ref: 3e2770de4fe8814f0bcc9ca96f89014adb0905ff
dir: /test/vp9_quantize_test.cc/
/* * Copyright (c) 2014 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <math.h> #include <stdlib.h> #include <string.h> #include "third_party/googletest/src/include/gtest/gtest.h" #include "./vpx_config.h" #include "./vpx_dsp_rtcd.h" #include "./vp9_rtcd.h" #include "test/acm_random.h" #include "test/buffer.h" #include "test/clear_system_state.h" #include "test/register_state_check.h" #include "test/util.h" #include "vp9/common/vp9_entropy.h" #include "vp9/common/vp9_scan.h" #include "vpx/vpx_codec.h" #include "vpx/vpx_integer.h" #include "vpx_ports/vpx_timer.h" using libvpx_test::ACMRandom; using libvpx_test::Buffer; namespace { const int number_of_iterations = 100; typedef void (*QuantizeFunc)(const tran_low_t *coeff, intptr_t count, int skip_block, const int16_t *zbin, const int16_t *round, const int16_t *quant, const int16_t *quant_shift, tran_low_t *qcoeff, tran_low_t *dqcoeff, const int16_t *dequant, uint16_t *eob, const int16_t *scan, const int16_t *iscan); typedef std::tr1::tuple<QuantizeFunc, QuantizeFunc, vpx_bit_depth_t, int /*max_size*/> QuantizeParam; // Wrapper for FP version which does not use zbin or quant_shift. typedef void (*QuantizeFPFunc)(const tran_low_t *coeff, intptr_t count, int skip_block, const int16_t *round, const int16_t *quant, tran_low_t *qcoeff, tran_low_t *dqcoeff, const int16_t *dequant, uint16_t *eob, const int16_t *scan, const int16_t *iscan); template <QuantizeFPFunc fn> void QuantFPWrapper(const tran_low_t *coeff, intptr_t count, int skip_block, const int16_t *zbin, const int16_t *round, const int16_t *quant, const int16_t *quant_shift, tran_low_t *qcoeff, tran_low_t *dqcoeff, const int16_t *dequant, uint16_t *eob, const int16_t *scan, const int16_t *iscan) { (void)zbin; (void)quant_shift; fn(coeff, count, skip_block, round, quant, qcoeff, dqcoeff, dequant, eob, scan, iscan); } class VP9QuantizeBase { public: VP9QuantizeBase(vpx_bit_depth_t bit_depth, int max_size) : bit_depth_(bit_depth), max_size_(max_size) { max_value_ = (1 << bit_depth_) - 1; zbin_ptr_ = reinterpret_cast<int16_t *>(vpx_memalign(16, 8 * sizeof(*zbin_ptr_))); round_ptr_ = reinterpret_cast<int16_t *>(vpx_memalign(16, 8 * sizeof(*round_ptr_))); quant_ptr_ = reinterpret_cast<int16_t *>(vpx_memalign(16, 8 * sizeof(*quant_ptr_))); quant_shift_ptr_ = reinterpret_cast<int16_t *>( vpx_memalign(16, 8 * sizeof(*quant_shift_ptr_))); dequant_ptr_ = reinterpret_cast<int16_t *>( vpx_memalign(16, 8 * sizeof(*dequant_ptr_))); } ~VP9QuantizeBase() { vpx_free(zbin_ptr_); vpx_free(round_ptr_); vpx_free(quant_ptr_); vpx_free(quant_shift_ptr_); vpx_free(dequant_ptr_); zbin_ptr_ = NULL; round_ptr_ = NULL; quant_ptr_ = NULL; quant_shift_ptr_ = NULL; dequant_ptr_ = NULL; libvpx_test::ClearSystemState(); } protected: int16_t *zbin_ptr_; int16_t *round_ptr_; int16_t *quant_ptr_; int16_t *quant_shift_ptr_; int16_t *dequant_ptr_; const vpx_bit_depth_t bit_depth_; int max_value_; const int max_size_; }; class VP9QuantizeTest : public VP9QuantizeBase, public ::testing::TestWithParam<QuantizeParam> { public: VP9QuantizeTest() : VP9QuantizeBase(GET_PARAM(2), GET_PARAM(3)), quantize_op_(GET_PARAM(0)), ref_quantize_op_(GET_PARAM(1)) {} protected: const QuantizeFunc quantize_op_; const QuantizeFunc ref_quantize_op_; }; void GenerateHelperArrays(ACMRandom *rnd, int16_t *zbin, int16_t *round, int16_t *quant, int16_t *quant_shift, int16_t *dequant) { for (int j = 0; j < 2; j++) { // Values determined by deconstructing vp9_init_quantizer(). // zbin may be up to 1143 for 8 and 10 bit Y values, or 1200 for 12 bit Y // values or U/V values of any bit depth. This is because y_delta is not // factored into the vp9_ac_quant() call. zbin[j] = rnd->RandRange(1200); // round may be up to 685 for Y values or 914 for U/V. round[j] = rnd->RandRange(914); // quant ranges from 1 to -32703 quant[j] = static_cast<int>(rnd->RandRange(32704)) - 32703; // quant_shift goes up to 1 << 16. quant_shift[j] = rnd->RandRange(16384); // dequant maxes out at 1828 for all cases. dequant[j] = rnd->RandRange(1828); } for (int j = 2; j < 8; j++) { zbin[j] = zbin[1]; round[j] = round[1]; quant[j] = quant[1]; quant_shift[j] = quant_shift[1]; dequant[j] = dequant[1]; } } TEST_P(VP9QuantizeTest, OperationCheck) { ACMRandom rnd(ACMRandom::DeterministicSeed()); Buffer<tran_low_t> coeff = Buffer<tran_low_t>(max_size_, max_size_, 0, 16); ASSERT_TRUE(coeff.Init()); Buffer<tran_low_t> qcoeff = Buffer<tran_low_t>(max_size_, max_size_, 0, 32); ASSERT_TRUE(qcoeff.Init()); Buffer<tran_low_t> dqcoeff = Buffer<tran_low_t>(max_size_, max_size_, 0, 32); ASSERT_TRUE(dqcoeff.Init()); Buffer<tran_low_t> ref_qcoeff = Buffer<tran_low_t>(max_size_, max_size_, 0, 32); ASSERT_TRUE(ref_qcoeff.Init()); Buffer<tran_low_t> ref_dqcoeff = Buffer<tran_low_t>(max_size_, max_size_, 0, 32); ASSERT_TRUE(ref_dqcoeff.Init()); uint16_t eob, ref_eob; for (int i = 0; i < number_of_iterations; ++i) { // Test skip block for the first three iterations to catch all the different // sizes. const int skip_block = 0; TX_SIZE sz; if (max_size_ == 16) { sz = static_cast<TX_SIZE>(i % 3); // TX_4X4, TX_8X8 TX_16X16 } else { sz = TX_32X32; } const TX_TYPE tx_type = static_cast<TX_TYPE>((i >> 2) % 3); const scan_order *scan_order = &vp9_scan_orders[sz][tx_type]; const int count = (4 << sz) * (4 << sz); coeff.Set(&rnd, -max_value_, max_value_); GenerateHelperArrays(&rnd, zbin_ptr_, round_ptr_, quant_ptr_, quant_shift_ptr_, dequant_ptr_); ref_quantize_op_(coeff.TopLeftPixel(), count, skip_block, zbin_ptr_, round_ptr_, quant_ptr_, quant_shift_ptr_, ref_qcoeff.TopLeftPixel(), ref_dqcoeff.TopLeftPixel(), dequant_ptr_, &ref_eob, scan_order->scan, scan_order->iscan); ASM_REGISTER_STATE_CHECK( quantize_op_(coeff.TopLeftPixel(), count, skip_block, zbin_ptr_, round_ptr_, quant_ptr_, quant_shift_ptr_, qcoeff.TopLeftPixel(), dqcoeff.TopLeftPixel(), dequant_ptr_, &eob, scan_order->scan, scan_order->iscan)); EXPECT_TRUE(qcoeff.CheckValues(ref_qcoeff)); EXPECT_TRUE(dqcoeff.CheckValues(ref_dqcoeff)); EXPECT_EQ(eob, ref_eob); if (HasFailure()) { printf("Failure on iteration %d.\n", i); qcoeff.PrintDifference(ref_qcoeff); dqcoeff.PrintDifference(ref_dqcoeff); return; } } } TEST_P(VP9QuantizeTest, EOBCheck) { ACMRandom rnd(ACMRandom::DeterministicSeed()); Buffer<tran_low_t> coeff = Buffer<tran_low_t>(max_size_, max_size_, 0, 16); ASSERT_TRUE(coeff.Init()); Buffer<tran_low_t> qcoeff = Buffer<tran_low_t>(max_size_, max_size_, 0, 32); ASSERT_TRUE(qcoeff.Init()); Buffer<tran_low_t> dqcoeff = Buffer<tran_low_t>(max_size_, max_size_, 0, 32); ASSERT_TRUE(dqcoeff.Init()); Buffer<tran_low_t> ref_qcoeff = Buffer<tran_low_t>(max_size_, max_size_, 0, 32); ASSERT_TRUE(ref_qcoeff.Init()); Buffer<tran_low_t> ref_dqcoeff = Buffer<tran_low_t>(max_size_, max_size_, 0, 32); ASSERT_TRUE(ref_dqcoeff.Init()); uint16_t eob, ref_eob; for (int i = 0; i < number_of_iterations; ++i) { const int skip_block = 0; TX_SIZE sz; if (max_size_ == 16) { sz = static_cast<TX_SIZE>(i % 3); // TX_4X4, TX_8X8 TX_16X16 } else { sz = TX_32X32; } const TX_TYPE tx_type = static_cast<TX_TYPE>((i >> 2) % 3); const scan_order *scan_order = &vp9_scan_orders[sz][tx_type]; int count = (4 << sz) * (4 << sz); // Two random entries coeff.Set(0); coeff.TopLeftPixel()[rnd(count)] = static_cast<int>(rnd.RandRange(max_value_ * 2)) - max_value_; coeff.TopLeftPixel()[rnd(count)] = static_cast<int>(rnd.RandRange(max_value_ * 2)) - max_value_; GenerateHelperArrays(&rnd, zbin_ptr_, round_ptr_, quant_ptr_, quant_shift_ptr_, dequant_ptr_); ref_quantize_op_(coeff.TopLeftPixel(), count, skip_block, zbin_ptr_, round_ptr_, quant_ptr_, quant_shift_ptr_, ref_qcoeff.TopLeftPixel(), ref_dqcoeff.TopLeftPixel(), dequant_ptr_, &ref_eob, scan_order->scan, scan_order->iscan); ASM_REGISTER_STATE_CHECK( quantize_op_(coeff.TopLeftPixel(), count, skip_block, zbin_ptr_, round_ptr_, quant_ptr_, quant_shift_ptr_, qcoeff.TopLeftPixel(), dqcoeff.TopLeftPixel(), dequant_ptr_, &eob, scan_order->scan, scan_order->iscan)); EXPECT_TRUE(qcoeff.CheckValues(ref_qcoeff)); EXPECT_TRUE(dqcoeff.CheckValues(ref_dqcoeff)); EXPECT_EQ(eob, ref_eob); if (HasFailure()) { printf("Failure on iteration %d.\n", i); qcoeff.PrintDifference(ref_qcoeff); dqcoeff.PrintDifference(ref_dqcoeff); return; } } } TEST_P(VP9QuantizeTest, DISABLED_Speed) { ACMRandom rnd(ACMRandom::DeterministicSeed()); Buffer<tran_low_t> coeff = Buffer<tran_low_t>(max_size_, max_size_, 0, 16); ASSERT_TRUE(coeff.Init()); Buffer<tran_low_t> qcoeff = Buffer<tran_low_t>(max_size_, max_size_, 0, 32); ASSERT_TRUE(qcoeff.Init()); Buffer<tran_low_t> dqcoeff = Buffer<tran_low_t>(max_size_, max_size_, 0, 32); ASSERT_TRUE(dqcoeff.Init()); uint16_t eob; TX_SIZE starting_sz, ending_sz; if (max_size_ == 16) { starting_sz = TX_4X4; ending_sz = TX_16X16; } else { starting_sz = TX_32X32; ending_sz = TX_32X32; } for (TX_SIZE sz = starting_sz; sz <= ending_sz; ++sz) { // zbin > coeff, zbin < coeff. for (int i = 0; i < 2; ++i) { const int skip_block = 0; // TX_TYPE defines the scan order. That is not relevant to the speed test. // Pick the first one. const TX_TYPE tx_type = DCT_DCT; const scan_order *scan_order = &vp9_scan_orders[sz][tx_type]; const int count = (4 << sz) * (4 << sz); GenerateHelperArrays(&rnd, zbin_ptr_, round_ptr_, quant_ptr_, quant_shift_ptr_, dequant_ptr_); if (i == 0) { // When |coeff values| are less than zbin the results are 0. int threshold = 100; if (max_size_ == 32) { // For 32x32, the threshold is halved. Double it to keep the values // from clearing it. threshold = 200; } for (int j = 0; j < 8; ++j) zbin_ptr_[j] = threshold; coeff.Set(&rnd, -99, 99); } else if (i == 1) { for (int j = 0; j < 8; ++j) zbin_ptr_[j] = 50; coeff.Set(&rnd, -500, 500); } vpx_usec_timer timer; vpx_usec_timer_start(&timer); for (int j = 0; j < 100000000 / count; ++j) { quantize_op_(coeff.TopLeftPixel(), count, skip_block, zbin_ptr_, round_ptr_, quant_ptr_, quant_shift_ptr_, qcoeff.TopLeftPixel(), dqcoeff.TopLeftPixel(), dequant_ptr_, &eob, scan_order->scan, scan_order->iscan); } vpx_usec_timer_mark(&timer); const int elapsed_time = static_cast<int>(vpx_usec_timer_elapsed(&timer)); if (i == 0) printf("Bypass calculations.\n"); if (i == 1) printf("Full calculations.\n"); printf("Quantize %dx%d time: %5d ms\n", 4 << sz, 4 << sz, elapsed_time / 1000); } printf("\n"); } } using std::tr1::make_tuple; #if HAVE_SSE2 #if CONFIG_VP9_HIGHBITDEPTH // TODO(johannkoenig): Fix vpx_quantize_b_sse2 in highbitdepth builds. // make_tuple(&vpx_quantize_b_sse2, &vpx_highbd_quantize_b_c, VPX_BITS_8), INSTANTIATE_TEST_CASE_P( SSE2, VP9QuantizeTest, ::testing::Values( make_tuple(&vpx_highbd_quantize_b_sse2, &vpx_highbd_quantize_b_c, VPX_BITS_8, 16), make_tuple(&vpx_highbd_quantize_b_sse2, &vpx_highbd_quantize_b_c, VPX_BITS_10, 16), make_tuple(&vpx_highbd_quantize_b_sse2, &vpx_highbd_quantize_b_c, VPX_BITS_12, 16), make_tuple(&vpx_highbd_quantize_b_32x32_sse2, &vpx_highbd_quantize_b_32x32_c, VPX_BITS_8, 32), make_tuple(&vpx_highbd_quantize_b_32x32_sse2, &vpx_highbd_quantize_b_32x32_c, VPX_BITS_10, 32), make_tuple(&vpx_highbd_quantize_b_32x32_sse2, &vpx_highbd_quantize_b_32x32_c, VPX_BITS_12, 32))); #else INSTANTIATE_TEST_CASE_P(SSE2, VP9QuantizeTest, ::testing::Values(make_tuple(&vpx_quantize_b_sse2, &vpx_quantize_b_c, VPX_BITS_8, 16))); #endif // CONFIG_VP9_HIGHBITDEPTH INSTANTIATE_TEST_CASE_P( DISABLED_SSE2, VP9QuantizeTest, ::testing::Values(make_tuple(&QuantFPWrapper<vp9_quantize_fp_sse2>, &QuantFPWrapper<vp9_quantize_fp_c>, VPX_BITS_8, 16))); #endif // HAVE_SSE2 #if HAVE_SSSE3 && !CONFIG_VP9_HIGHBITDEPTH INSTANTIATE_TEST_CASE_P(SSSE3, VP9QuantizeTest, ::testing::Values(make_tuple(&vpx_quantize_b_ssse3, &vpx_quantize_b_c, VPX_BITS_8, 16))); #if ARCH_X86_64 // TODO(johannkoenig): SSSE3 optimizations do not yet pass this test. INSTANTIATE_TEST_CASE_P( DISABLED_SSSE3, VP9QuantizeTest, ::testing::Values(make_tuple(&vpx_quantize_b_32x32_ssse3, &vpx_quantize_b_32x32_c, VPX_BITS_8, 32), make_tuple(&QuantFPWrapper<vp9_quantize_fp_ssse3>, &QuantFPWrapper<vp9_quantize_fp_c>, VPX_BITS_8, 16), make_tuple(&QuantFPWrapper<vp9_quantize_fp_32x32_ssse3>, &QuantFPWrapper<vp9_quantize_fp_32x32_c>, VPX_BITS_8, 32))); #endif // ARCH_X86_64 #endif // HAVE_SSSE3 && !CONFIG_VP9_HIGHBITDEPTH // TODO(johannkoenig): AVX optimizations do not yet pass the 32x32 test or // highbitdepth configurations. #if HAVE_AVX && !CONFIG_VP9_HIGHBITDEPTH INSTANTIATE_TEST_CASE_P( AVX, VP9QuantizeTest, ::testing::Values(make_tuple(&vpx_quantize_b_avx, &vpx_quantize_b_c, VPX_BITS_8, 16), // Even though SSSE3 and AVX do not match the reference // code, we can keep them in sync with each other. make_tuple(&vpx_quantize_b_32x32_avx, &vpx_quantize_b_32x32_ssse3, VPX_BITS_8, 32))); #endif // HAVE_AVX && !CONFIG_VP9_HIGHBITDEPTH // TODO(webm:1448): dqcoeff is not handled correctly in HBD builds. #if HAVE_NEON && !CONFIG_VP9_HIGHBITDEPTH INSTANTIATE_TEST_CASE_P( NEON, VP9QuantizeTest, ::testing::Values( make_tuple(&vpx_quantize_b_neon, &vpx_quantize_b_c, VPX_BITS_8, 16), make_tuple(&vpx_quantize_b_32x32_neon, &vpx_quantize_b_32x32_c, VPX_BITS_8, 32), make_tuple(&QuantFPWrapper<vp9_quantize_fp_neon>, &QuantFPWrapper<vp9_quantize_fp_c>, VPX_BITS_8, 16), make_tuple(&QuantFPWrapper<vp9_quantize_fp_32x32_neon>, &QuantFPWrapper<vp9_quantize_fp_32x32_c>, VPX_BITS_8, 32))); #endif // HAVE_NEON && !CONFIG_VP9_HIGHBITDEPTH // Only useful to compare "Speed" test results. INSTANTIATE_TEST_CASE_P( DISABLED_C, VP9QuantizeTest, ::testing::Values( make_tuple(&vpx_quantize_b_c, &vpx_quantize_b_c, VPX_BITS_8, 16), make_tuple(&vpx_quantize_b_32x32_c, &vpx_quantize_b_32x32_c, VPX_BITS_8, 32), make_tuple(&QuantFPWrapper<vp9_quantize_fp_c>, &QuantFPWrapper<vp9_quantize_fp_c>, VPX_BITS_8, 16), make_tuple(&QuantFPWrapper<vp9_quantize_fp_32x32_c>, &QuantFPWrapper<vp9_quantize_fp_32x32_c>, VPX_BITS_8, 32))); } // namespace