase_non_0_kernel(s0.val[0], s0.val[1], s1.val[0], s1.val[1], coef0, coef1, dst); src0 += 64; src1 += 64; dst += 16; x -= 16; } while (x); src0 += 4 * (src_stride - max_width); src1 += 4 * (src_stride - max_width); dst += dst_stride - max_width; } while (--y); } static void scale_plane_2_to_1_general_neon(const uint8_t *src, const int src_stride, uint8_t *dst, const int dst_stride, const int w, const int h, const int16_t *const coef, uint8_t *const temp_buffer) { const int width_hor = (w + 3) & ~3; const int width_ver = (w + 7) & ~7; const int height_hor = (2 * h + SUBPEL_TAPS - 2 + 7) & ~7; const int height_ver = (h + 3) & ~3; const int16x8_t filters = vld1q_s16(coef); int x, y = height_hor; uint8_t *t = temp_buffer; uint8x8_t s[14], d[4]; assert(w && h); src -= (SUBPEL_TAPS / 2 - 1) * src_stride + SUBPEL_TAPS / 2 + 1; // horizontal 4x8 // Note: processing 4x8 is about 20% faster than processing row by row using // vld4_u8(). do { load_u8_8x8(src + 2, src_stride, &s[0], &s[1], &s[2], &s[3], &s[4], &s[5], &s[6], &s[7]); transpose_u8_8x8(&s[0], &s[1], &s[2], &s[3], &s[4], &s[5], &s[6], &s[7]); x = width_hor; do { src += 8; load_u8_8x8(src, src_stride, &s[6], &s[7], &s[8], &s[9], &s[10], &s[11], &s[12], &s[13]); transpose_u8_8x8(&s[6], &s[7], &s[8], &s[9], &s[10], &s[11], &s[12], &s[13]); d[0] = scale_filter_8(&s[0], filters); // 00 10 20 30 40 50 60 70 d[1] = scale_filter_8(&s[2], filters); // 01 11 21 31 41 51 61 71 d[2] = scale_filter_8(&s[4], filters); // 02 12 22 32 42 52 62 72 d[3] = scale_filter_8(&s[6], filters); // 03 13 23 33 43 53 63 73 // 00 01 02 03 40 41 42 43 // 10 11 12 13 50 51 52 53 // 20 21 22 23 60 61 62 63 // 30 31 32 33 70 71 72 73 transpose_u8_8x4(&d[0], &d[1], &d[2], &d[3]); vst1_lane_u32((uint32_t *)(t + 0 * width_hor), vreinterpret_u32_u8(d[0]), 0); vst1_lane_u32((uint32_t *)(t + 1 * width_hor), vreinterpret_u32_u8(d[1]), 0); vst1_lane_u32((uint32_t *)(t + 2 * width_hor), vreinterpret_u32_u8(d[2]), 0); vst1_lane_u32((uint32_t *)(t + 3 * width_hor), vreinterpret_u32_u8(d[3]), 0); vst1_lane_u32((uint32_t *)(t + 4 * width_hor), vreinterpret_u32_u8(d[0]), 1); vst1_lane_u32((uint32_t *)(t + 5 * width_hor), vreinterpret_u32_u8(d[1]), 1); vst1_lane_u32((uint32_t *)(t + 6 * width_hor), vreinterpret_u32_u8(d[2]), 1); vst1_lane_u32((uint32_t *)(t + 7 * width_hor), vreinterpret_u32_u8(d[3]), 1); s[0] = s[8]; s[1] = s[9]; s[2] = s[10]; s[3] = s[11]; s[4] = s[12]; s[5] = s[13]; t += 4; x -= 4; } while (x); src += 8 * src_stride - 2 * width_hor; t += 7 * width_hor; y -= 8; } while (y); // vertical 8x4 x = width_ver; t = temp_buffer; do { load_u8_8x8(t, width_hor, &s[0], &s[1], &s[2], &s[3], &s[4], &s[5], &s[6], &s[7]); t += 6 * width_hor; y = height_ver; do { load_u8_8x8(t, width_hor, &s[6], &s[7], &s[8], &s[9], &s[10], &s[11], &s[12], &s[13]); t += 8 * width_hor; d[0] = scale_filter_8(&s[0], filters); d[1] = scale_filter_8(&s[2], filters); d[2] = scale_filter_8(&s[4], filters); d[3] = scale_filter_8(&s[6], filters); vst1_u8(dst + 0 * dst_stride, d[0]); vst1_u8(dst + 1 * dst_stride, d[1]); vst1_u8(dst + 2 * dst_stride, d[2]); vst1_u8(dst + 3 * dst_stride, d[3]); s[0] = s[8]; s[1] = s[9]; s[2] = s[10]; s[3] = s[11]; s[4] = s[12]; s[5] = s[13]; dst += 4 * dst_stride; y -= 4; } while (y); t -= width_hor * (2 * height_ver + 6); t += 8; dst -= height_ver * dst_stride; dst += 8; x -= 8; } while (x); } static void scale_plane_4_to_1_general_neon(const uint8_t *src, const int src_stride, uint8_t *dst, const int dst_stride, const int w, const int h, const int16_t *const coef, uint8_t *const temp_buffer) { const int width_hor = (w + 1) & ~1; const int width_ver = (w + 7) & ~7; const int height_hor = (4 * h + SUBPEL_TAPS - 2 + 7) & ~7; const int height_ver = (h + 1) & ~1; const int16x8_t filters = vld1q_s16(coef); int x, y = height_hor; uint8_t *t = temp_buffer; uint8x8_t s[12], d[2]; assert(w && h); src -= (SUBPEL_TAPS / 2 - 1) * src_stride + SUBPEL_TAPS / 2 + 3; // horizontal 2x8 // Note: processing 2x8 is about 20% faster than processing row by row using // vld4_u8(). do { load_u8_8x8(src + 4, src_stride, &s[0], &s[1], &s[2], &s[3], &s[4], &s[5], &s[6], &s[7]); transpose_u8_4x8(&s[0], &s[1], &s[2], &s[3], s[4], s[5], s[6], s[7]); x = width_hor; do { uint8x8x2_t dd; src += 8; load_u8_8x8(src, src_stride, &s[4], &s[5], &s[6], &s[7], &s[8], &s[9], &s[10], &s[11]); transpose_u8_8x8(&s[4], &s[5], &s[6], &s[7], &s[8], &s[9], &s[10], &s[11]); d[0] = scale_filter_8(&s[0], filters); // 00 10 20 30 40 50 60 70 d[1] = scale_filter_8(&s[4], filters); // 01 11 21 31 41 51 61 71 // dd.val[0]: 00 01 20 21 40 41 60 61 // dd.val[1]: 10 11 30 31 50 51 70 71 dd = vtrn_u8(d[0], d[1]); vst1_lane_u16((uint16_t *)(t + 0 * width_hor), vreinterpret_u16_u8(dd.val[0]), 0); vst1_lane_u16((uint16_t *)(t + 1 * width_hor), vreinterpret_u16_u8(dd.val[1]), 0); vst1_lane_u16((uint16_t *)(t + 2 * width_hor), vreinterpret_u16_u8(dd.val[0]), 1); vst1_lane_u16((uint16_t *)(t + 3 * width_hor), vreinterpret_u16_u8(dd.val[1]), 1); vst1_lane_u16((uint16_t *)(t + 4 * width_hor), vreinterpret_u16_u8(dd.val[0]), 2); vst1_lane_u16((uint16_t *)(t + 5 * width_hor), vreinterpret_u16_u8(dd.val[1]), 2); vst1_lane_u16((uint16_t *)(t + 6 * width_hor), vreinterpret_u16_u8(dd.val[0]), 3); vst1_lane_u16((uint16_t *)(t + 7 * width_hor), vreinterpret_u16_u8(dd.val[1]), 3); s[0] = s[8]; s[1] = s[9]; s[2] = s[10]; s[3] = s[11]; t += 2; x -= 2; } while (x); src += 8 * src_stride - 4 * width_hor; t += 7 * width_hor; y -= 8; } while (y); // vertical 8x2 x = width_ver; t = temp_buffer; do { load_u8_8x4(t, width_hor, &s[0], &s[1], &s[2], &s[3]); t += 4 * width_hor; y = height_ver; do { load_u8_8x8(t, width_hor, &s[4], &s[5], &s[6], &s[7], &s[8], &s[9], &s[10], &s[11]); t += 8 * width_hor; d[0] = scale_filter_8(&s[0], filters); d[1] = scale_filter_8(&s[4], filters); vst1_u8(dst + 0 * dst_stride, d[0]); vst1_u8(dst + 1 * dst_stride, d[1]); s[0] = s[8]; s[1] = s[9]; s[2] = s[10]; s[3] = s[11]; dst += 2 * dst_stride; y -= 2; } while (y); t -= width_hor * (4 * height_ver + 4); t += 8; dst -= height_ver * dst_stride; dst += 8; x -= 8; } while (x); } void vp9_scale_and_extend_frame_neon(const YV12_BUFFER_CONFIG *src, YV12_BUFFER_CONFIG *dst, INTERP_FILTER filter_type, int phase_scaler) { const int src_w = src->y_crop_width; const int src_h = src->y_crop_height; const int dst_w = dst->y_crop_width; const int dst_h = dst->y_crop_height; const int dst_uv_w = dst_w / 2; const int dst_uv_h = dst_h / 2; int scaled = 0; // phase_scaler is usually 0 or 8. assert(phase_scaler >= 0 && phase_scaler < 16); if (2 * dst_w == src_w && 2 * dst_h == src_h) { // 2 to 1 scaled = 1; if (phase_scaler == 0) { scale_plane_2_to_1_phase_0_neon(src->y_buffer, src->y_stride, dst->y_buffer, dst->y_stride, dst_w, dst_h); scale_plane_2_to_1_phase_0_neon(src->u_buffer, src->uv_stride, dst->u_buffer, dst->uv_stride, dst_uv_w, dst_uv_h); scale_plane_2_to_1_phase_0_neon(src->v_buffer, src->uv_stride, dst->v_buffer, dst->uv_stride, dst_uv_w, dst_uv_h); } else if (filter_type == BILINEAR) { const int16_t c0 = vp9_filter_kernels[BILINEAR][phase_scaler][3]; const int16_t c1 = vp9_filter_kernels[BILINEAR][phase_scaler][4]; scale_plane_2_to_1_bilinear_phase_non_0_neon(src->y_buffer, src->y_stride, dst->y_buffer, dst->y_stride, dst_w, dst_h, c0, c1); scale_plane_2_to_1_bilinear_phase_non_0_neon( src->u_buffer, src->uv_stride, dst->u_buffer, dst->uv_stride, dst_uv_w, dst_uv_h, c0, c1); scale_plane_2_to_1_bilinear_phase_non_0_neon( src->v_buffer, src->uv_stride, dst->v_buffer, dst->uv_stride, dst_uv_w, dst_uv_h, c0, c1); } else { const int buffer_stride = (dst_w + 3) & ~3; const int buffer_height = (2 * dst_h + SUBPEL_TAPS - 2 + 7) & ~7; uint8_t *const temp_buffer = (uint8_t *)malloc(buffer_stride * buffer_height); if (temp_buffer) { scale_plane_2_to_1_general_neon( src->y_buffer, src->y_stride, dst->y_buffer, dst->y_stride, dst_w, dst_h, vp9_filter_kernels[filter_type][phase_scaler], temp_buffer); scale_plane_2_to_1_general_neon( src->u_buffer, src->uv_stride, dst->u_buffer, dst->uv_stride, dst_uv_w, dst_uv_h, vp9_filter_kernels[filter_type][phase_scaler], temp_buffer); scale_plane_2_to_1_general_neon( src->v_buffer, src->uv_stride, dst->v_buffer, dst->uv_stride, dst_uv_w, dst_uv_h, vp9_filter_kernels[filter_type][phase_scaler], temp_buffer); free(temp_buffer); } else { scaled = 0; } } } else if (4 * dst_w == src_w && 4 * dst_h == src_h) { // 4 to 1 scaled = 1; if (phase_scaler == 0) { scale_plane_4_to_1_phase_0_neon(src->y_buffer, src->y_stride, dst->y_buffer, dst->y_stride, dst_w, dst_h); scale_plane_4_to_1_phase_0_neon(src->u_buffer, src->uv_stride, dst->u_buffer, dst->uv_stride, dst_uv_w, dst_uv_h); scale_plane_4_to_1_phase_0_neon(src->v_buffer, src->uv_stride, dst->v_buffer, dst->uv_stride, dst_uv_w, dst_uv_h); } else if (filter_type == BILINEAR) { const int16_t c0 = vp9_filter_kernels[BILINEAR][phase_scaler][3]; const int16_t c1 = vp9_filter_kernels[BILINEAR][phase_scaler][4]; scale_plane_4_to_1_bilinear_phase_non_0_neon(src->y_buffer, src->y_stride, dst->y_buffer, dst->y_stride, dst_w, dst_h, c0, c1); scale_plane_4_to_1_bilinear_phase_non_0_neon( src->u_buffer, src->uv_stride, dst->u_buffer, dst->uv_stride, dst_uv_w, dst_uv_h, c0, c1); scale_plane_4_to_1_bilinear_phase_non_0_neon( src->v_buffer, src->uv_stride, dst->v_buffer, dst->uv_stride, dst_uv_w, dst_uv_h, c0, c1); } else { const int buffer_stride = (dst_w + 1) & ~1; const int buffer_height = (4 * dst_h + SUBPEL_TAPS - 2 + 7) & ~7; uint8_t *const temp_buffer = (uint8_t *)malloc(buffer_stride * buffer_height); if (temp_buffer) { scale_plane_4_to_1_general_neon( src->y_buffer, src->y_stride, dst->y_buffer, dst->y_stride, dst_w, dst_h, vp9_filter_kernels[filter_type][phase_scaler], temp_buffer); scale_plane_4_to_1_general_neon( src->u_buffer, src->uv_stride, dst->u_buffer, dst->uv_stride, dst_uv_w, dst_uv_h, vp9_filter_kernels[filter_type][phase_scaler], temp_buffer); scale_plane_4_to_1_general_neon( src->v_buffer, src->uv_stride, dst->v_buffer, dst->uv_stride, dst_uv_w, dst_uv_h, vp9_filter_kernels[filter_type][phase_scaler], temp_buffer); free(temp_buffer); } else { scaled = 0; } } } if (scaled) { vpx_extend_frame_borders(dst); } else { // Call c version for all other scaling ratios. vp9_scale_and_extend_frame_c(src, dst, filter_type, phase_scaler); } }