shithub: libvpx

ref: 320fb4c34a6d6bed560fbe564e7e1eae328be100
dir: /examples/vp8_multi_resolution_encoder.c/

View raw version
/*
 *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

/*
 * This is an example demonstrating multi-resolution encoding in VP8.
 * High-resolution input video is down-sampled to lower-resolutions. The
 * encoder then encodes the video and outputs multiple bitstreams with
 * different resolutions.
 *
 * This test also allows for settings temporal layers for each spatial layer.
 * Different number of temporal layers per spatial stream may be used.
 * Currently up to 3 temporal layers per spatial stream (encoder) are supported
 * in this test.
 */

#include "./vpx_config.h"

#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <string.h>
#include <math.h>
#include <assert.h>
#include <sys/time.h>
#include "vpx_ports/vpx_timer.h"
#include "vpx/vpx_encoder.h"
#include "vpx/vp8cx.h"
#include "vpx_ports/mem_ops.h"
#include "../tools_common.h"
#define interface (vpx_codec_vp8_cx())
#define fourcc 0x30385056

void usage_exit(void) { exit(EXIT_FAILURE); }

/*
 * The input video frame is downsampled several times to generate a multi-level
 * hierarchical structure. NUM_ENCODERS is defined as the number of encoding
 * levels required. For example, if the size of input video is 1280x720,
 * NUM_ENCODERS is 3, and down-sampling factor is 2, the encoder outputs 3
 * bitstreams with resolution of 1280x720(level 0), 640x360(level 1), and
 * 320x180(level 2) respectively.
 */

/* Number of encoders (spatial resolutions) used in this test. */
#define NUM_ENCODERS 3

/* Maximum number of temporal layers allowed for this test. */
#define MAX_NUM_TEMPORAL_LAYERS 3

/* This example uses the scaler function in libyuv. */
#include "third_party/libyuv/include/libyuv/basic_types.h"
#include "third_party/libyuv/include/libyuv/scale.h"
#include "third_party/libyuv/include/libyuv/cpu_id.h"

int (*read_frame_p)(FILE *f, vpx_image_t *img);

static int mulres_read_frame(FILE *f, vpx_image_t *img) {
  size_t nbytes, to_read;
  int res = 1;

  to_read = img->w * img->h * 3 / 2;
  nbytes = fread(img->planes[0], 1, to_read, f);
  if (nbytes != to_read) {
    res = 0;
    if (nbytes > 0)
      printf("Warning: Read partial frame. Check your width & height!\n");
  }
  return res;
}

static int mulres_read_frame_by_row(FILE *f, vpx_image_t *img) {
  size_t nbytes, to_read;
  int res = 1;
  int plane;

  for (plane = 0; plane < 3; plane++) {
    unsigned char *ptr;
    int w = (plane ? (1 + img->d_w) / 2 : img->d_w);
    int h = (plane ? (1 + img->d_h) / 2 : img->d_h);
    int r;

    /* Determine the correct plane based on the image format. The for-loop
     * always counts in Y,U,V order, but this may not match the order of
     * the data on disk.
     */
    switch (plane) {
      case 1:
        ptr = img->planes[img->fmt == VPX_IMG_FMT_YV12 ? VPX_PLANE_V
                                                       : VPX_PLANE_U];
        break;
      case 2:
        ptr = img->planes[img->fmt == VPX_IMG_FMT_YV12 ? VPX_PLANE_U
                                                       : VPX_PLANE_V];
        break;
      default: ptr = img->planes[plane];
    }

    for (r = 0; r < h; r++) {
      to_read = w;

      nbytes = fread(ptr, 1, to_read, f);
      if (nbytes != to_read) {
        res = 0;
        if (nbytes > 0)
          printf("Warning: Read partial frame. Check your width & height!\n");
        break;
      }

      ptr += img->stride[plane];
    }
    if (!res) break;
  }

  return res;
}

static void write_ivf_file_header(FILE *outfile, const vpx_codec_enc_cfg_t *cfg,
                                  int frame_cnt) {
  char header[32];

  if (cfg->g_pass != VPX_RC_ONE_PASS && cfg->g_pass != VPX_RC_LAST_PASS) return;
  header[0] = 'D';
  header[1] = 'K';
  header[2] = 'I';
  header[3] = 'F';
  mem_put_le16(header + 4, 0);                    /* version */
  mem_put_le16(header + 6, 32);                   /* headersize */
  mem_put_le32(header + 8, fourcc);               /* headersize */
  mem_put_le16(header + 12, cfg->g_w);            /* width */
  mem_put_le16(header + 14, cfg->g_h);            /* height */
  mem_put_le32(header + 16, cfg->g_timebase.den); /* rate */
  mem_put_le32(header + 20, cfg->g_timebase.num); /* scale */
  mem_put_le32(header + 24, frame_cnt);           /* length */
  mem_put_le32(header + 28, 0);                   /* unused */

  (void)fwrite(header, 1, 32, outfile);
}

static void write_ivf_frame_header(FILE *outfile,
                                   const vpx_codec_cx_pkt_t *pkt) {
  char header[12];
  vpx_codec_pts_t pts;

  if (pkt->kind != VPX_CODEC_CX_FRAME_PKT) return;

  pts = pkt->data.frame.pts;
  mem_put_le32(header, (int)pkt->data.frame.sz);
  mem_put_le32(header + 4, pts & 0xFFFFFFFF);
  mem_put_le32(header + 8, pts >> 32);

  (void)fwrite(header, 1, 12, outfile);
}

/* Temporal scaling parameters */
/* This sets all the temporal layer parameters given |num_temporal_layers|,
 * including the target bit allocation across temporal layers. Bit allocation
 * parameters will be passed in as user parameters in another version.
 */
static void set_temporal_layer_pattern(int num_temporal_layers,
                                       vpx_codec_enc_cfg_t *cfg, int bitrate,
                                       int *layer_flags) {
  assert(num_temporal_layers <= MAX_NUM_TEMPORAL_LAYERS);
  switch (num_temporal_layers) {
    case 1: {
      /* 1-layer */
      cfg->ts_number_layers = 1;
      cfg->ts_periodicity = 1;
      cfg->ts_rate_decimator[0] = 1;
      cfg->ts_layer_id[0] = 0;
      cfg->ts_target_bitrate[0] = bitrate;

      // Update L only.
      layer_flags[0] = VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF;
      break;
    }

    case 2: {
      /* 2-layers, with sync point at first frame of layer 1. */
      cfg->ts_number_layers = 2;
      cfg->ts_periodicity = 2;
      cfg->ts_rate_decimator[0] = 2;
      cfg->ts_rate_decimator[1] = 1;
      cfg->ts_layer_id[0] = 0;
      cfg->ts_layer_id[1] = 1;
      // Use 60/40 bit allocation as example.
      cfg->ts_target_bitrate[0] = (int)(0.6f * bitrate);
      cfg->ts_target_bitrate[1] = bitrate;

      /* 0=L, 1=GF */
      // ARF is used as predictor for all frames, and is only updated on
      // key frame. Sync point every 8 frames.

      // Layer 0: predict from L and ARF, update L and G.
      layer_flags[0] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_UPD_ARF;

      // Layer 1: sync point: predict from L and ARF, and update G.
      layer_flags[1] =
          VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_ARF;

      // Layer 0, predict from L and ARF, update L.
      layer_flags[2] =
          VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF;

      // Layer 1: predict from L, G and ARF, and update G.
      layer_flags[3] = VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST |
                       VP8_EFLAG_NO_UPD_ENTROPY;

      // Layer 0
      layer_flags[4] = layer_flags[2];

      // Layer 1
      layer_flags[5] = layer_flags[3];

      // Layer 0
      layer_flags[6] = layer_flags[4];

      // Layer 1
      layer_flags[7] = layer_flags[5];
      break;
    }

    case 3:
    default: {
      // 3-layers structure where ARF is used as predictor for all frames,
      // and is only updated on key frame.
      // Sync points for layer 1 and 2 every 8 frames.
      cfg->ts_number_layers = 3;
      cfg->ts_periodicity = 4;
      cfg->ts_rate_decimator[0] = 4;
      cfg->ts_rate_decimator[1] = 2;
      cfg->ts_rate_decimator[2] = 1;
      cfg->ts_layer_id[0] = 0;
      cfg->ts_layer_id[1] = 2;
      cfg->ts_layer_id[2] = 1;
      cfg->ts_layer_id[3] = 2;
      // Use 45/20/35 bit allocation as example.
      cfg->ts_target_bitrate[0] = (int)(0.45f * bitrate);
      cfg->ts_target_bitrate[1] = (int)(0.65f * bitrate);
      cfg->ts_target_bitrate[2] = bitrate;

      /* 0=L, 1=GF, 2=ARF */

      // Layer 0: predict from L and ARF; update L and G.
      layer_flags[0] = VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_REF_GF;

      // Layer 2: sync point: predict from L and ARF; update none.
      layer_flags[1] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_UPD_GF |
                       VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST |
                       VP8_EFLAG_NO_UPD_ENTROPY;

      // Layer 1: sync point: predict from L and ARF; update G.
      layer_flags[2] =
          VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST;

      // Layer 2: predict from L, G, ARF; update none.
      layer_flags[3] = VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF |
                       VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_ENTROPY;

      // Layer 0: predict from L and ARF; update L.
      layer_flags[4] =
          VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_REF_GF;

      // Layer 2: predict from L, G, ARF; update none.
      layer_flags[5] = layer_flags[3];

      // Layer 1: predict from L, G, ARF; update G.
      layer_flags[6] = VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST;

      // Layer 2: predict from L, G, ARF; update none.
      layer_flags[7] = layer_flags[3];
      break;
    }
  }
}

/* The periodicity of the pattern given the number of temporal layers. */
static int periodicity_to_num_layers[MAX_NUM_TEMPORAL_LAYERS] = { 1, 8, 8 };

int main(int argc, char **argv) {
  FILE *infile, *outfile[NUM_ENCODERS];
  FILE *downsampled_input[NUM_ENCODERS - 1];
  char filename[50];
  vpx_codec_ctx_t codec[NUM_ENCODERS];
  vpx_codec_enc_cfg_t cfg[NUM_ENCODERS];
  int frame_cnt = 0;
  vpx_image_t raw[NUM_ENCODERS];
  vpx_codec_err_t res[NUM_ENCODERS];

  int i;
  int width;
  int height;
  int length_frame;
  int frame_avail;
  int got_data;
  int flags = 0;
  int layer_id = 0;

  int layer_flags[VPX_TS_MAX_PERIODICITY * NUM_ENCODERS] = { 0 };
  int flag_periodicity;

  /*Currently, only realtime mode is supported in multi-resolution encoding.*/
  int arg_deadline = VPX_DL_REALTIME;

  /* Set show_psnr to 1/0 to show/not show PSNR. Choose show_psnr=0 if you
     don't need to know PSNR, which will skip PSNR calculation and save
     encoding time. */
  int show_psnr = 0;
  int key_frame_insert = 0;
  uint64_t psnr_sse_total[NUM_ENCODERS] = { 0 };
  uint64_t psnr_samples_total[NUM_ENCODERS] = { 0 };
  double psnr_totals[NUM_ENCODERS][4] = { { 0, 0 } };
  int psnr_count[NUM_ENCODERS] = { 0 };

  int64_t cx_time = 0;

  /* Set the required target bitrates for each resolution level.
   * If target bitrate for highest-resolution level is set to 0,
   * (i.e. target_bitrate[0]=0), we skip encoding at that level.
   */
  unsigned int target_bitrate[NUM_ENCODERS] = { 1000, 500, 100 };

  /* Enter the frame rate of the input video */
  int framerate = 30;

  /* Set down-sampling factor for each resolution level.
     dsf[0] controls down sampling from level 0 to level 1;
     dsf[1] controls down sampling from level 1 to level 2;
     dsf[2] is not used. */
  vpx_rational_t dsf[NUM_ENCODERS] = { { 2, 1 }, { 2, 1 }, { 1, 1 } };

  /* Set the number of temporal layers for each encoder/resolution level,
   * starting from highest resoln down to lowest resoln. */
  unsigned int num_temporal_layers[NUM_ENCODERS] = { 3, 3, 3 };

  if (argc != (7 + 3 * NUM_ENCODERS))
    die("Usage: %s <width> <height> <frame_rate>  <infile> <outfile(s)> "
        "<rate_encoder(s)> <temporal_layer(s)> <key_frame_insert> <output "
        "psnr?> \n",
        argv[0]);

  printf("Using %s\n", vpx_codec_iface_name(interface));

  width = (int)strtol(argv[1], NULL, 0);
  height = (int)strtol(argv[2], NULL, 0);
  framerate = (int)strtol(argv[3], NULL, 0);

  if (width < 16 || width % 2 || height < 16 || height % 2)
    die("Invalid resolution: %ldx%ld", width, height);

  /* Open input video file for encoding */
  if (!(infile = fopen(argv[4], "rb")))
    die("Failed to open %s for reading", argv[4]);

  /* Open output file for each encoder to output bitstreams */
  for (i = 0; i < NUM_ENCODERS; i++) {
    if (!target_bitrate[i]) {
      outfile[i] = NULL;
      continue;
    }

    if (!(outfile[i] = fopen(argv[i + 5], "wb")))
      die("Failed to open %s for writing", argv[i + 4]);
  }

  // Bitrates per spatial layer: overwrite default rates above.
  for (i = 0; i < NUM_ENCODERS; i++) {
    target_bitrate[i] = (int)strtol(argv[NUM_ENCODERS + 5 + i], NULL, 0);
  }

  // Temporal layers per spatial layers: overwrite default settings above.
  for (i = 0; i < NUM_ENCODERS; i++) {
    num_temporal_layers[i] =
        (int)strtol(argv[2 * NUM_ENCODERS + 5 + i], NULL, 0);
    if (num_temporal_layers[i] < 1 || num_temporal_layers[i] > 3)
      die("Invalid temporal layers: %d, Must be 1, 2, or 3. \n",
          num_temporal_layers);
  }

  /* Open file to write out each spatially downsampled input stream. */
  for (i = 0; i < NUM_ENCODERS - 1; i++) {
    // Highest resoln is encoder 0.
    if (sprintf(filename, "ds%d.yuv", NUM_ENCODERS - i) < 0) {
      return EXIT_FAILURE;
    }
    downsampled_input[i] = fopen(filename, "wb");
  }

  key_frame_insert = (int)strtol(argv[3 * NUM_ENCODERS + 5], NULL, 0);

  show_psnr = (int)strtol(argv[3 * NUM_ENCODERS + 6], NULL, 0);

  /* Populate default encoder configuration */
  for (i = 0; i < NUM_ENCODERS; i++) {
    res[i] = vpx_codec_enc_config_default(interface, &cfg[i], 0);
    if (res[i]) {
      printf("Failed to get config: %s\n", vpx_codec_err_to_string(res[i]));
      return EXIT_FAILURE;
    }
  }

  /*
   * Update the default configuration according to needs of the application.
   */
  /* Highest-resolution encoder settings */
  cfg[0].g_w = width;
  cfg[0].g_h = height;
  cfg[0].rc_dropframe_thresh = 0;
  cfg[0].rc_end_usage = VPX_CBR;
  cfg[0].rc_resize_allowed = 0;
  cfg[0].rc_min_quantizer = 2;
  cfg[0].rc_max_quantizer = 56;
  cfg[0].rc_undershoot_pct = 100;
  cfg[0].rc_overshoot_pct = 15;
  cfg[0].rc_buf_initial_sz = 500;
  cfg[0].rc_buf_optimal_sz = 600;
  cfg[0].rc_buf_sz = 1000;
  cfg[0].g_error_resilient = 1; /* Enable error resilient mode */
  cfg[0].g_lag_in_frames = 0;

  /* Disable automatic keyframe placement */
  /* Note: These 3 settings are copied to all levels. But, except the lowest
   * resolution level, all other levels are set to VPX_KF_DISABLED internally.
   */
  cfg[0].kf_mode = VPX_KF_AUTO;
  cfg[0].kf_min_dist = 3000;
  cfg[0].kf_max_dist = 3000;

  cfg[0].rc_target_bitrate = target_bitrate[0]; /* Set target bitrate */
  cfg[0].g_timebase.num = 1;                    /* Set fps */
  cfg[0].g_timebase.den = framerate;

  /* Other-resolution encoder settings */
  for (i = 1; i < NUM_ENCODERS; i++) {
    memcpy(&cfg[i], &cfg[0], sizeof(vpx_codec_enc_cfg_t));

    cfg[i].rc_target_bitrate = target_bitrate[i];

    /* Note: Width & height of other-resolution encoders are calculated
     * from the highest-resolution encoder's size and the corresponding
     * down_sampling_factor.
     */
    {
      unsigned int iw = cfg[i - 1].g_w * dsf[i - 1].den + dsf[i - 1].num - 1;
      unsigned int ih = cfg[i - 1].g_h * dsf[i - 1].den + dsf[i - 1].num - 1;
      cfg[i].g_w = iw / dsf[i - 1].num;
      cfg[i].g_h = ih / dsf[i - 1].num;
    }

    /* Make width & height to be multiplier of 2. */
    // Should support odd size ???
    if ((cfg[i].g_w) % 2) cfg[i].g_w++;
    if ((cfg[i].g_h) % 2) cfg[i].g_h++;
  }

  // Set the number of threads per encode/spatial layer.
  // (1, 1, 1) means no encoder threading.
  cfg[0].g_threads = 1;
  cfg[1].g_threads = 1;
  cfg[2].g_threads = 1;

  /* Allocate image for each encoder */
  for (i = 0; i < NUM_ENCODERS; i++)
    if (!vpx_img_alloc(&raw[i], VPX_IMG_FMT_I420, cfg[i].g_w, cfg[i].g_h, 32))
      die("Failed to allocate image", cfg[i].g_w, cfg[i].g_h);

  if (raw[0].stride[VPX_PLANE_Y] == (int)raw[0].d_w)
    read_frame_p = mulres_read_frame;
  else
    read_frame_p = mulres_read_frame_by_row;

  for (i = 0; i < NUM_ENCODERS; i++)
    if (outfile[i]) write_ivf_file_header(outfile[i], &cfg[i], 0);

  /* Temporal layers settings */
  for (i = 0; i < NUM_ENCODERS; i++) {
    set_temporal_layer_pattern(num_temporal_layers[i], &cfg[i],
                               cfg[i].rc_target_bitrate,
                               &layer_flags[i * VPX_TS_MAX_PERIODICITY]);
  }

  /* Initialize multi-encoder */
  if (vpx_codec_enc_init_multi(&codec[0], interface, &cfg[0], NUM_ENCODERS,
                               (show_psnr ? VPX_CODEC_USE_PSNR : 0), &dsf[0]))
    die_codec(&codec[0], "Failed to initialize encoder");

  /* The extra encoding configuration parameters can be set as follows. */
  /* Set encoding speed */
  for (i = 0; i < NUM_ENCODERS; i++) {
    int speed = -6;
    /* Lower speed for the lowest resolution. */
    if (i == NUM_ENCODERS - 1) speed = -4;
    if (vpx_codec_control(&codec[i], VP8E_SET_CPUUSED, speed))
      die_codec(&codec[i], "Failed to set cpu_used");
  }

  /* Set static threshold = 1 for all encoders */
  for (i = 0; i < NUM_ENCODERS; i++) {
    if (vpx_codec_control(&codec[i], VP8E_SET_STATIC_THRESHOLD, 1))
      die_codec(&codec[i], "Failed to set static threshold");
  }

  /* Set NOISE_SENSITIVITY to do TEMPORAL_DENOISING */
  /* Enable denoising for the highest-resolution encoder. */
  if (vpx_codec_control(&codec[0], VP8E_SET_NOISE_SENSITIVITY, 1))
    die_codec(&codec[0], "Failed to set noise_sensitivity");
  if (vpx_codec_control(&codec[1], VP8E_SET_NOISE_SENSITIVITY, 1))
    die_codec(&codec[1], "Failed to set noise_sensitivity");
  for (i = 2; i < NUM_ENCODERS; i++) {
    if (vpx_codec_control(&codec[i], VP8E_SET_NOISE_SENSITIVITY, 0))
      die_codec(&codec[i], "Failed to set noise_sensitivity");
  }

  /* Set the number of token partitions */
  for (i = 0; i < NUM_ENCODERS; i++) {
    if (vpx_codec_control(&codec[i], VP8E_SET_TOKEN_PARTITIONS, 1))
      die_codec(&codec[i], "Failed to set static threshold");
  }

  /* Set the max intra target bitrate */
  for (i = 0; i < NUM_ENCODERS; i++) {
    unsigned int max_intra_size_pct =
        (int)(((double)cfg[0].rc_buf_optimal_sz * 0.5) * framerate / 10);
    if (vpx_codec_control(&codec[i], VP8E_SET_MAX_INTRA_BITRATE_PCT,
                          max_intra_size_pct))
      die_codec(&codec[i], "Failed to set static threshold");
    // printf("%d %d \n",i,max_intra_size_pct);
  }

  frame_avail = 1;
  got_data = 0;

  while (frame_avail || got_data) {
    struct vpx_usec_timer timer;
    vpx_codec_iter_t iter[NUM_ENCODERS] = { NULL };
    const vpx_codec_cx_pkt_t *pkt[NUM_ENCODERS];

    flags = 0;
    frame_avail = read_frame_p(infile, &raw[0]);

    if (frame_avail) {
      for (i = 1; i < NUM_ENCODERS; i++) {
        /*Scale the image down a number of times by downsampling factor*/
        /* FilterMode 1 or 2 give better psnr than FilterMode 0. */
        I420Scale(
            raw[i - 1].planes[VPX_PLANE_Y], raw[i - 1].stride[VPX_PLANE_Y],
            raw[i - 1].planes[VPX_PLANE_U], raw[i - 1].stride[VPX_PLANE_U],
            raw[i - 1].planes[VPX_PLANE_V], raw[i - 1].stride[VPX_PLANE_V],
            raw[i - 1].d_w, raw[i - 1].d_h, raw[i].planes[VPX_PLANE_Y],
            raw[i].stride[VPX_PLANE_Y], raw[i].planes[VPX_PLANE_U],
            raw[i].stride[VPX_PLANE_U], raw[i].planes[VPX_PLANE_V],
            raw[i].stride[VPX_PLANE_V], raw[i].d_w, raw[i].d_h, 1);
        /* Write out down-sampled input. */
        length_frame = cfg[i].g_w * cfg[i].g_h * 3 / 2;
        if (fwrite(raw[i].planes[0], 1, length_frame,
                   downsampled_input[NUM_ENCODERS - i - 1]) !=
            (unsigned int)length_frame) {
          return EXIT_FAILURE;
        }
      }
    }

    /* Set the flags (reference and update) for all the encoders.*/
    for (i = 0; i < NUM_ENCODERS; i++) {
      layer_id = cfg[i].ts_layer_id[frame_cnt % cfg[i].ts_periodicity];
      flags = 0;
      flag_periodicity = periodicity_to_num_layers[num_temporal_layers[i] - 1];
      flags = layer_flags[i * VPX_TS_MAX_PERIODICITY +
                          frame_cnt % flag_periodicity];
      // Key frame flag for first frame.
      if (frame_cnt == 0) {
        flags |= VPX_EFLAG_FORCE_KF;
      }
      if (frame_cnt > 0 && frame_cnt == key_frame_insert) {
        flags = VPX_EFLAG_FORCE_KF;
      }

      vpx_codec_control(&codec[i], VP8E_SET_FRAME_FLAGS, flags);
      vpx_codec_control(&codec[i], VP8E_SET_TEMPORAL_LAYER_ID, layer_id);
    }

    /* Encode each frame at multi-levels */
    /* Note the flags must be set to 0 in the encode call if they are set
       for each frame with the vpx_codec_control(), as done above. */
    vpx_usec_timer_start(&timer);
    if (vpx_codec_encode(&codec[0], frame_avail ? &raw[0] : NULL, frame_cnt, 1,
                         0, arg_deadline)) {
      die_codec(&codec[0], "Failed to encode frame");
    }
    vpx_usec_timer_mark(&timer);
    cx_time += vpx_usec_timer_elapsed(&timer);

    for (i = NUM_ENCODERS - 1; i >= 0; i--) {
      got_data = 0;
      while ((pkt[i] = vpx_codec_get_cx_data(&codec[i], &iter[i]))) {
        got_data = 1;
        switch (pkt[i]->kind) {
          case VPX_CODEC_CX_FRAME_PKT:
            write_ivf_frame_header(outfile[i], pkt[i]);
            (void)fwrite(pkt[i]->data.frame.buf, 1, pkt[i]->data.frame.sz,
                         outfile[i]);
            break;
          case VPX_CODEC_PSNR_PKT:
            if (show_psnr) {
              int j;

              psnr_sse_total[i] += pkt[i]->data.psnr.sse[0];
              psnr_samples_total[i] += pkt[i]->data.psnr.samples[0];
              for (j = 0; j < 4; j++) {
                psnr_totals[i][j] += pkt[i]->data.psnr.psnr[j];
              }
              psnr_count[i]++;
            }

            break;
          default: break;
        }
        fflush(stdout);
      }
    }
    frame_cnt++;
  }
  printf("\n");
  printf("Frame cnt and encoding time/FPS stats for encoding: %d %f %f \n",
         frame_cnt, 1000 * (float)cx_time / (double)(frame_cnt * 1000000),
         1000000 * (double)frame_cnt / (double)cx_time);

  fclose(infile);

  printf("Processed %ld frames.\n", (long int)frame_cnt - 1);
  for (i = 0; i < NUM_ENCODERS; i++) {
    /* Calculate PSNR and print it out */
    if ((show_psnr) && (psnr_count[i] > 0)) {
      int j;
      double ovpsnr =
          sse_to_psnr(psnr_samples_total[i], 255.0, psnr_sse_total[i]);

      fprintf(stderr, "\n ENC%d PSNR (Overall/Avg/Y/U/V)", i);

      fprintf(stderr, " %.3lf", ovpsnr);
      for (j = 0; j < 4; j++) {
        fprintf(stderr, " %.3lf", psnr_totals[i][j] / psnr_count[i]);
      }
    }

    if (vpx_codec_destroy(&codec[i]))
      die_codec(&codec[i], "Failed to destroy codec");

    vpx_img_free(&raw[i]);

    if (!outfile[i]) continue;

    /* Try to rewrite the file header with the actual frame count */
    if (!fseek(outfile[i], 0, SEEK_SET))
      write_ivf_file_header(outfile[i], &cfg[i], frame_cnt - 1);
    fclose(outfile[i]);
  }

  return EXIT_SUCCESS;
}