ref: 32b75587a7e831daacb7424184055ce9c9485190
dir: /third_party/googletest/src/src/gtest-port.cc/
// Copyright 2008, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "gtest/internal/gtest-port.h" #include <limits.h> #include <stdlib.h> #include <stdio.h> #include <string.h> #include <fstream> #if GTEST_OS_WINDOWS # include <windows.h> # include <io.h> # include <sys/stat.h> # include <map> // Used in ThreadLocal. #else # include <unistd.h> #endif // GTEST_OS_WINDOWS #if GTEST_OS_MAC # include <mach/mach_init.h> # include <mach/task.h> # include <mach/vm_map.h> #endif // GTEST_OS_MAC #if GTEST_OS_QNX # include <devctl.h> # include <fcntl.h> # include <sys/procfs.h> #endif // GTEST_OS_QNX #if GTEST_OS_AIX # include <procinfo.h> # include <sys/types.h> #endif // GTEST_OS_AIX #if GTEST_OS_FUCHSIA # include <zircon/process.h> # include <zircon/syscalls.h> #endif // GTEST_OS_FUCHSIA #include "gtest/gtest-spi.h" #include "gtest/gtest-message.h" #include "gtest/internal/gtest-internal.h" #include "gtest/internal/gtest-string.h" #include "src/gtest-internal-inl.h" namespace testing { namespace internal { #if defined(_MSC_VER) || defined(__BORLANDC__) // MSVC and C++Builder do not provide a definition of STDERR_FILENO. const int kStdOutFileno = 1; const int kStdErrFileno = 2; #else const int kStdOutFileno = STDOUT_FILENO; const int kStdErrFileno = STDERR_FILENO; #endif // _MSC_VER #if GTEST_OS_LINUX namespace { template <typename T> T ReadProcFileField(const std::string& filename, int field) { std::string dummy; std::ifstream file(filename.c_str()); while (field-- > 0) { file >> dummy; } T output = 0; file >> output; return output; } } // namespace // Returns the number of active threads, or 0 when there is an error. size_t GetThreadCount() { const std::string filename = (Message() << "/proc/" << getpid() << "/stat").GetString(); return ReadProcFileField<int>(filename, 19); } #elif GTEST_OS_MAC size_t GetThreadCount() { const task_t task = mach_task_self(); mach_msg_type_number_t thread_count; thread_act_array_t thread_list; const kern_return_t status = task_threads(task, &thread_list, &thread_count); if (status == KERN_SUCCESS) { // task_threads allocates resources in thread_list and we need to free them // to avoid leaks. vm_deallocate(task, reinterpret_cast<vm_address_t>(thread_list), sizeof(thread_t) * thread_count); return static_cast<size_t>(thread_count); } else { return 0; } } #elif GTEST_OS_QNX // Returns the number of threads running in the process, or 0 to indicate that // we cannot detect it. size_t GetThreadCount() { const int fd = open("/proc/self/as", O_RDONLY); if (fd < 0) { return 0; } procfs_info process_info; const int status = devctl(fd, DCMD_PROC_INFO, &process_info, sizeof(process_info), NULL); close(fd); if (status == EOK) { return static_cast<size_t>(process_info.num_threads); } else { return 0; } } #elif GTEST_OS_AIX size_t GetThreadCount() { struct procentry64 entry; pid_t pid = getpid(); int status = getprocs64(&entry, sizeof(entry), NULL, 0, &pid, 1); if (status == 1) { return entry.pi_thcount; } else { return 0; } } #elif GTEST_OS_FUCHSIA size_t GetThreadCount() { int dummy_buffer; size_t avail; zx_status_t status = zx_object_get_info( zx_process_self(), ZX_INFO_PROCESS_THREADS, &dummy_buffer, 0, nullptr, &avail); if (status == ZX_OK) { return avail; } else { return 0; } } #else size_t GetThreadCount() { // There's no portable way to detect the number of threads, so we just // return 0 to indicate that we cannot detect it. return 0; } #endif // GTEST_OS_LINUX #if GTEST_IS_THREADSAFE && GTEST_OS_WINDOWS void SleepMilliseconds(int n) { ::Sleep(n); } AutoHandle::AutoHandle() : handle_(INVALID_HANDLE_VALUE) {} AutoHandle::AutoHandle(Handle handle) : handle_(handle) {} AutoHandle::~AutoHandle() { Reset(); } AutoHandle::Handle AutoHandle::Get() const { return handle_; } void AutoHandle::Reset() { Reset(INVALID_HANDLE_VALUE); } void AutoHandle::Reset(HANDLE handle) { // Resetting with the same handle we already own is invalid. if (handle_ != handle) { if (IsCloseable()) { ::CloseHandle(handle_); } handle_ = handle; } else { GTEST_CHECK_(!IsCloseable()) << "Resetting a valid handle to itself is likely a programmer error " "and thus not allowed."; } } bool AutoHandle::IsCloseable() const { // Different Windows APIs may use either of these values to represent an // invalid handle. return handle_ != NULL && handle_ != INVALID_HANDLE_VALUE; } Notification::Notification() : event_(::CreateEvent(NULL, // Default security attributes. TRUE, // Do not reset automatically. FALSE, // Initially unset. NULL)) { // Anonymous event. GTEST_CHECK_(event_.Get() != NULL); } void Notification::Notify() { GTEST_CHECK_(::SetEvent(event_.Get()) != FALSE); } void Notification::WaitForNotification() { GTEST_CHECK_( ::WaitForSingleObject(event_.Get(), INFINITE) == WAIT_OBJECT_0); } Mutex::Mutex() : owner_thread_id_(0), type_(kDynamic), critical_section_init_phase_(0), critical_section_(new CRITICAL_SECTION) { ::InitializeCriticalSection(critical_section_); } Mutex::~Mutex() { // Static mutexes are leaked intentionally. It is not thread-safe to try // to clean them up. // FIXME: Switch to Slim Reader/Writer (SRW) Locks, which requires // nothing to clean it up but is available only on Vista and later. // https://docs.microsoft.com/en-us/windows/desktop/Sync/slim-reader-writer--srw--locks if (type_ == kDynamic) { ::DeleteCriticalSection(critical_section_); delete critical_section_; critical_section_ = NULL; } } void Mutex::Lock() { ThreadSafeLazyInit(); ::EnterCriticalSection(critical_section_); owner_thread_id_ = ::GetCurrentThreadId(); } void Mutex::Unlock() { ThreadSafeLazyInit(); // We don't protect writing to owner_thread_id_ here, as it's the // caller's responsibility to ensure that the current thread holds the // mutex when this is called. owner_thread_id_ = 0; ::LeaveCriticalSection(critical_section_); } // Does nothing if the current thread holds the mutex. Otherwise, crashes // with high probability. void Mutex::AssertHeld() { ThreadSafeLazyInit(); GTEST_CHECK_(owner_thread_id_ == ::GetCurrentThreadId()) << "The current thread is not holding the mutex @" << this; } namespace { // Use the RAII idiom to flag mem allocs that are intentionally never // deallocated. The motivation is to silence the false positive mem leaks // that are reported by the debug version of MS's CRT which can only detect // if an alloc is missing a matching deallocation. // Example: // MemoryIsNotDeallocated memory_is_not_deallocated; // critical_section_ = new CRITICAL_SECTION; // class MemoryIsNotDeallocated { public: MemoryIsNotDeallocated() : old_crtdbg_flag_(0) { #ifdef _MSC_VER old_crtdbg_flag_ = _CrtSetDbgFlag(_CRTDBG_REPORT_FLAG); // Set heap allocation block type to _IGNORE_BLOCK so that MS debug CRT // doesn't report mem leak if there's no matching deallocation. _CrtSetDbgFlag(old_crtdbg_flag_ & ~_CRTDBG_ALLOC_MEM_DF); #endif // _MSC_VER } ~MemoryIsNotDeallocated() { #ifdef _MSC_VER // Restore the original _CRTDBG_ALLOC_MEM_DF flag _CrtSetDbgFlag(old_crtdbg_flag_); #endif // _MSC_VER } private: int old_crtdbg_flag_; GTEST_DISALLOW_COPY_AND_ASSIGN_(MemoryIsNotDeallocated); }; } // namespace // Initializes owner_thread_id_ and critical_section_ in static mutexes. void Mutex::ThreadSafeLazyInit() { // Dynamic mutexes are initialized in the constructor. if (type_ == kStatic) { switch ( ::InterlockedCompareExchange(&critical_section_init_phase_, 1L, 0L)) { case 0: // If critical_section_init_phase_ was 0 before the exchange, we // are the first to test it and need to perform the initialization. owner_thread_id_ = 0; { // Use RAII to flag that following mem alloc is never deallocated. MemoryIsNotDeallocated memory_is_not_deallocated; critical_section_ = new CRITICAL_SECTION; } ::InitializeCriticalSection(critical_section_); // Updates the critical_section_init_phase_ to 2 to signal // initialization complete. GTEST_CHECK_(::InterlockedCompareExchange( &critical_section_init_phase_, 2L, 1L) == 1L); break; case 1: // Somebody else is already initializing the mutex; spin until they // are done. while (::InterlockedCompareExchange(&critical_section_init_phase_, 2L, 2L) != 2L) { // Possibly yields the rest of the thread's time slice to other // threads. ::Sleep(0); } break; case 2: break; // The mutex is already initialized and ready for use. default: GTEST_CHECK_(false) << "Unexpected value of critical_section_init_phase_ " << "while initializing a static mutex."; } } } namespace { class ThreadWithParamSupport : public ThreadWithParamBase { public: static HANDLE CreateThread(Runnable* runnable, Notification* thread_can_start) { ThreadMainParam* param = new ThreadMainParam(runnable, thread_can_start); DWORD thread_id; // FIXME: Consider to use _beginthreadex instead. HANDLE thread_handle = ::CreateThread( NULL, // Default security. 0, // Default stack size. &ThreadWithParamSupport::ThreadMain, param, // Parameter to ThreadMainStatic 0x0, // Default creation flags. &thread_id); // Need a valid pointer for the call to work under Win98. GTEST_CHECK_(thread_handle != NULL) << "CreateThread failed with error " << ::GetLastError() << "."; if (thread_handle == NULL) { delete param; } return thread_handle; } private: struct ThreadMainParam { ThreadMainParam(Runnable* runnable, Notification* thread_can_start) : runnable_(runnable), thread_can_start_(thread_can_start) { } scoped_ptr<Runnable> runnable_; // Does not own. Notification* thread_can_start_; }; static DWORD WINAPI ThreadMain(void* ptr) { // Transfers ownership. scoped_ptr<ThreadMainParam> param(static_cast<ThreadMainParam*>(ptr)); if (param->thread_can_start_ != NULL) param->thread_can_start_->WaitForNotification(); param->runnable_->Run(); return 0; } // Prohibit instantiation. ThreadWithParamSupport(); GTEST_DISALLOW_COPY_AND_ASSIGN_(ThreadWithParamSupport); }; } // namespace ThreadWithParamBase::ThreadWithParamBase(Runnable *runnable, Notification* thread_can_start) : thread_(ThreadWithParamSupport::CreateThread(runnable, thread_can_start)) { } ThreadWithParamBase::~ThreadWithParamBase() { Join(); } void ThreadWithParamBase::Join() { GTEST_CHECK_(::WaitForSingleObject(thread_.Get(), INFINITE) == WAIT_OBJECT_0) << "Failed to join the thread with error " << ::GetLastError() << "."; } // Maps a thread to a set of ThreadIdToThreadLocals that have values // instantiated on that thread and notifies them when the thread exits. A // ThreadLocal instance is expected to persist until all threads it has // values on have terminated. class ThreadLocalRegistryImpl { public: // Registers thread_local_instance as having value on the current thread. // Returns a value that can be used to identify the thread from other threads. static ThreadLocalValueHolderBase* GetValueOnCurrentThread( const ThreadLocalBase* thread_local_instance) { DWORD current_thread = ::GetCurrentThreadId(); MutexLock lock(&mutex_); ThreadIdToThreadLocals* const thread_to_thread_locals = GetThreadLocalsMapLocked(); ThreadIdToThreadLocals::iterator thread_local_pos = thread_to_thread_locals->find(current_thread); if (thread_local_pos == thread_to_thread_locals->end()) { thread_local_pos = thread_to_thread_locals->insert( std::make_pair(current_thread, ThreadLocalValues())).first; StartWatcherThreadFor(current_thread); } ThreadLocalValues& thread_local_values = thread_local_pos->second; ThreadLocalValues::iterator value_pos = thread_local_values.find(thread_local_instance); if (value_pos == thread_local_values.end()) { value_pos = thread_local_values .insert(std::make_pair( thread_local_instance, linked_ptr<ThreadLocalValueHolderBase>( thread_local_instance->NewValueForCurrentThread()))) .first; } return value_pos->second.get(); } static void OnThreadLocalDestroyed( const ThreadLocalBase* thread_local_instance) { std::vector<linked_ptr<ThreadLocalValueHolderBase> > value_holders; // Clean up the ThreadLocalValues data structure while holding the lock, but // defer the destruction of the ThreadLocalValueHolderBases. { MutexLock lock(&mutex_); ThreadIdToThreadLocals* const thread_to_thread_locals = GetThreadLocalsMapLocked(); for (ThreadIdToThreadLocals::iterator it = thread_to_thread_locals->begin(); it != thread_to_thread_locals->end(); ++it) { ThreadLocalValues& thread_local_values = it->second; ThreadLocalValues::iterator value_pos = thread_local_values.find(thread_local_instance); if (value_pos != thread_local_values.end()) { value_holders.push_back(value_pos->second); thread_local_values.erase(value_pos); // This 'if' can only be successful at most once, so theoretically we // could break out of the loop here, but we don't bother doing so. } } } // Outside the lock, let the destructor for 'value_holders' deallocate the // ThreadLocalValueHolderBases. } static void OnThreadExit(DWORD thread_id) { GTEST_CHECK_(thread_id != 0) << ::GetLastError(); std::vector<linked_ptr<ThreadLocalValueHolderBase> > value_holders; // Clean up the ThreadIdToThreadLocals data structure while holding the // lock, but defer the destruction of the ThreadLocalValueHolderBases. { MutexLock lock(&mutex_); ThreadIdToThreadLocals* const thread_to_thread_locals = GetThreadLocalsMapLocked(); ThreadIdToThreadLocals::iterator thread_local_pos = thread_to_thread_locals->find(thread_id); if (thread_local_pos != thread_to_thread_locals->end()) { ThreadLocalValues& thread_local_values = thread_local_pos->second; for (ThreadLocalValues::iterator value_pos = thread_local_values.begin(); value_pos != thread_local_values.end(); ++value_pos) { value_holders.push_back(value_pos->second); } thread_to_thread_locals->erase(thread_local_pos); } } // Outside the lock, let the destructor for 'value_holders' deallocate the // ThreadLocalValueHolderBases. } private: // In a particular thread, maps a ThreadLocal object to its value. typedef std::map<const ThreadLocalBase*, linked_ptr<ThreadLocalValueHolderBase> > ThreadLocalValues; // Stores all ThreadIdToThreadLocals having values in a thread, indexed by // thread's ID. typedef std::map<DWORD, ThreadLocalValues> ThreadIdToThreadLocals; // Holds the thread id and thread handle that we pass from // StartWatcherThreadFor to WatcherThreadFunc. typedef std::pair<DWORD, HANDLE> ThreadIdAndHandle; static void StartWatcherThreadFor(DWORD thread_id) { // The returned handle will be kept in thread_map and closed by // watcher_thread in WatcherThreadFunc. HANDLE thread = ::OpenThread(SYNCHRONIZE | THREAD_QUERY_INFORMATION, FALSE, thread_id); GTEST_CHECK_(thread != NULL); // We need to pass a valid thread ID pointer into CreateThread for it // to work correctly under Win98. DWORD watcher_thread_id; HANDLE watcher_thread = ::CreateThread( NULL, // Default security. 0, // Default stack size &ThreadLocalRegistryImpl::WatcherThreadFunc, reinterpret_cast<LPVOID>(new ThreadIdAndHandle(thread_id, thread)), CREATE_SUSPENDED, &watcher_thread_id); GTEST_CHECK_(watcher_thread != NULL); // Give the watcher thread the same priority as ours to avoid being // blocked by it. ::SetThreadPriority(watcher_thread, ::GetThreadPriority(::GetCurrentThread())); ::ResumeThread(watcher_thread); ::CloseHandle(watcher_thread); } // Monitors exit from a given thread and notifies those // ThreadIdToThreadLocals about thread termination. static DWORD WINAPI WatcherThreadFunc(LPVOID param) { const ThreadIdAndHandle* tah = reinterpret_cast<const ThreadIdAndHandle*>(param); GTEST_CHECK_( ::WaitForSingleObject(tah->second, INFINITE) == WAIT_OBJECT_0); OnThreadExit(tah->first); ::CloseHandle(tah->second); delete tah; return 0; } // Returns map of thread local instances. static ThreadIdToThreadLocals* GetThreadLocalsMapLocked() { mutex_.AssertHeld(); MemoryIsNotDeallocated memory_is_not_deallocated; static ThreadIdToThreadLocals* map = new ThreadIdToThreadLocals(); return map; } // Protects access to GetThreadLocalsMapLocked() and its return value. static Mutex mutex_; // Protects access to GetThreadMapLocked() and its return value. static Mutex thread_map_mutex_; }; Mutex ThreadLocalRegistryImpl::mutex_(Mutex::kStaticMutex); Mutex ThreadLocalRegistryImpl::thread_map_mutex_(Mutex::kStaticMutex); ThreadLocalValueHolderBase* ThreadLocalRegistry::GetValueOnCurrentThread( const ThreadLocalBase* thread_local_instance) { return ThreadLocalRegistryImpl::GetValueOnCurrentThread( thread_local_instance); } void ThreadLocalRegistry::OnThreadLocalDestroyed( const ThreadLocalBase* thread_local_instance) { ThreadLocalRegistryImpl::OnThreadLocalDestroyed(thread_local_instance); } #endif // GTEST_IS_THREADSAFE && GTEST_OS_WINDOWS #if GTEST_USES_POSIX_RE // Implements RE. Currently only needed for death tests. RE::~RE() { if (is_valid_) { // regfree'ing an invalid regex might crash because the content // of the regex is undefined. Since the regex's are essentially // the same, one cannot be valid (or invalid) without the other // being so too. regfree(&partial_regex_); regfree(&full_regex_); } free(const_cast<char*>(pattern_)); } // Returns true iff regular expression re matches the entire str. bool RE::FullMatch(const char* str, const RE& re) { if (!re.is_valid_) return false; regmatch_t match; return regexec(&re.full_regex_, str, 1, &match, 0) == 0; } // Returns true iff regular expression re matches a substring of str // (including str itself). bool RE::PartialMatch(const char* str, const RE& re) { if (!re.is_valid_) return false; regmatch_t match; return regexec(&re.partial_regex_, str, 1, &match, 0) == 0; } // Initializes an RE from its string representation. void RE::Init(const char* regex) { pattern_ = posix::StrDup(regex); // Reserves enough bytes to hold the regular expression used for a // full match. const size_t full_regex_len = strlen(regex) + 10; char* const full_pattern = new char[full_regex_len]; snprintf(full_pattern, full_regex_len, "^(%s)$", regex); is_valid_ = regcomp(&full_regex_, full_pattern, REG_EXTENDED) == 0; // We want to call regcomp(&partial_regex_, ...) even if the // previous expression returns false. Otherwise partial_regex_ may // not be properly initialized can may cause trouble when it's // freed. // // Some implementation of POSIX regex (e.g. on at least some // versions of Cygwin) doesn't accept the empty string as a valid // regex. We change it to an equivalent form "()" to be safe. if (is_valid_) { const char* const partial_regex = (*regex == '\0') ? "()" : regex; is_valid_ = regcomp(&partial_regex_, partial_regex, REG_EXTENDED) == 0; } EXPECT_TRUE(is_valid_) << "Regular expression \"" << regex << "\" is not a valid POSIX Extended regular expression."; delete[] full_pattern; } #elif GTEST_USES_SIMPLE_RE // Returns true iff ch appears anywhere in str (excluding the // terminating '\0' character). bool IsInSet(char ch, const char* str) { return ch != '\0' && strchr(str, ch) != NULL; } // Returns true iff ch belongs to the given classification. Unlike // similar functions in <ctype.h>, these aren't affected by the // current locale. bool IsAsciiDigit(char ch) { return '0' <= ch && ch <= '9'; } bool IsAsciiPunct(char ch) { return IsInSet(ch, "^-!\"#$%&'()*+,./:;<=>?@[\\]_`{|}~"); } bool IsRepeat(char ch) { return IsInSet(ch, "?*+"); } bool IsAsciiWhiteSpace(char ch) { return IsInSet(ch, " \f\n\r\t\v"); } bool IsAsciiWordChar(char ch) { return ('a' <= ch && ch <= 'z') || ('A' <= ch && ch <= 'Z') || ('0' <= ch && ch <= '9') || ch == '_'; } // Returns true iff "\\c" is a supported escape sequence. bool IsValidEscape(char c) { return (IsAsciiPunct(c) || IsInSet(c, "dDfnrsStvwW")); } // Returns true iff the given atom (specified by escaped and pattern) // matches ch. The result is undefined if the atom is invalid. bool AtomMatchesChar(bool escaped, char pattern_char, char ch) { if (escaped) { // "\\p" where p is pattern_char. switch (pattern_char) { case 'd': return IsAsciiDigit(ch); case 'D': return !IsAsciiDigit(ch); case 'f': return ch == '\f'; case 'n': return ch == '\n'; case 'r': return ch == '\r'; case 's': return IsAsciiWhiteSpace(ch); case 'S': return !IsAsciiWhiteSpace(ch); case 't': return ch == '\t'; case 'v': return ch == '\v'; case 'w': return IsAsciiWordChar(ch); case 'W': return !IsAsciiWordChar(ch); } return IsAsciiPunct(pattern_char) && pattern_char == ch; } return (pattern_char == '.' && ch != '\n') || pattern_char == ch; } // Helper function used by ValidateRegex() to format error messages. static std::string FormatRegexSyntaxError(const char* regex, int index) { return (Message() << "Syntax error at index " << index << " in simple regular expression \"" << regex << "\": ").GetString(); } // Generates non-fatal failures and returns false if regex is invalid; // otherwise returns true. bool ValidateRegex(const char* regex) { if (regex == NULL) { // FIXME: fix the source file location in the // assertion failures to match where the regex is used in user // code. ADD_FAILURE() << "NULL is not a valid simple regular expression."; return false; } bool is_valid = true; // True iff ?, *, or + can follow the previous atom. bool prev_repeatable = false; for (int i = 0; regex[i]; i++) { if (regex[i] == '\\') { // An escape sequence i++; if (regex[i] == '\0') { ADD_FAILURE() << FormatRegexSyntaxError(regex, i - 1) << "'\\' cannot appear at the end."; return false; } if (!IsValidEscape(regex[i])) { ADD_FAILURE() << FormatRegexSyntaxError(regex, i - 1) << "invalid escape sequence \"\\" << regex[i] << "\"."; is_valid = false; } prev_repeatable = true; } else { // Not an escape sequence. const char ch = regex[i]; if (ch == '^' && i > 0) { ADD_FAILURE() << FormatRegexSyntaxError(regex, i) << "'^' can only appear at the beginning."; is_valid = false; } else if (ch == '$' && regex[i + 1] != '\0') { ADD_FAILURE() << FormatRegexSyntaxError(regex, i) << "'$' can only appear at the end."; is_valid = false; } else if (IsInSet(ch, "()[]{}|")) { ADD_FAILURE() << FormatRegexSyntaxError(regex, i) << "'" << ch << "' is unsupported."; is_valid = false; } else if (IsRepeat(ch) && !prev_repeatable) { ADD_FAILURE() << FormatRegexSyntaxError(regex, i) << "'" << ch << "' can only follow a repeatable token."; is_valid = false; } prev_repeatable = !IsInSet(ch, "^$?*+"); } } return is_valid; } // Matches a repeated regex atom followed by a valid simple regular // expression. The regex atom is defined as c if escaped is false, // or \c otherwise. repeat is the repetition meta character (?, *, // or +). The behavior is undefined if str contains too many // characters to be indexable by size_t, in which case the test will // probably time out anyway. We are fine with this limitation as // std::string has it too. bool MatchRepetitionAndRegexAtHead( bool escaped, char c, char repeat, const char* regex, const char* str) { const size_t min_count = (repeat == '+') ? 1 : 0; const size_t max_count = (repeat == '?') ? 1 : static_cast<size_t>(-1) - 1; // We cannot call numeric_limits::max() as it conflicts with the // max() macro on Windows. for (size_t i = 0; i <= max_count; ++i) { // We know that the atom matches each of the first i characters in str. if (i >= min_count && MatchRegexAtHead(regex, str + i)) { // We have enough matches at the head, and the tail matches too. // Since we only care about *whether* the pattern matches str // (as opposed to *how* it matches), there is no need to find a // greedy match. return true; } if (str[i] == '\0' || !AtomMatchesChar(escaped, c, str[i])) return false; } return false; } // Returns true iff regex matches a prefix of str. regex must be a // valid simple regular expression and not start with "^", or the // result is undefined. bool MatchRegexAtHead(const char* regex, const char* str) { if (*regex == '\0') // An empty regex matches a prefix of anything. return true; // "$" only matches the end of a string. Note that regex being // valid guarantees that there's nothing after "$" in it. if (*regex == '$') return *str == '\0'; // Is the first thing in regex an escape sequence? const bool escaped = *regex == '\\'; if (escaped) ++regex; if (IsRepeat(regex[1])) { // MatchRepetitionAndRegexAtHead() calls MatchRegexAtHead(), so // here's an indirect recursion. It terminates as the regex gets // shorter in each recursion. return MatchRepetitionAndRegexAtHead( escaped, regex[0], regex[1], regex + 2, str); } else { // regex isn't empty, isn't "$", and doesn't start with a // repetition. We match the first atom of regex with the first // character of str and recurse. return (*str != '\0') && AtomMatchesChar(escaped, *regex, *str) && MatchRegexAtHead(regex + 1, str + 1); } } // Returns true iff regex matches any substring of str. regex must be // a valid simple regular expression, or the result is undefined. // // The algorithm is recursive, but the recursion depth doesn't exceed // the regex length, so we won't need to worry about running out of // stack space normally. In rare cases the time complexity can be // exponential with respect to the regex length + the string length, // but usually it's must faster (often close to linear). bool MatchRegexAnywhere(const char* regex, const char* str) { if (regex == NULL || str == NULL) return false; if (*regex == '^') return MatchRegexAtHead(regex + 1, str); // A successful match can be anywhere in str. do { if (MatchRegexAtHead(regex, str)) return true; } while (*str++ != '\0'); return false; } // Implements the RE class. RE::~RE() { free(const_cast<char*>(pattern_)); free(const_cast<char*>(full_pattern_)); } // Returns true iff regular expression re matches the entire str. bool RE::FullMatch(const char* str, const RE& re) { return re.is_valid_ && MatchRegexAnywhere(re.full_pattern_, str); } // Returns true iff regular expression re matches a substring of str // (including str itself). bool RE::PartialMatch(const char* str, const RE& re) { return re.is_valid_ && MatchRegexAnywhere(re.pattern_, str); } // Initializes an RE from its string representation. void RE::Init(const char* regex) { pattern_ = full_pattern_ = NULL; if (regex != NULL) { pattern_ = posix::StrDup(regex); } is_valid_ = ValidateRegex(regex); if (!is_valid_) { // No need to calculate the full pattern when the regex is invalid. return; } const size_t len = strlen(regex); // Reserves enough bytes to hold the regular expression used for a // full match: we need space to prepend a '^', append a '$', and // terminate the string with '\0'. char* buffer = static_cast<char*>(malloc(len + 3)); full_pattern_ = buffer; if (*regex != '^') *buffer++ = '^'; // Makes sure full_pattern_ starts with '^'. // We don't use snprintf or strncpy, as they trigger a warning when // compiled with VC++ 8.0. memcpy(buffer, regex, len); buffer += len; if (len == 0 || regex[len - 1] != '$') *buffer++ = '$'; // Makes sure full_pattern_ ends with '$'. *buffer = '\0'; } #endif // GTEST_USES_POSIX_RE const char kUnknownFile[] = "unknown file"; // Formats a source file path and a line number as they would appear // in an error message from the compiler used to compile this code. GTEST_API_ ::std::string FormatFileLocation(const char* file, int line) { const std::string file_name(file == NULL ? kUnknownFile : file); if (line < 0) { return file_name + ":"; } #ifdef _MSC_VER return file_name + "(" + StreamableToString(line) + "):"; #else return file_name + ":" + StreamableToString(line) + ":"; #endif // _MSC_VER } // Formats a file location for compiler-independent XML output. // Although this function is not platform dependent, we put it next to // FormatFileLocation in order to contrast the two functions. // Note that FormatCompilerIndependentFileLocation() does NOT append colon // to the file location it produces, unlike FormatFileLocation(). GTEST_API_ ::std::string FormatCompilerIndependentFileLocation( const char* file, int line) { const std::string file_name(file == NULL ? kUnknownFile : file); if (line < 0) return file_name; else return file_name + ":" + StreamableToString(line); } GTestLog::GTestLog(GTestLogSeverity severity, const char* file, int line) : severity_(severity) { const char* const marker = severity == GTEST_INFO ? "[ INFO ]" : severity == GTEST_WARNING ? "[WARNING]" : severity == GTEST_ERROR ? "[ ERROR ]" : "[ FATAL ]"; GetStream() << ::std::endl << marker << " " << FormatFileLocation(file, line).c_str() << ": "; } // Flushes the buffers and, if severity is GTEST_FATAL, aborts the program. GTestLog::~GTestLog() { GetStream() << ::std::endl; if (severity_ == GTEST_FATAL) { fflush(stderr); posix::Abort(); } } // Disable Microsoft deprecation warnings for POSIX functions called from // this class (creat, dup, dup2, and close) GTEST_DISABLE_MSC_DEPRECATED_PUSH_() #if GTEST_HAS_STREAM_REDIRECTION // Object that captures an output stream (stdout/stderr). class CapturedStream { public: // The ctor redirects the stream to a temporary file. explicit CapturedStream(int fd) : fd_(fd), uncaptured_fd_(dup(fd)) { # if GTEST_OS_WINDOWS char temp_dir_path[MAX_PATH + 1] = { '\0' }; // NOLINT char temp_file_path[MAX_PATH + 1] = { '\0' }; // NOLINT ::GetTempPathA(sizeof(temp_dir_path), temp_dir_path); const UINT success = ::GetTempFileNameA(temp_dir_path, "gtest_redir", 0, // Generate unique file name. temp_file_path); GTEST_CHECK_(success != 0) << "Unable to create a temporary file in " << temp_dir_path; const int captured_fd = creat(temp_file_path, _S_IREAD | _S_IWRITE); GTEST_CHECK_(captured_fd != -1) << "Unable to open temporary file " << temp_file_path; filename_ = temp_file_path; # else // There's no guarantee that a test has write access to the current // directory, so we create the temporary file in the /tmp directory // instead. We use /tmp on most systems, and /sdcard on Android. // That's because Android doesn't have /tmp. # if GTEST_OS_LINUX_ANDROID // Note: Android applications are expected to call the framework's // Context.getExternalStorageDirectory() method through JNI to get // the location of the world-writable SD Card directory. However, // this requires a Context handle, which cannot be retrieved // globally from native code. Doing so also precludes running the // code as part of a regular standalone executable, which doesn't // run in a Dalvik process (e.g. when running it through 'adb shell'). // // The location /sdcard is directly accessible from native code // and is the only location (unofficially) supported by the Android // team. It's generally a symlink to the real SD Card mount point // which can be /mnt/sdcard, /mnt/sdcard0, /system/media/sdcard, or // other OEM-customized locations. Never rely on these, and always // use /sdcard. char name_template[] = "/sdcard/gtest_captured_stream.XXXXXX"; # else char name_template[] = "/tmp/captured_stream.XXXXXX"; # endif // GTEST_OS_LINUX_ANDROID const int captured_fd = mkstemp(name_template); filename_ = name_template; # endif // GTEST_OS_WINDOWS fflush(NULL); dup2(captured_fd, fd_); close(captured_fd); } ~CapturedStream() { remove(filename_.c_str()); } std::string GetCapturedString() { if (uncaptured_fd_ != -1) { // Restores the original stream. fflush(NULL); dup2(uncaptured_fd_, fd_); close(uncaptured_fd_); uncaptured_fd_ = -1; } FILE* const file = posix::FOpen(filename_.c_str(), "r"); const std::string content = ReadEntireFile(file); posix::FClose(file); return content; } private: const int fd_; // A stream to capture. int uncaptured_fd_; // Name of the temporary file holding the stderr output. ::std::string filename_; GTEST_DISALLOW_COPY_AND_ASSIGN_(CapturedStream); }; GTEST_DISABLE_MSC_DEPRECATED_POP_() static CapturedStream* g_captured_stderr = NULL; static CapturedStream* g_captured_stdout = NULL; // Starts capturing an output stream (stdout/stderr). static void CaptureStream(int fd, const char* stream_name, CapturedStream** stream) { if (*stream != NULL) { GTEST_LOG_(FATAL) << "Only one " << stream_name << " capturer can exist at a time."; } *stream = new CapturedStream(fd); } // Stops capturing the output stream and returns the captured string. static std::string GetCapturedStream(CapturedStream** captured_stream) { const std::string content = (*captured_stream)->GetCapturedString(); delete *captured_stream; *captured_stream = NULL; return content; } // Starts capturing stdout. void CaptureStdout() { CaptureStream(kStdOutFileno, "stdout", &g_captured_stdout); } // Starts capturing stderr. void CaptureStderr() { CaptureStream(kStdErrFileno, "stderr", &g_captured_stderr); } // Stops capturing stdout and returns the captured string. std::string GetCapturedStdout() { return GetCapturedStream(&g_captured_stdout); } // Stops capturing stderr and returns the captured string. std::string GetCapturedStderr() { return GetCapturedStream(&g_captured_stderr); } #endif // GTEST_HAS_STREAM_REDIRECTION size_t GetFileSize(FILE* file) { fseek(file, 0, SEEK_END); return static_cast<size_t>(ftell(file)); } std::string ReadEntireFile(FILE* file) { const size_t file_size = GetFileSize(file); char* const buffer = new char[file_size]; size_t bytes_last_read = 0; // # of bytes read in the last fread() size_t bytes_read = 0; // # of bytes read so far fseek(file, 0, SEEK_SET); // Keeps reading the file until we cannot read further or the // pre-determined file size is reached. do { bytes_last_read = fread(buffer+bytes_read, 1, file_size-bytes_read, file); bytes_read += bytes_last_read; } while (bytes_last_read > 0 && bytes_read < file_size); const std::string content(buffer, bytes_read); delete[] buffer; return content; } #if GTEST_HAS_DEATH_TEST static const std::vector<std::string>* g_injected_test_argvs = NULL; // Owned. std::vector<std::string> GetInjectableArgvs() { if (g_injected_test_argvs != NULL) { return *g_injected_test_argvs; } return GetArgvs(); } void SetInjectableArgvs(const std::vector<std::string>* new_argvs) { if (g_injected_test_argvs != new_argvs) delete g_injected_test_argvs; g_injected_test_argvs = new_argvs; } void SetInjectableArgvs(const std::vector<std::string>& new_argvs) { SetInjectableArgvs( new std::vector<std::string>(new_argvs.begin(), new_argvs.end())); } #if GTEST_HAS_GLOBAL_STRING void SetInjectableArgvs(const std::vector< ::string>& new_argvs) { SetInjectableArgvs( new std::vector<std::string>(new_argvs.begin(), new_argvs.end())); } #endif // GTEST_HAS_GLOBAL_STRING void ClearInjectableArgvs() { delete g_injected_test_argvs; g_injected_test_argvs = NULL; } #endif // GTEST_HAS_DEATH_TEST #if GTEST_OS_WINDOWS_MOBILE namespace posix { void Abort() { DebugBreak(); TerminateProcess(GetCurrentProcess(), 1); } } // namespace posix #endif // GTEST_OS_WINDOWS_MOBILE // Returns the name of the environment variable corresponding to the // given flag. For example, FlagToEnvVar("foo") will return // "GTEST_FOO" in the open-source version. static std::string FlagToEnvVar(const char* flag) { const std::string full_flag = (Message() << GTEST_FLAG_PREFIX_ << flag).GetString(); Message env_var; for (size_t i = 0; i != full_flag.length(); i++) { env_var << ToUpper(full_flag.c_str()[i]); } return env_var.GetString(); } // Parses 'str' for a 32-bit signed integer. If successful, writes // the result to *value and returns true; otherwise leaves *value // unchanged and returns false. bool ParseInt32(const Message& src_text, const char* str, Int32* value) { // Parses the environment variable as a decimal integer. char* end = NULL; const long long_value = strtol(str, &end, 10); // NOLINT // Has strtol() consumed all characters in the string? if (*end != '\0') { // No - an invalid character was encountered. Message msg; msg << "WARNING: " << src_text << " is expected to be a 32-bit integer, but actually" << " has value \"" << str << "\".\n"; printf("%s", msg.GetString().c_str()); fflush(stdout); return false; } // Is the parsed value in the range of an Int32? const Int32 result = static_cast<Int32>(long_value); if (long_value == LONG_MAX || long_value == LONG_MIN || // The parsed value overflows as a long. (strtol() returns // LONG_MAX or LONG_MIN when the input overflows.) result != long_value // The parsed value overflows as an Int32. ) { Message msg; msg << "WARNING: " << src_text << " is expected to be a 32-bit integer, but actually" << " has value " << str << ", which overflows.\n"; printf("%s", msg.GetString().c_str()); fflush(stdout); return false; } *value = result; return true; } // Reads and returns the Boolean environment variable corresponding to // the given flag; if it's not set, returns default_value. // // The value is considered true iff it's not "0". bool BoolFromGTestEnv(const char* flag, bool default_value) { #if defined(GTEST_GET_BOOL_FROM_ENV_) return GTEST_GET_BOOL_FROM_ENV_(flag, default_value); #else const std::string env_var = FlagToEnvVar(flag); const char* const string_value = posix::GetEnv(env_var.c_str()); return string_value == NULL ? default_value : strcmp(string_value, "0") != 0; #endif // defined(GTEST_GET_BOOL_FROM_ENV_) } // Reads and returns a 32-bit integer stored in the environment // variable corresponding to the given flag; if it isn't set or // doesn't represent a valid 32-bit integer, returns default_value. Int32 Int32FromGTestEnv(const char* flag, Int32 default_value) { #if defined(GTEST_GET_INT32_FROM_ENV_) return GTEST_GET_INT32_FROM_ENV_(flag, default_value); #else const std::string env_var = FlagToEnvVar(flag); const char* const string_value = posix::GetEnv(env_var.c_str()); if (string_value == NULL) { // The environment variable is not set. return default_value; } Int32 result = default_value; if (!ParseInt32(Message() << "Environment variable " << env_var, string_value, &result)) { printf("The default value %s is used.\n", (Message() << default_value).GetString().c_str()); fflush(stdout); return default_value; } return result; #endif // defined(GTEST_GET_INT32_FROM_ENV_) } // As a special case for the 'output' flag, if GTEST_OUTPUT is not // set, we look for XML_OUTPUT_FILE, which is set by the Bazel build // system. The value of XML_OUTPUT_FILE is a filename without the // "xml:" prefix of GTEST_OUTPUT. // Note that this is meant to be called at the call site so it does // not check that the flag is 'output' // In essence this checks an env variable called XML_OUTPUT_FILE // and if it is set we prepend "xml:" to its value, if it not set we return "" std::string OutputFlagAlsoCheckEnvVar(){ std::string default_value_for_output_flag = ""; const char* xml_output_file_env = posix::GetEnv("XML_OUTPUT_FILE"); if (NULL != xml_output_file_env) { default_value_for_output_flag = std::string("xml:") + xml_output_file_env; } return default_value_for_output_flag; } // Reads and returns the string environment variable corresponding to // the given flag; if it's not set, returns default_value. const char* StringFromGTestEnv(const char* flag, const char* default_value) { #if defined(GTEST_GET_STRING_FROM_ENV_) return GTEST_GET_STRING_FROM_ENV_(flag, default_value); #else const std::string env_var = FlagToEnvVar(flag); const char* const value = posix::GetEnv(env_var.c_str()); return value == NULL ? default_value : value; #endif // defined(GTEST_GET_STRING_FROM_ENV_) } } // namespace internal } // namespace testing